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Abstract. Proofs are given of the limiting null distributions of the statistics
of Berk and Jones (1979) and of Einmahl and McKeague (2002).

1. Introduction

Suppose that X1, . . . , Xn are i.i.d. with distribution function F on R and we want
to test

H : F = F0 versus K : F �= F0(1.1)

where F0 is continuous. Without loss of generality we can take F0(x) = (x∨0)∧1,
the uniform distribution on [0, 1]. The test of Berk and Jones (1979) is defined in
terms of the empirical distribution function Fn given, as usual, for x ∈ R by

Fn(x) = n−1
n∑

i=1

1[Xi≤x] .

For each fixed x the random variable nFn(x) ∼ Binomial(n, F (x)), and hence the
likelihood ratio statistic for testing

Hx : F (x) = F0(x) versus Kx : F (x) �= F0(x)

is given by

λn(x) =
supF (x) Ln(F (x))

Ln(F0(x))
=

Ln(Fn(x))
Ln(F0(x))

=
Fn(x)nFn(x)(1 − Fn(x))n(1−Fn(x))

F0(x)nFn(x)(1 − F0(x))n(1−Fn(x))

=
(

Fn(x)
F0(x)

)nFn(x) (
1 − Fn(x)
1 − F0(x)

)n(1−Fn(x))

.
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By defining

K(x, y) ≡ x log
(

x

y

)
+ (1 − x) log

(
1 − x

1 − y

)
for x, y ∈ [0, 1], the log-likelihood ratio statistic is

log λn(x) = nK(Fn(x), F0(x)) .

Note that K(x, y) is the Kullback-Leibler “distance” between two Bernoulli distri-
butions Px and Py: K(x, y) = K(Px, Py) where the “second K” is the Kullback-
Leibler distance (or relative entropy)

K(P, Q) = EP {log dP/dQ} if P � Q

and Px(X = k) = xk(1 − x)1−k for k ∈ {0, 1}. It follows that K(x, y) ≥ 0 with
equality if and only if x = y (which can also be proved directly).

The statistic Rn studied by Berk and Jones (1979) is simply the supremum
of these “pointwise likelihood ratio” test statistics:

Rn = sup
0≤x≤1

n−1 log λn(x) = sup
0≤x≤1

K(Fn(x), F0(x)) .

Einmahl and McKeague (2003) propose an integral statistic Tn defined by

Tn = 2
∫ 1

0

n−1 log λn(x) dF0(x) = 2
∫ 1

0

K(Fn(x), F0(x)) dF0(x) .

Einmahl and McKeague (2003) extend this integral type of test statistic to several
other testing problems.

Our goal in this note is to give complete proofs of the following theorems of
Berk and Jones (1979) and Einmahl and McKeague (2003). Note that neither of
these papers provide proofs of these results since in both cases they are primarily
concerned with other questions. Moreover, although the brief sketch of a proof
of Theorem 1.1 given by Berk and Jones (1979) is heuristically on target, the
first displayed formula of section 6 of Berk and Jones (1979) does not seem to be
correct. The formula there asserts that

Rn =
1
2

{
sup

0<x<1

(Fn(x) − x)2

x(1 − x)

} {
1 + Op(n−1/2)

}
,

but our proof in section 2 suggests that only a weaker relationship holds.

Theorem 1.1. Suppose that F = F0; i.e. the null hypothesis H holds. Then:

nRn − dn →d Y4 ∼ E4
v

where E4
v(x) = exp(−4 exp(−x)) = P (Y4 ≤ x), and

dn = log2 n +
1
2

log3 n − 1
2

log(4π)

where log2 n ≡ log(log n) and log3 n ≡ log(log2 n). In other words, for all x ∈ R

lim
n→∞

P (nRn − dn ≤ x) = exp
(
−4e−x

)
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Theorem 1.2. Suppose that F = F0; i.e. the null hypothesis H holds. Then:

nTn →d

∫ 1

0

U
2(s)

s(1 − s)
ds ≡ A2

where U denotes a standard Brownian bridge process on [0, 1]. In other words, for
all t ∈ R and

lim
n→∞

P (nTn ≤ t) = P

(∫ 1

0

U
2(s)

s(1 − s)
ds ≤ t

)
.

