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ABSTRACT We show that the P−Glivenko property of classes of
functions F1, . . . ,Fk is preserved by a continuous function ϕ from Rk

to R in the sense that the new class of functions

x → ϕ(f1(x), . . . , fk(x)), fi ∈ Fi, i = 1, . . . , k

is again a Glivenko-Cantelli class of functions if it has an integrable
envelope. We also prove an analogous result for preservation of the
uniform Glivenko-Cantelli property. Corollaries of the main theorem
include two preservation theorems of Dudley (1998). We apply the
main result to reprove a theorem of Schick and Yu (1999) concern-
ing consistency of the NPMLE in a model for “mixed case” interval
censoring. Finally a version of the consistency result of Schick and
Yu (1999) is established for a general model for “mixed case interval
censoring” in which a general sample space Y is partitioned into sets
which are members of some VC-class C of subsets of Y.
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1. Glivenko - Cantelli Theorems.

Let (X ,A, P ) be a probability space, and suppose that F ⊂ L1(P ).
For such a class of functions, let F0,P ≡ {f − Pf : f ∈ F}. We also
let FF (x) ≡ supf∈F |f(x)|, the envelope function of F . If |f | ≤ F for
all f ∈ F with F measurable, then F is an envelope for F .

Suppose that X1, X2, . . . are i.i.d. P . Glivenko-Cantelli theorems
give conditions under which the empirical measure Pn converges uni-
formly to P over a class F , either in probability (in which case we
say that F is a weak Glivenko-Cantelli class for P ) or almost surely:

‖Pn − P‖F ≡ sup
f∈F

|Pnf − Pf | →a.s.∗ 0 ;

in this case we say that we say that F is a strong Glivenko-Cantelli
class for P . Useful sufficient conditions for a class F to be a strong
Glivenko-Cantelli class for P are that it has an integrable envelope
and either

log N[](ε,F , L1(P )) < ∞ for all ε > 0

or
log N(ε,FM , L1(Pn)) = o∗P (n) for every ε > 0 .

Here FM = {f1[F≤M ] : f ∈ F}. In the second case some additional
measurability conditions are necessary; see Van der Vaart and Well-
ner (1996), Chapter 2.4, pages 122 - 126. In particular, the condition
in Theorem 2.4.3, page 123, is shown by Giné and Zinn (1984) and
Talagrand (1996) to be both necessary and sufficient, under measur-
ability assumptions, for the class F to be a strong Glivenko-Cantelli
class. Talagrand (1987b) gives necessary and sufficient conditions for
the Glivenko-Cantelli theorem without any measurability hypothe-
ses.

Theorem 1. (Giné and Zinn, 1984). Suppose that F is L1(P ) bounded
and nearly linearly supremum measurable for P ; in particular this
holds if F is image admissible Suslin. Then the following are equiv-
alent:
(a) F is a strong Glivenko-Cantelli class for P .
(b) F has an envelope function F ∈ L1(P ) and the truncated classes
FM ≡ {f1{F ≤ M} : f ∈ F} satisfy

1
n

E∗ log N(ε,FM , Lr(Pn)) → 0 for all ε > 0, and for all M ∈ (0,∞)

for some (all) r ∈ (0,∞] where ‖f‖Lr(P ) ≡ ‖f‖P,r ≡ {P (|f |r)}r−1∧1.
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2. Preservation of the Glivenko - Cantelli Property.

Our goal in this section is to present several results concerning the
stability of the Glivenko-Cantelli property of one or more classes
of functions under composition with functions ϕ. A theorem which
motivated our interest is the following result of Dudley (1998a).

Theorem 2. (Dudley, 1998a). Suppose that F is a strong Glivenko-
Cantelli class for P with PF < ∞, J is a possibly unbounded interval
including the ranges of all f ∈ F , ϕ is continuous and monotone on
J , and for some finite constants c, d, |ϕ(y)| ≤ c|y| + d for all y ∈ J .
Then ϕ(F) is also a strong Glivenko-Cantelli class for P .

Dudley (1998a) proves this via the characterization of Glivenko-
Cantelli classes due to Talagrand (1987b). Dudley (1998b) also uses
Talagrand’s characterization to prove the following interesting propo-
sition.

Proposition 1. (Dudley, 1998b). Suppose that F is a strong Glivenko-
Cantelli class for P with PF < ∞, and g is a fixed bounded function
(‖g‖∞ < ∞). Then the class of functions g · F ≡ {g · f : f ∈ F} is a
strong Glivenko-Cantelli class for P .

Yet another proposition in this same vein is:

Proposition 2. (Giné and Zinn, 1984). Suppose that F is a uni-
formly bounded strong Glivenko-Cantelli class for P , and g ∈ L1(P )
is a fixed function. Then the class of functions g ·F ≡ {g ·f : f ∈ F}
is a strong Glivenko-Cantelli class for P .

Given classes F1, . . . ,Fk of functions fi : X → R and a func-
tion ϕ : Rk → R, let ϕ(F1, . . . ,Fk) be the class of functions x →
ϕ(f1(x), . . . , fk(x)), where fi ∈ Fi, i = 1, . . . , k. Theorem 2 and
Propositions 1 and 2 are all corollaries of the following theorem.