Remark 1. (Centering of nRn). Set

cn = 2 log2 n + (1/2) log3 n − (1/2) log(4π) ,

bn = (2 log2 n)1/2 .

As will be seen in the next section, the proof of Theorem 1.1 actually suggests
that the appropriate centering of nRn is given by c2

n/(2b2
n). Although

1
2

c2
n

b2
n

= log2 n + (1/2) log3 n − (1/2) log(4π) + o(1) = dn + o(1)(1.2)

so the two centerings c2
n/(2b2

n) and dn are asymptotically equivalent, simulations
and comparison with the finite sample results of Owen (1995) suggest that the
centering c2

n/(2b2
n) yields a better approximation for finite sample sizes. We will

provide evidence in support of this in Section 3.

Remark 2. Theorem 1.2 says that the asymptotic distribution of nTn under the
null hypothesis is the same as that of the classical Anderson - Darling statistic;
see e.g. Shorack and Wellner (1986), 148 and 224-227.

2. Proofs of Theorems 1.1 and 1.2.

We first prove theorem 1.1.

Proof of Theorem 1.1: First note that
∂

∂x
K(x, y)

∣∣∣
x=y

= log
(

x

y

)
− log

(
1 − x

1 − y

) ∣∣∣
x=y

= 0 ,

and
∂2

∂x2
K(x, y) =

1
x

+
1

1 − x
=

1
x(1 − x)

.

Hence it follows that

K(x, y) = K(y, y) +
∂

∂x
K(x, y)

∣∣∣
x=y

(y − x) +
1
2

∂2

∂x2
K(x, y)

∣∣∣
x=y∗

(y − x)2

= 0 + 0 +
1
2

(y − x)2

y∗(1 − y∗)

=
1
2

(y − x)2

y∗(1 − y∗)
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for some y∗ satisfying |y∗ − x| ≤ |y − x|. This yields

K(Fn(x), x) =
1
2

(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
(2.1)

for 0 < x < 1 where |F∗
n(x)−x| ≤ |Fn(x)−x|; i.e. x ≤ F

∗
n(x) ≤ Fn(x) on the event

x ≤ Fn(x) and Fn(x) ≤ F
∗
n(x) ≤ x on the event Fn(x) ≤ x.

We can write (2.1) as

K(Fn(x), x) =
1
2

(Fn(x) − x)2

x(1 − x)

{
1 +

x(1 − x)
F∗

n(x)(1 − F∗
n(x))

− 1
}

where

|Remn(x)| ≡
∣∣∣ x(1 − x)
F∗

n(x)(1 − F∗
n(x))

− 1
∣∣∣

=
∣∣∣x − x2 − (F∗

n(x) − F
∗
n(x)2)

F∗
n(x)(1 − F∗

n(x))

∣∣∣
=

∣∣∣ (x − F
∗
n(x))(1 − (x + F

∗
n(x)))

F∗
n(x)(1 − F∗

n(x))

∣∣∣
≤ 3

∣∣∣ (x − Fn(x))
F∗

n(x)(1 − F∗
n(x))

∣∣∣ .

Fix δ ∈ (0, 1/2). Now for x ∈ [δ, 1 − δ], Fn(x) ∈ [δ/2, 1 − δ/2] a.s. for n ≥ Nω, so

sup
δ≤x≤1−δ

|Remn(x)| ≤ 3
(δ/2)(1 − δ/2)

sup
δ≤x≤1−δ

|Fn(x) − x| = Op(n−1/2) .

For 0 < x ≤ 1/2 the function g(x) = x(1 − x) is ↗, so

g(F∗
n(x)) ≥ g(x) ∧ g(Fn(x))

on the set {Fn(x) < 1/2}. Since P (Fn(δ) ≥ 1/2) → 0, we get

sup
X(1)≤x≤δ

|Remn(x)| ≤ 3

(
sup

X(1)≤x≤δ

|Fn(x) − x|
g(Fn(x))

∨ sup
0<x≤δ

|Fn(x) − x|
g(x)

)

= Op(1)(2.2)

where 0 ≤ X(1) ≤ . . . ≤ X(n) ≤ 1 denote the order statistics of the sample. Here
the Op(1) holds by virtue of Daniels (1945), Robbins (1954), and Chang (1955);
see Theorem 2, Shorack and Wellner (1986), page 345, and Inequality 1, Shorack
and Wellner (1986) page 415. Now note that K(Fn(x), x) = 0 for x < X(1) and
x > X(n). Therefore

Rn = sup
0<x<1

K(Fn(x), x) = sup
X(1)≤x≤X(n)

K(Fn(x), x)

=
1
2

sup
X(1)≤x≤X(n)

(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
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by (2.1). Fix δ ∈ (0, 1/2) and define

Rn(I) =
1
2

sup
δ≤x≤1−δ

(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
,

Rn(II) =
1
2

sup
X(1)≤x≤δ

(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
,

Rn(III) =
1
2

sup
1−δ≤x≤X(n)

(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
.

Thus Rn = max{Rn(I), Rn(II), Rn(III)}. For Rn(I),

Rn(I) =
1
2

sup
δ≤x≤1−δ

(Fn(x) − x)2

x(1 − x)

{
1 + Op(n−1/2)

}

≤ 1
2

sup
δ≤x≤1−δ

{
(Fn(x) − x)2

x(1 − x)
∨ (Fn(x) − x)2

Fn(x)(1 − Fn(x))

} {
1 + Op(n−1/2)

}
.

In the second region the argument above leading to (2.2) yields

Rn(II) ≤ 1
2

sup
X(1)≤x≤δ

{
(Fn(x) − x)2

x(1 − x)
∨ (Fn(x) − x)2

Fn(x)(1 − Fn(x))

}

≥ 1
2

sup
X(1)≤x≤δ

{
(Fn(x) − x)2

x(1 − x)
∧ (Fn(x) − x)2

Fn(x)(1 − Fn(x))

}
,

and similarly for Rn(III). It follows that

Rn ≤ 1
2

sup
X(1)≤x≤X(n)

{
(Fn(x) − x)2

x(1 − x)
∨ (Fn(x) − x)2

Fn(x)(1 − Fn(x))

}

×
{

1 + Op(n−1/2)
}

=
1
2

sup
X(1)≤x≤X(n)

{
(Fn(x) − x)2

x(1 − x)

(
1 ∨ x(1 − x)

Fn(x)(1 − Fn(x))

)}

×
{

1 + Op(n−1/2)
}

,(2.3)

and, on the other hand,

Rn ≥ 1
2

sup
X(1)≤x≤X(n)

{
(Fn(x) − x)2

x(1 − x)
∧ (Fn(x) − x)2

Fn(x)(1 − Fn(x))

}

×
{

1 + Op(n−1/2)
}

=
1
2

sup
X(1)≤x≤X(n)

{
(Fn(x) − x)2

x(1 − x)

(
1 ∧ x(1 − x)

Fn(x)(1 − Fn(x))

)}

×
{

1 + Op(n−1/2)
}

.(2.4)
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Now we break the suprema into the regions [X(1), dn], [dn, 1−dn], and [1−dn, X(n)]
with dn = (log n)k/n for any k ≥ 1. Then we have

n sup
X(1)≤x≤dn

(Fn(x) − x)2

x(1 − x)
= op(b2

n)

where bn =
√

2 log2 n; see Shorack and Wellner (1986), (26), page 602. Moreover,

sup
X(1)≤x≤dn

∣∣∣ x(1 − x)
Fn(x)(1 − Fn(x))

∣∣∣ = Op(1) ,

so

n sup
X(1)≤x≤dn

(Fn(x) − x)2

x(1 − x)

(
1 #

x(1 − x)
Fn(x)(1 − Fn(x))

)
= op(b2

n)(2.5)

for # = ∧ or # = ∨, and similarly for the region [1−dn, X(n)]. On the other hand
if we define