Theorem 3. Suppose that F1, . . . ,Fk are P− Glivenko-Cantelli
classes of functions, and that ϕ : Rk → R is continuous. Then
H ≡ ϕ(F1, . . . ,Fk) is P− Glivenko-Cantelli provided that it has
an integrable envelope function.

Proof. We first assume that the classes of functions Fi are appro-
priately measurable. Let F1, . . . , Fk and H be integrable envelopes
for F1, . . . ,Fk and H respectively, and set F = F1 ∨ . . . ∨ Fk. For
M ∈ (0,∞), define

HM ≡ {ϕ(f)1[F≤M ] : f = (f1, . . . , fk) ∈ F1 ×F2 × · · · × Fk ≡ F} .
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Now

‖(Pn − P )ϕ(f)‖F ≤ (Pn + P )H1[F>M ] + ‖(Pn − P )h‖HM
.

The expectation of the first term on the right converges to 0 as
M → ∞. Hence it suffices to show that HM is P−Glivenko-Cantelli
for every fixed M . Let δ = δ(ε) be the δ of Lemma 2 below for
ϕ : [−M, M ]k → R, ε > 0, and ‖ · ‖ the L1-norm ‖ · ‖1. Then for any
(fj , gj) ∈ Fj , j = 1, . . . , k,

Pn|fj − gj |1[Fj≤M ] ≤
δ

k
, j = 1, . . . , k

implies that

Pn|ϕ(f1, . . . , fk) − ϕ(g1, . . . , gk)|1[F≤M ] ≤ ε .

It follows that

N(ε,HM , L1(Pn)) ≤
k∏

j=1

N(
δ

k
,Fj1[Fj≤M ], L1(Pn)) .

Thus E∗ log N(ε,HM , L1(Pn)) = o(n) for every ε > 0, M < ∞. This
implies that E∗ log N(ε, (HM )N , L1(Pn)) = o(n) for (HM )N the func-
tions h1{H ≤ N} for h ∈ HM . Thus HM is strong Glivenko-Cantelli
for P by Theorem 1. This concludes the proof that H = ϕ(F) is weak
Glivenko-Cantelli. Because it has an integrable envelope, it is strong
Glivenko-Cantelli by, e.g., Lemma 2.4.5 of Van der Vaart and Well-
ner (1996). This concludes the proof for appropriately measurable
classes Fj , j = 1, . . . , k.

We extend the theorem to general Glivenko-Cantelli classes using
separable versions as in Talagrand (1987a). (Also see van der Vaart
and Wellner (1996), pages 115 - 120 for a discussion.) As shown
in the preceding argument, it is not a loss of generality to assume
that the classes Fi are uniformly bounded. Furthermore, it suffices
to show that ϕ(F1, . . . ,Fk) is weak Glivenko-Cantelli. We first need
a lemma.

Lemma 1. Any strong P -Glivenko Cantelli class F is totally bounded
in L1(P ) if and only if ‖P‖F < ∞. Furthermore for any r ∈ (1,∞), if
F has an envelope that is contained in Lr(P ), then F is also totally
bounded in Lr(P ).

Proof. A class that is totally bounded is also bounded. Thus for the
first statement we only need to prove that a strong Glivenko-Cantelli
class F with ‖P‖F < ∞ is totally bounded in L1(P ).
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It is well-known that such a class has an integrable envelope. E.g.
see Giné and Zinn (1983) or Problem 2.4.1 of van der Vaart and
Wellner (1996) to conclude first that P ∗‖f − Pf‖F < ∞. Next the
claim follows from the triangle inequality ‖f‖F ≤ ‖f−Pf‖F+‖P‖F .
Thus it is no loss of generality to assume that the class F possesses
an envelope that is finite everywhere.

Now suppose that there exists a sequence of finitely discrete prob-
ability measures Pn such that

Ln := sup{|(Pn − P )|f − g|| : f, g ∈ F} → 0.

Then for every ε > 0, there exists n0 such that Ln0 < ε. For this n0

there exists a finite ε−net f1, ..., fN over F relative to the L1(Pn0)-
norm, because restricted to the support of Pn0 the functions f are
uniformly bounded by the finite envelope and hence covering F in
L1(Pn0) is like covering a compact in Rn0 . Now for any f ∈ F there
is an fi such that P |f − fi| ≤ Ln0 + Pn0 |f − fi| < 2ε. It follows that
F is totally bounded in L1(P ).

To conclude the proof it suffices to select a sequence Pn. This can
be constructed as a sequence of realizations of the empirical measure
if we know that the class |F −F| is P -GC. It is immediate from the
definition of a Glivenko-Cantelli class that F −F is P -GC. Next by
Dudley’s theorem, Theorem 2, (and also by our Theorem 3, but we
have used the present lemma in the proof of this theorem to take
care of measurability), the classes (F − F)+ and (F − F)− are P -
Glivenko Cantelli. Then the sum of these two classes is P -GC and
hence the proof is complete.