Zn ≡ sup
dn≤x≤1−dn

√
n|Fn(x) − x|√

x(1 − x)
,(2.6)

then, for k ≥ 5

Zn

bn
→p 1 ,(2.7)

and

bnZn − cn →d E4
v(2.8)

where cn = 2 log2 n + (1/2) log3 n − (1/2) log(4π) (see e.g. Shorack and Wellner
(1986), page 600, (16.1.20)) and (16.1.17)). Furthermore,∥∥∥Fn(x) − x

x

∥∥∥1

dn

= O(rn)(2.9)

almost surely where

r2
n ≡ log2 n

ndn
=

log2 n

(log n)k
→ 0 ;

see Shorack and Wellner (1986), page 424, (4.5.10) and (4.5.11). It follows from
(2.3), (2.4), (2.7), (2.8), and (2.9) that

nRn =
1
2

{
sup

dn≤x≤1−dn

n(Fn(x) − x)2

x(1 − x)
(1 + Op(rn))

∨
op(b2

n)
}

×
{

1 + Op(n−1/2)
}

=
1
2

{
Z2

n

∨
op(b2

n)
}

+ op(1) .(2.10)
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Hence we can write
1
2
Z2

n =
1
2
(Zn − cn/bn)(Zn + cn/bn) +

1
2

c2
n

b2
n

=
1
2
bn(Zn − cn/bn)

Zn + cn/bn

bn
+

1
2

c2
n

b2
n

It follows that

nRn − 1
2

c2
n

b2
n

= bn(Zn − cn/bn)
Zn + cn/bn

2bn

∨ (
op(b2

n) − 1
2

c2
n

b2
n

)
+ op(1)

= bn(Zn − cn/bn)
Zn/bn + cn/b2

n

2

∨
(op(1) − 1/2) b2

n + op(1)

→d Y4
1 + 1

2

∨
{−∞} = Y4 ;(2.11)

here we used c2
n/b2

n ∼ b2
n in the second equality. Since

1
2

c2
n

b2
n

= log2 n + (1/2) log3 n − (1/2) log(4π) + o(1) = dn + o(1)(2.12)

this yields

P (nRn − dn ≤ x) → exp(−4 exp(−x)) ,(2.13)

and completes the proof of Theorem 1. Note that the centering c2
n/(2b2

n) emerges
naturally in the course of this proof. �

Proof of Theorem 2. Let α ∈ (1/2, 1), set an = n−α, and write

nTn =
(∫ an

0

+
∫ 1−an

an

+
∫ 1

1−an

)
2nK(Fn(x), x) dx

≡ In + IIn + IIIn .

Now by (2.1) it follows that

IIn =
∫ 1−an

an

n(Fn(x) − x)2

F∗
n(x)(1 − F∗

n(x))
dx →d

∫ 1

0

U
2(x)

x(1 − x)
dx

since ∥∥∥ x(1 − x)
Fn(x)(1 − Fn(x))

− 1
∥∥∥1−an

an

→p 0

by Wellner (1978) Theorem 0, page 77, and hence also with Fn replaced by F
∗
n,

and ∫ 1−an

an

n(Fn(x) − x)2

x(1 − x)
dx →d

∫ 1

0

U
2(x)

x(1 − x)
dx

as is well-know. Hence it remains only to show that In →p 0 (and then IIIn →p 0
also by symmetry). To show this, fix ε > 0 and choose λ = λε so large that

P (‖Fn(x)/x‖1
0 > λ) = λ−1 < ε .
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On the event ‖Fn(x)/x‖1
0 ≤ λ we have

In =
∫ an

0

2nK(Fn(x), x) dx

=
∫ an

0

2nFn(x) log
Fn(x)

x
dx + o(1) a.s.

≤
∫ an

0

2nλx log λ dx

= λ log λ na2
n → 0

since α > 1/2. �

3. On the centering: finite sample approximations

Now we present some graphical evidence in favor of centering the statistic nRn

of Berk and Jones (1979) by c2
n/(2b2

n) rather than the asymptotically equivalent
form given by dn. Figures 1 and 2 below give empirical distributions of 5000
Monte Carlo replications of nRn − dn for sample sizes n = 100 and n = 1000
respectively, together with the limit distribution function. From Figure 1 it is
apparent that the distribution of nRn − dn with n = 100 is shifted to the right
from the limit distribution in the middle of its range. From Figure 2 we see that
this continues to be the case for n = 1000, although the shift is somewhat less.
Figures 3 and 4 give empirical distributions of 5000 Monte Carlo replications of
nRn−c2