If F has an envelope in Lr(P ), then F is totally bounded in Lr(P )
if the class FM of functions f1{F ≤ M} is totally bounded in Lr(P )
for every fixed M . The class FM is P -GC by Theorem 3 and hence
this class is totally bounded in L1(P ). But then it is also totally
bounded in Lr(P ), because P |f |r ≤ P |f |M r−1 for any f that is
bounded by M and we can construct the ε-net over FM in L1(P ) to
consist of functions that are bounded by M . �

Because a Glivenko-Cantelli class F with ‖P‖F < ∞ is totally
bounded in L1(P ) by Lemma 1, it is separable as a subset of L1(P ). A
minor generalization of Theorem 2.3.17 in van der Vaart and Wellner
(1996) shows that there exists a bijection f ↔ f̃ of F onto a class
F̃ ⊂ L1(P ) such that

• f = f̃ P−almost surely for every f ∈ F .
• there exists a countable subset G ⊂ F̃ such that for every n

there exists a measurable set Nn ⊂ X n with Pn(Nn) = 0
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such that for all (x1, . . . , xn) /∈ Nn and f ∈ F̃ there exists
{gm} ⊂ G such that P |gm−f̃ | → 0 and (gm(x1), . . . , gm(xn)) →
(f̃(x1), . . . , f̃(xn)).

By an adaptation of a theorem due to Talagrand (1987a) (see The-
orem 2.3.15 in van der Vaart and Wellner (1996)) a class F is weak
Glivenko-Cantelli if and only if the class F̃ is weak Glivenko-Cantelli
and supf∈F Pn|f − f̃ | → 0 in outer probability. Construct a “point-
wise separable version” F̃i for each of the classes Fi. The classes F̃i

possess enough measurability to make the preceding argument work;
in particular “pointwise separable version” in the above sense is suf-
ficient for the nearly linearly supremum measurable hypothesis of
Giné and Zinn (1984) for both F1, . . . ,Fk and ϕ(F1, . . . ,Fk). Thus
the class ϕ(F̃1, . . . , F̃k) is Glivenko-Cantelli for P .

Now by Lemma 2 there exists for every ε > 0 a δ > 0 such that

Pn|fj − f̃j | <
δ

k
, j = 1, . . . , k,

implies
Pn|ϕ(f1, . . . , fk) − ϕ(f̃1, . . . , f̃k)| < ε .

The theorem follows. �

Lemma 2. Suppose that ϕ : K → R is continuous and K ⊂ Rk is
compact. Then for every ε > 0 there exists δ > 0 such that for all n
and for all a1, . . . , an, b1, . . . , bn ∈ K ⊂ Rk

1
n

n∑
i=1

‖ai − bi‖ < δ

implies
1
n

n∑
i=1

|ϕ(ai) − ϕ(bi)| < ε .

Here ‖ · ‖ can be any norm on Rk; in particular it can be ‖x‖r =(∑k
i=1 |xi|r

)1/r
, r ∈ [1,∞) or ‖x‖∞ ≡ max1≤i≤k |xi| for

x = (x1, . . . , xk) ∈ Rk.

Proof. Let Un be uniform on {1, . . . , n}, and set Xn = aUn , Yn =
bUn . Then we can write

1
n

n∑
i=1

‖ai − bi‖ = E‖Xn − Yn‖
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and
1
n

n∑
i=1

|ϕ(ai) − ϕ(bi)| = E|ϕ(Xn) − ϕ(Yn)| .

Hence it suffices to show that for every ε > 0 there exists δ > 0 such
that for all (X, Y ) random vectors in K ⊂ Rk,

E‖X − Y ‖ < δ implies E|ϕ(X) − ϕ(Y )| < ε .

Suppose not. Then for some ε > 0 and for all m = 1, 2, . . . there
exists (Xm, Ym) such that

E‖Xm − Ym‖ <
1
m

, E|ϕ(Xm) − ϕ(Ym)| ≥ ε .

But since {(Xm, Ym)} is tight, there exists (Xm′ , Ym′) →d (X, Y ).
Then it follows that

E‖X − Y ‖ = lim
m′→∞

E‖Xm′ − Ym′‖ = 0

so that X = Y a.s., while on the other hand

0 = E|ϕ(X) − ϕ(Y )| = lim
m′→∞

E|ϕ(Xm′) − ϕ(Ym′)| ≥ ε > 0 .

This contradiction means that the desired implication holds. �

Another potentially useful preservation theorem is one based on
building up Glivenko-Cantelli classes from the restrictions of a class
of functions to elements of a partition of the sample space. The
following theorem is related to the results of Van der Vaart (1996)
for Donsker classes.

Theorem 4. Suppose that F is a class of functions on (X ,A, P ),
and {Xi} is a partition of X : ∪∞

i=1Xi = X , Xi ∩ Xj = ∅ for i �= j.
Suppose that Fj ≡ {f1Xj : f ∈ F} is P−Glivenko-Cantelli for each
j, and F has an integrable envelope function F . Then F is itself
P−Glivenko-Cantelli.

Proof. Since

f = f
∞∑

j=1

1Xj =
∞∑

j=1

f1Xj ,

it follows that

E∗‖Pn − P‖F ≤
∞∑

j=1

E∗‖Pn − P‖Fj → 0
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by the dominated convergence theorem since each term in the sum
converges to zero by the hypothesis that each Fj is P− Glivenko-
Cantelli, and we have

E∗‖Pn − P‖Fj ≤ E∗
Pn(F1Xj ) + P (F1Xj ) ≤ 2P (F1Xj )

where
∑∞

j=1 P (F1Xj ) = P (F ) < ∞. �

3. Preservation of the Uniform Glivenko - Cantelli
Property.

We say that F is a strong uniform Glivenko-Cantelli class if for all
ε > 0

sup
P∈P(X ,A)

Pr∗P

(
sup
m≥n

‖Pm − P‖F > ε

)
→ 0 as n → ∞

where P(X ,A) is the set of all probability measures on (X ,A). For
x = (x1, . . . , xn) ∈ X n, n = 1, 2, . . . , and r ∈ (0,∞), we define on F
the pseudo-distances

ex,r(f, g) =

{
n−1

n∑
i=1

|f(xi) − g(xi)|r
}r−1∧1

,

ex,∞(f, g) = max
1≤i≤n

|f(xi) − g(xi)|, f, g ∈ F .

Let N(ε,F , ex,r) denote the ε−covering number of (F , ex,r), ε > 0.
Then define, for n = 1, 2, . . . , ε > 0, and r ∈ (0,∞], the quantities

Nn,r(ε,F) = sup
x∈Xn

N(ε,F , ex,r) .

Theorem 5. (Dudley, Giné, and Zinn (1991)). Suppose that F is a
class of uniformly bounded functions such that F is image admissible
Suslin. Then the following are equivalent:
(a) F is a strong uniform Glivenko-Cantelli class.
(b)

log Nn,r(ε,F)
n

→ 0 for all ε > 0

for some (all) r ∈ (0,∞].

For the definition of the image admissible Suslin property see Dud-
ley (1984), sections 10.3 and 11.1. The following theorem gives nat-
ural sufficient conditions for preservation of the uniform Glivenko-
Cantelli theorem.
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Theorem 6. Suppose that F1, . . . ,Fk are classes of uniformly bounded
functions on (X ,A) such that F1, . . . ,Fk are image-admissible Suslin
and strong uniform Glivenko-Cantelli classes. Suppose that ϕ : Rk →
R is continuous. Then H ≡ ϕ(F1, . . . ,Fk) is a strong uniform Glivenko-
Cantelli class.

Proof. It follows from Lemma 2 that for any ε > 0 there exists δ > 0
such that for any fj , gj ∈ Fj , j = 1, . . . , k, x ∈ X n,

ex,1(fj , gj) ≤
δ

k
, j = 1, . . . , k

implies that

ex,1(ϕ(f1, . . . , fk), ϕ(g1, . . . , gk)) ≤ ε .

It follows that

Nn,1(ε,H) ≤
k∏

j=1

Nn,1(
δ

k
,Fj) ,

and hence that

1
n

log Nn,1(ε,H) ≤
k∑

j=1

1
n

log Nn,1(
δ

k
,Fj) → 0

where the convergence follows from part (b) of Theorem 5 with r = 1.
If we show that H = ϕ(F) is image admissible Suslin, then the
conclusion follows from (b) implies (a) in Theorem 5. We give a
proof of a slightly stronger statement in the following lemma. �

Lemma 3. If F1, . . . ,Fk are image admissible Suslin via (Yi,Si, Ti),
i = 1, . . . , k, and φ : Rk → R is measurable, then ϕ(F1, . . . ,Fk) is
image admissible Suslin via (

∏k
i=1 Yi,

∏k
i=1 Si, T ) for T (y1, . . . , yk) =

ϕ(T1y1, . . . , Tkyk).

Proof. There exist Polish spaces Zi and measurable maps gi : Zi →
Yi which are onto. Then g : Z1 × · · · × Zk → Y1 × · · · × Yk defined
by g(z1, . . . , zk) = (g1(z1), . . . , gk(zk)) is onto and measurable for
S1 × · · · × Sk. So (

∏
i Yi,

∏
i Si) is Suslin. It suffices to check that T

is onto and ψ defined by the map

ψ(x, y1, . . . , yk) = ϕ(T1y1(x), . . . , Tkyk(x))

is measurable. Obviously T is onto, and ψ is measurable because
each map (x, yi) �→ Tiyi(x) is measurable on X × Yi and hence on
X × Y1 × · · · × Yk, and hence

(x, y1, . . . , yk) �→ (T1y1(x), . . . , Tkyk(x))
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is measurable from X × Y to Rk. �

4. Nonparametric Maximum Likelihood Estimation:
a general result.

Now we prove a general result for nonparametric maximum like-
lihood estimation in a class of densities. The main proposition in
this section is related to results of Pfanzagl (1988) and Van de Geer
(1993), (1996). Suppose that P is a class of densities with respect to
a fixed σ−finite measure µ on a measurable space (X ,A). Suppose
that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P. Let

p̂n ≡ argmax Pn log p .

For 0 < α ≤ 1, let ϕα(t) = (tα − 1)/(tα + 1) for t ≥ 0, ϕ(t) = −1 for
t < 0. Then ϕα is bounded and continuous for each α ∈ (0, 1]. For
0 < β < 1 define

h2
β(p, q) ≡ 1 −

∫
pβq1−βdµ .

Note that h1/2(p, q) ≡ h(p, q) is the Hellinger distance between p and
q, and by Hölder’s inequality, hβ(p, q) ≥ 0 with equality if and only
if p = q a.e. µ.