n/(2b2
n) for samples sizes n = 100 and n = 1000 respectively, together with

the limit distribution function. It is clear that the distribution of nRn − c2
n/(2b2

n)
nearly coincides with the limit distribution in the middle of its range. Furthermore,
Figure 4 shows improved agreement with the limit distribution using the centering
c2
n/(2b2

n) for n = 1000.
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0.8

1

F�x�

Figure 1: solid line: limit distribution F (x) = exp(−4 exp(−x));
dashed line: empirical distribution function of 5000
replications of nRn − dn, n = 100.

2 4 6 8
x

0.2

0.4

0.6

0.8

1

F�x�

Figure 2: solid line: limit distribution F (x) = exp(−4 exp(−x));
dashed line: empirical distribution function of 5000
replications of nRn − dn, n = 1000.
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2 4 6 8
x

0.2

0.4

0.6

0.8

1

F�x�

Figure 3: solid line: limit distribution F (x) = exp(−4 exp(−x));
dashed line: empirical distribution function of 5000
replications of nRn − c2

n/(2b2
n), n = 100.

2 4 6 8
x

0.2

0.4

0.6

0.8

1

F�x�

Figure 4: solid line: limit distribution F (x) = exp(−4 exp(−x));
dashed line: empirical distribution function of 5000
replications of nRn − c2

n/(2b2
n), n = 1000.

Owen (1995) used the recursions of Noe (1972) to find finite sample formulas
for the quantiles of nRn. For example, Owen (1995) reports that approximate .95
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and .99 quantiles of nRn for 1 < n ≤ 1000 are given as follows:

λ(n, .95) ≈
{

3.0123 + .4835 log n − .00957(log n)2 − .001488(log n)3 , 1 < n ≤ 100
3.0806 + .4894 log n − .02086(log n)2 , 100 < n ≤ 1000 ,

while

λ(n, .99) ≈
{

4.626 + .541 log n − .0242(log n)2 , 1 < n ≤ 100 ,
4.710 + .512 log n − .0219(log n)2 , 100 < n ≤ 1000.

(3.1)

The signs in (3.1) are from Owen (2001), page 159, Table 7.1, and differ by a sign
from Owen (1995) formulas (12) and (13); it seems clear that this is a typo in
Owen (1995).

Figures 5 and 6 give plots of these approximations (in blue) from Owen
(1995) together with the corresponding quantiles resulting from Theorem 1 with
the two asymptotically equivalent centerings c2

n/(2b2
n) and dn. Figure 5 shows

that centering by c2
n/(2b2

n) gives excellent correspondence with Owen’s formula for
1 − α = .95, and we therefore propose using the resulting formula, namely

λ(n, .95; c2
n/(2b2

n)) =
c2
n

2b2
n

− log{(1/4) log(1/(1 − .05))}

rather than

λ(n, .95; dn) = dn − log{(1/4) log(1/(1 − .05))}
for n ≥ 800 (and certainly for n ≥ 1000). Figure 6 gives a less clear picture for
1−α = .99. Although the approximation using the centering c2

n/(2b2
n) is closer to

Owen’s finite sample formula, there is still not a clear agreement for n ≥ 1000, so
further work is needed here.
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200 400 600 800 1000
n

4.6

4.8

5.2

5.4

Λ�n,.95�

Figure 5. Black: Owen’s finite-sample quantiles, λ(n, .95).
Medium Gray: approximte quantiles λ(n, .95; c2

n/(2b2
n))

Light Gray: approximate quantiles λ(n, .95; dn)

200 400 600 800 1000
n

6.2

6.4

6.6

6.8

7.2

Λ�n,.99�

Figure 6. Black: Owen’s finite-sample quantiles, λ(n, .99).
Medium Gray: approximte quantiles λ(n, .99; c2

n/(2b2
n))

Light Gray: approximate quantiles λ(n, .99; dn)

Acknowledgements: We owe thanks to Bob Berk for encouragement to complete
this study.
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