Proposition 3. Suppose that P is convex. Then

h2
1−α/2(p̂n, p0) ≤ (Pn − P0)

(
ϕα(

p̂n

p0
)
)

.

In particular, when α = 1 we have, with ϕ ≡ ϕ1,

h2(p̂n, p0) ≡ h2
1/2(p̂n, p0) ≤ (Pn − P0)

(
ϕ(

p̂n

p0
)
)

.

Corollary 1. Suppose that {ϕ(p/p0) : p ∈ P} is a P0 Glivenko-
Cantelli class. Then for each 0 < α ≤ 1, h1−α/2(p̂n, p0) →a.s. 0.

Proof of Proposition 3. It follows from convexity of P and con-
vexity of t → ϕα(1/t) that

0 ≤ Pnϕα(p̂n/p0) = (Pn − P0)ϕα(p̂n/p0) + P0ϕα(p̂n/p0) ;(1)
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see van der Vaart and Wellner (1996) page 330, and Pfanzagl (1988),
pages 141 - 143. Now we show that

P0ϕα(p/p0) =
∫

pα − pα
0

pα + pα
0

dP0 ≤ −
(

1 −
∫

pβ
0p1−βdµ

)
(2)

for β = 1 − α/2. Note that this holds if and only if

−1 + 2
∫

pα

pα
0 + pα

p0dµ ≤ −1 +
∫

pβ
0p1−βdµ ,

or ∫
pβ
0p1−βdµ ≥ 2

∫
pα

pα
0 + pα

p0dµ .

But his holds if

pβ
0p1−β ≥ 2

pαp0

pα
0 + pα

.

With β = 1 − α/2, this becomes
1
2
(pα

0 + pα) ≥ p
α/2
0 pα/2 =

√
pα
0 pα ,

and this holds by the arithmetic mean - geometric mean inequal-
ity. Thus (2) holds. Combining (2) with (1) yields the claim of the
proposition. �

5. Example: a result of Schick and Yu.

Our goal in this section is to give another proof of the consistency
result of Schick and Yu (1999) for the Non-Parametric Maximum
Likelihood Estimator (NPMLE) F̂n for “mixed case” interval cen-
sored data. Our proof is based on the inequality of the preceding
section, and is similar in spirit to results of Van de Geer (1993),
(1996).

Suppose that Y is a random variable taking values in R+ =
[0,∞) with distribution function F ∈ F = {all df’s F on R+}.
Unfortunately we are not able to observe Y itself. What we do
observe is a vector of times TK = (TK,1, . . . , TK,K) where K, the
number of times, is itself random, and the interval (TK,j−1, TK,j ]
into which Y falls (with TK,0 ≡ 0, TK,K+1 ≡ ∞). More formally,
we assume that K is an integer-valued random variable, and T =
{Tk,j , j = 1, . . . , k, k = 1, 2, . . . }, is a triangular array of “potential
observation times”, and that Y and (K, T ) are independent. Let
X = (∆K , TK , K), with a possible value x = (δk, tk, k), where ∆k =
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(∆k,1, . . . ,∆k,k) with ∆k,j = 1(Tk,j−1,Tk,j ](Y ), j = 1, 2, . . . , k+1, and
Tk is the kth row of the triangular array T . Suppose we observe n

i.i.d. copies of X; X1, X2, . . . , Xn, where Xi = (∆(i)

K(i) , T
(i)

K(i) , K
(i)),

i = 1, 2, . . . , n. Here (Y (i), T (i), K(i)), i = 1, 2, . . . are the underlying
i.i.d. copies of (Y, T , K).

We first note that conditionally on K and TK , the vector ∆K has
a multinomial distribution:

(∆K |K, TK) ∼ MultinomialK+1(1, ∆FK)

where

∆FK ≡ (F (TK,1), F (TK,2) − F (TK,1), . . . , 1 − F (TK,K)) .

Suppose for the moment that the distribution Gk of (TK |K = k) has
density gk and pk ≡ P (K = k). Then a density of X is given by

pF (x) ≡ pF (δk, tk, k) =
k+1∏
j=1

(F (tk,j) − F (tk,j−1))δk,jgk(tk)pk(3)

where tk,0 ≡ 0, tk,k+1 ≡ ∞. In general,

pF (x) ≡ pF (δk, tk, k) =
k+1∏
j=1

(F (tk,j) − F (tk,j−1))δk,j

=
k+1∑
j=1

δk,j(F (tk,j) − F (tk,j−1))(4)

is a density of X with respect to the dominating measure ν where ν
is determined by the joint distribution of (K, T ), and it is this version
of the density of X with which we will work throughout the rest of
the paper. Thus the log-likelihood function for F of X1, . . . , Xn is
given by

1
n

ln(F |X) =
1
n

n∑
i=1

K(i)+1∑
j=1

∆(i)
K,j log

(
F (T (i)

K(i),j
) − F (T (i)

K(i),j−1
)
)

= PnmF

where

mF (X) =
K+1∑
j=1

∆K,j log (F (TK,j) − F (TK,j−1))

≡
K+1∑
j=1

∆K,j log (∆FK,j)
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and where we have ignored the terms not involving F . We also note
that, with P0 ≡ PF0 ,

P0mF (X) = P0

K+1∑
j=1

∆F0,K,j log (∆FK,j)

 .

The Nonparametric Maximum Likelihood Estimator (NPMLE) F̂n

is the distribution function F̂n(t) which puts all its mass at the ob-
served time points and maximizes the log-likelihood ln(F |X). It can
be calculated via the iterative convex minorant algorithm proposed
in Groeneboom and Wellner (1992) for case 2 interval censored data.

By Proposition 3 with α = 1 and ϕ ≡ ϕ1 as before, it follows that

h2(p
F̂n

, pF0) ≤ (Pn − P0)
(
ϕ(p

F̂n
/pF0)

)
where ϕ is bounded and continuous from R to R. Now the collection
of functions

G ≡ {pF : F ∈ F}
is easily seen to be a Glivenko-Cantelli class of functions: this can be
seen by first applying Theorem 4 to the collections Gk, k = 1, 2, . . .
obtained from G by restricting to the sets K = k. Then for fixed k,
the collections Gk = {pF (δ, tk, k) : F ∈ F} are P0 Glivenko-Cantelli
classes since F is a uniform Glivenko-Cantelli class, and since the
functions pF are continuous transformations of the classes of func-
tions x → δk,j and x → F (tk,j) for j = 1, . . . , k + 1, and hence G
is P−Glivenko-Cantelli by Theorem 3. Note that the single function
pF0 is trivially P0− Glivenko-Cantelli since it is uniformly bounded,
and the single function (1/pF0) is also P0− GC since P0(1/pF0) < ∞.
Thus by Proposition 2 with g = (1/pF0) and F = G = {pF : F ∈ F},
it follows that G′ ≡ {pF /pF0 : F ∈ F} is P0−Glivenko-Cantelli. Fi-
nally another application of Theorem 3 shows that the collection

H ≡ {L1(pF /pF0) : F ∈ F} = {ϕ(pF /pF0) : F ∈ F}
is also P0-Glivenko-Cantelli. When combined with Proposition 3, this
yields the following theorem:

Theorem 7. The NPMLE F̂n satisfies

h(p
F̂n

, pF0) →a.s. 0 .

To relate this result to a recent theorem of Schick and Yu (1999),
it remains only to understand the relationship between their L1(µ)
and the Hellinger metric h between pF and pF0 .
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Let B denote the collection of Borel sets in R. On B we define
measures µ and µ̃ as follows: For B ∈ B,

µ(B) =
∞∑

k=1

P (K = k)
k∑

j=1

P (Tk,j ∈ B|K = k) ,(5)

and

µ̃(B) =
∞∑

k=1

P (K = k)
1
k

k∑
j=1

P (Tk,j ∈ B|K = k) .(6)

Let d be the L1(µ) metric on the class F ; thus for F1, F2 ∈ F ,

d(F1, F2) =
∫

|F1(t) − F2(t)|dµ(t) .

The measure µ was introduced by Schick and Yu (1999); note that
µ is a finite measure if E(K) < ∞. Note that d(F1, F2) can also be
written in terms of an expectation as:

d(F1, F2) = E(K,T )

 K∑
j=1

∣∣(F1(TK,j) − F2(TK,j)
∣∣ .(7)

As Schick and Yu (1999) observed, consistency of the NPMLE F̂n in
L1(µ) holds under virtually no further hypotheses.

Theorem 8. (Schick and Yu). Suppose that E(K) < ∞. Then
d(F̂n, F0) →a.s. 0.

Proof. We will show that Theorem 8 follows from Theorem 7 and
the following Lemma.

Lemma 4.

1
2

{∫
|F̂n − F0|dµ̃

}2

≤ h2(p
F̂n

, pF0) .

Proof. We know that

h2(p
F̂n

, pF0) ≤ dTV (p
F̂n

, pF0) ≤
√

2h(p
F̂n

, pF0)

where, with yk,0 = −∞, yk,k+1 = ∞,

h2(p
F̂n

, pF0) =
∞∑

k=1

P (K = k)
k+1∑
j=1

∫
{[F̂n(yk,j) − F̂n(yk,j−1)]1/2

− [F0(yk,j) − F0(yk,j−1)]1/2}2dGk(y)
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while

dTV (p
F̂n

, pF0) =
∞∑

k=1

P (K = k)
k+1∑
j=1

∫
|[F̂n(yk,j) − F̂n(yk,j−1)]

− [F0(yk,j) − F0(yk,j−1)]|dGk(y) .

Note that
k+1∑
j=1

|[F̂n(yk,j) − F̂n(yk,j−1)] − [F0(yk,j) − F0(yk,j−1)]|

=
k+1∑
j=1

|(F̂n − F0)(yk,j−1, yk,j ]|

≥ max
1≤j≤k+1

|F̂n(yk,j) − F0(yk,j)| ,

so integrating across this inequality with respect to Gk(y) yields
k+1∑
j=1

∫
|[F̂n(yk,j) − F̂n(yk,j−1)] − [F0(yk,j) − F0(yk,j−1)]| dGk(y)

≥ max
1≤j≤k

∫
|F̂n(yk,j) − F0(yk,j)| dGk,j(yk,j)

≥ 1
k

k∑
j=1

∫
|F̂n(yk,j) − F0(yk,j)| dGk,j(yk,j) .

By multiplying across by P (K = k) and summing over k, this yields

dTV (p
F̂n

, pF0) ≥
∫

|F̂n − F0|dµ̃ ,

and hence

h2(p
F̂n

, pF0) ≥ 1
2

{∫
|F̂n − F0|dµ̃

}2

.(8)

�

The measure µ̃ figuring in Lemma 4 is not the same as the measure
µ of Schick and Yu (1999) because of the factor 1/k. Note that this
factor means that the measure µ̃ is always a finite measure, even if
E(K) = ∞. It is clear that

µ̃(B) ≤ µ(B)

for every Borel set B, and that µ ≺≺ µ̃. The following lemma
(Lemma 2.2 of Schick and Yu (1999)) together with Lemma 4 shows
that Theorem 7 implies the result of Schick and Yu once again:
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Lemma 5. Suppose that µ and µ̃ are two finite measures, and that
g, g1, g2, . . . are measurable functions with range in [0, 1]. Suppose
that µ is absolutely continuous with respect to µ̃. Then

∫
|gn−g|dµ̃ →

0 implies that
∫
|gn − g|dµ → 0.

Proof. Write ∫
|gn − g|dµ =

∫
|gn − g|dµ

dµ̃
dµ̃

and use the dominated convergence theorem applied to a.e. conver-
gent subsequences. �

6. Example: generalizing the result of Schick and
Yu.

Our goal in this section is to give a generalization of the consistency
result of Schick and Yu (1999).

Suppose that Y is a random variable taking values in Y. Sup-
pose that Y has distribution Q on the measurable space (Y,B).
Unfortunately we are not able to observe Y itself. What we do ob-
serve is a vector of random sets CK = (CK,1, . . . , CK,K) where K,
the number of sets is itself random, and the set {CK,j}K

j=1 form
a partition of Y: CK,j ∩ CK,j′ = ∅ if j �= j′ and ∪K

j=1CK,j = Y.
More formally, we assume that K is an integer-valued random vari-
able, and C = {Ck,j , j = 1, . . . , k, k = 1, 2, . . . }, is a triangular ar-
ray of “random sets”, and that Y and (K, C) are independent. Let
X = (∆K , CK , K), with a possible value x = (δk, ck, k), where
∆k = (∆k,1, . . . ,∆k,k) with ∆k,j = 1Ck,j

(Y ), j = 1, 2, . . . , k, and
Ck is the k−th row of the triangular array C. Suppose we observe n

i.i.d. copies of X; X1, X2, . . . , Xn, where Xi = (∆(i)

K(i) , C
(i)

K(i) , K
(i)),

i = 1, 2, . . . , n. Here (Y (i), C(i), K(i)), i = 1, 2, . . . are the underlying
i.i.d. copies of (Y, C, K).

We first note that conditionally on K and CK , the vector ∆K has
a multinomial distribution:

(∆K |K, CK) ∼ MultinomialK(1, QK)

where

QK ≡ (Q(CK,1), Q(CK,2), . . . , Q(CK,K)) .
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Suppose for the moment that the distribution Gk of (CK |K = k)
has density gk and pk ≡ P (K = k). Then a density of X is given by

pQ(x) ≡ pQ(δk, ck, k) =
k∏

j=1

Q(ck,j)δk,jgk(ck)pk .(9)

In general,

pQ(x) ≡ pQ(δk, ck, k) =
k∏

j=1

Q(ck,j)δk,j =
k∑

j=1

δk,jQ(ck,j)(10)

is a density of X with respect to the dominating measure ν where ν is
determined by the joint distribution of (K, C), and it is this version
of the density of X with which we will work throughout the rest of
the paper. Thus the log-likelihood function for Q of X1, . . . , Xn is
given by

1
n

ln(Q|X) =
1
n

n∑
i=1

K(i)∑
j=1

∆(i)
K,j log Q(C(i)

K(i),j
) = PnmQ

where

mQ(X) =
K∑

j=1

∆K,j log Q(CK,j)

and where we have ignored the terms not involving Q. We also note
that, with P0 ≡ PQ0 ,

P0mQ(X) = P0

 K∑
j=1

Q0(CK,j) log Q(CK,j)

 .

The Nonparametric Maximum Likelihood Estimator (NPMLE)
Q̂n is a probability measure Q̂n which maximizes the log-likelihood
ln(Q|X). Here we will bypass the many interesting existence, char-
acterization, and computational issues connected with the NPMLE
Q̂n, and focus instead on the issue of consistency once we have the
NPMLE in hand.

By Proposition 3 with α = 1 it follows that

h2(p
Q̂n

, pQ0) ≤ (Pn − P0)
(
ϕ(p

Q̂n
/pQ0)

)
.

where ϕ is bounded and continuous. Now the collection of functions

G ≡ {pQ : Q ∈ Q}
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where Q is the collection of all probability distributions on (Y,B), is
easily seen to be a Glivenko-Cantelli class of functions: this can be
seen by first applying Theorem 4 to the collections Gk, k = 1, 2, . . .
obtained from G by restricting to the sets K = k. The next step is
to show that the collections

Gk ≡ {pQ(·, ·, k) : Q ∈ Q}
are P0−Glivenko-Cantelli for each k. To this end, suppose that (Y,B)
be a measurable space and let C be a universal GC - class of sets in Y
(i.e. Q−GC for every probability measure Q on (Y,B)). Let (T, T , G)
be a probability space, and let t �→ Ct be a map with values in C.

Lemma 6. Suppose that the collection {{t : y ∈ Ct} : y ∈ Y} is
G−GC. Then the collection of functions

t �→ Q(Ct)

where Q ranges over all probability measures Q on Y is G−GC.

Remark: By Assouad (1983), Proposition 2.12, page 246, together
with Corollary 1.10, page 241, it follows that {{t ∈ T : y ∈ Ct} : y ∈
Y} is a VC-class of subsets of T if and only if {Ct : t ∈ T} is a VC-
class of subsets of Y. Thus if we assume that all the subsets C = Ct

arising in the partitions are elements of a VC-class C, then, subject
to being suitably measurable, the hypothesis of Lemma 6 is satisfied
(and the class in question is even universal Glivenko-Cantelli).

Proof. For Q the Dirac measure at y (unit mass at y), the function
t �→ Q(Ct) becomes

t �→ 1Ct(y) .

By assumption, the set of all such functions, with y ranging over Y,
is G−GC. Then so is the set of all functions

t �→ 1
m

m∑
i=1

1Ct(yi), y1, . . . , ym ∈ Y, m ∈ N.

Let Y1, . . . , Ym be an i.i.d. sample from a given Q. Because C is
Q−GC we have

sup
C∈C

∣∣ 1
m

m∑
i=1

1{Yi ∈ C} − P (C)
∣∣ → 0 a.s.∗ .

Then there exists a sequence y1, y2, . . . in Y such that

sup
C∈C

∣∣ 1
m

m∑
i=1

1{yi ∈ C} − P (C)
∣∣ → 0 ,
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and consequently

sup
t∈T

∣∣ 1
m

m∑
i=1

1{yi ∈ Ct} − P (Ct)
∣∣ → 0 .

It follows that the maps t → P (Ct) are the (uniform) limits of se-
quences of functions from a G−GC class. Hence they are G−GC.
�

Note on measurability: It is assumed implicitly that the sets {t :
y ∈ Ct} are measurable in T for every y ∈ Y. The proof shows that
the maps t �→ P (Ct) are then also measurable.

It follows that for fixed k, the collections Gk = {pQ(δ, ck, k) : Q ∈
Q} are P0-Glivenko-Cantelli, and since the functions pQ are con-
tinuous transformations of the classes of functions x → δk,j and
x → Q(ck,j) for j = 1, . . . , k, and hence G is P−Glivenko-Cantelli
by Theorem 3. Note that the single function pQ0 is trivially P0−
Glivenko-Cantelli since it is uniformly bounded. Now another appli-
cation of Theorem 3 shows that the collection

H ≡ {L1(pQ/pQ0) : Q ∈ Q} = {ϕ(pQ/pQ0) : Q ∈ Q}
is also P0-Glivenko-Cantelli. When combined with Proposition 3, this
yields the following theorem.

Theorem 9. If all CK,j ∈ C, a VC collection of subsets of X , then
the NPMLE Q̂n satisfies

h(p
Q̂n

, pQ0) →a.s. 0 .

To obtain a statement analogous to the theorem of Schick and Yu
(1999), let Σ denote a sigma algebra for the space C of subsets: we are
assuming that P (∩K

j=1[CK,j ∈ C]) = 1. Thus (C, Σ) is a measurable
space. On Σ we define the measure µ as follows:

µ(B) =
∞∑

k=1

P (K = k)
k∑

j=1

P (Ck,j ∈ B|K = k) , B ∈ Σ.(11)

Note that

dTV (p
Q̂n

, pQ0) =
∞∑

k=1

P (K = k)
k∑

j=1

∫
|Q̂n(ck,j) − Q0(ck,j)|dGk(c)

=
∫

|Q̂n(c) − Q0(c)| dµ(c) ≡ d(Q̂n, Q0) .(12)
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Here is a generalization of the theorem of Schick and Yu (1999).

Theorem 10. The NPMLE Q̂n satisfies d(Q̂n, Q0) →a.s. 0.

Proof. Theorem 10 follows from Theorem 9, (12) and the observa-
tion that we then have

d(Q̂n, Q0) = dTV (p
Q̂n

, pQ0) ≤
√

2h(p
Q̂n

, pQ0) .

�

Example 1. (Mixed case interval censoring in R2). Suppose that
Y ∼ Q0 takes values in R+2, and the partitions {CK,j}K

j=1 are ob-
tained as the natural rectangles formed from two increasing collec-
tions 0 ≤ SK1,1 ≤ . . . ≤ SK1,K and 0 ≤ TK2,1 ≤ . . . ≤ TK2,K on
the two coordinate axes. Then K = (K1 + 1)(K2 + 1), and all the
elements of the partitions are elements of the VC-class of rectangles
in R2. It follows that the NPMLE Q̂n of Q0 satisfies∫

s,t∈R+2

|Q̂n(s, t] − Q0(s, t]|dµ(s, t) → 0 a.s.∗ .
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