A note on bounds for VC dimensions

Aad van der Vaart ${ }^{1}$ and Jon A. Wellner ${ }^{2, *}$
Vrije Universiteit, Amsterdam and University of Washington, Seattle

Abstract

We provide bounds for the VC dimension of class of sets formed by unions, intersections, and products of VC classes of sets $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$.

1. Introduction and main results

Let \mathcal{C} be a class of subsets of a set \mathcal{X}. An arbitrary set of n points $\left\{x_{1}, \ldots, x_{n}\right\}$ has 2^{n} subsets. We say that \mathcal{C} picks out a certain subset from $\left\{x_{1}, \ldots, x_{n}\right\}$ if this can be formed as a set of the form $C \cap\left\{x_{1}, \ldots, x_{n}\right\}$ for some $C \in \mathcal{C}$. The collection \mathcal{C} is said to shatter $\left\{x_{1}, \ldots, x_{n}\right\}$ if each of its 2^{n} subsets can be picked out by \mathcal{C}. The $V C$ - dimension $V(\mathcal{C})$ is the largest cardinality of a set shattered by \mathcal{C} (or $+\infty$ if arbitrarily large finite sets are shattered); more formally, if

$$
\Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=\#\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}
$$

then

$$
V(\mathcal{C})=\sup \left\{n: \max _{x_{1}, \ldots, x_{n}} \Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=2^{n}\right\}
$$

and $V(\mathcal{C})=-1$ if \mathcal{C} is empty. (The VC-dimension $V(\mathcal{C})$ defined here corresponds to $S(\mathcal{C})$ as defined by [5] page 134. Dudley, and following him ourselves in [11], used the notation $V(\mathcal{C})$ for the $V C$-index, which is the dimension plus 1 . We have switched to using $V(\mathcal{C})$ for the VC -dimension rather than the VC-index, because formulas are simpler in terms of dimension and because the machine learning literature uses dimension rather than index.)

Now suppose that $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}$ are VC-classes of subsets of a given set \mathcal{X} with VC dimensions V_{1}, \ldots, V_{m}. It is known that the classes $\sqcup_{j=1}^{m} \mathcal{C}_{j}, \square_{j=1}^{m} \mathcal{C}_{j}$ defined by

$$
\begin{aligned}
\sqcup_{j=1}^{m} \mathcal{C}_{j} & \equiv\left\{\cup_{j=1}^{m} C_{j}: C_{j} \in \mathcal{C}_{j}, j=1, \ldots, m\right\} \\
\sqcap_{j=1}^{m} \mathcal{C}_{j} & \equiv\left\{\cap_{j=1}^{m} C_{j}: C_{j} \in \mathcal{C}_{j}, j=1, \ldots, m\right\}
\end{aligned}
$$

are again VC: when $\mathcal{C}_{1}=\cdots=\mathcal{C}_{m}=\mathcal{C}$ and $m=k$, this is due to [2] (see also [3], Theorem 9.2.3, page 85, and [5], Theorem 4.2.4, page 141); for general $\mathcal{C}_{1}, \mathcal{C}_{2}$ and $m=2$ it was shown by [3], Theorem 9.2.6, page 87, (see also [5], Theorem 4.5.3, page 153), and [9], Lemma 15, page 18. See also [8], Lemma 2.5, page 1032. For a summary of these types of VC preservation results, see e.g. [11], page 147. Similarly,

[^0]if $\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}$ are VC-classes of subsets of sets $\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}$, then the class of product sets $\boxtimes_{j=1}^{m} \mathcal{D}_{j}$ defined by
$$
\boxtimes_{j=1}^{m} \mathcal{D}_{j} \equiv\left\{D_{1} \times \ldots \times D_{m}: D_{j} \in \mathcal{D}_{j}, j=1, \ldots, m\right\}
$$
is a VC-class of subsets of $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}$. This was proved in [1], Proposition 2.5, and in [3], Theorem 9.2.6, page 87 (see also [5], Theorem 4.2.4, page 141).

In the case of $m=2$, consider the maximal VC dimensions max $V\left(\mathcal{C}_{1} \sqcup \mathcal{C}_{2}\right)$, $\max V\left(\mathcal{C}_{1} \sqcap \mathcal{C}_{2}\right)$, and $\max V\left(\mathcal{D}_{1} \boxtimes \mathcal{D}_{2}\right)$, where the maxima are over all classes $\mathcal{C}_{1}, \mathcal{C}_{2}$ (or $\mathcal{D}_{1}, \mathcal{D}_{2}$ in the last case) with $V\left(\mathcal{C}_{1}\right)=V_{1}, V\left(\mathcal{C}_{2}\right)=V_{2}$ for fixed V_{1}, V_{2}. As shown in [3], Theorem 9.2.7, these are all equal:

$$
\max V\left(\mathcal{C}_{1} \sqcup \mathcal{C}_{2}\right)=\max V\left(\mathcal{C}_{1} \sqcap \mathcal{C}_{2}\right)=\max V\left(\mathcal{D}_{1} \boxtimes \mathcal{D}_{2}\right) \equiv S\left(V_{1}, V_{2}\right)
$$

[3] provided the following bound for this common value:
Proposition 1.1. $S\left(V_{1}, V_{2}\right) \leq T\left(V_{1}, V_{2}\right)$ where, with ${ }_{r} C_{\leq v} \equiv \sum_{j=0}^{v}\binom{r}{j}$,

$$
\begin{equation*}
T\left(V_{1}, V_{2}\right) \equiv \sup \left\{r \in \mathbb{N}:{ }_{r} C_{\leq V_{1}}{ }_{r} C_{\leq V_{2}} \geq 2^{r}\right\} . \tag{1.1}
\end{equation*}
$$

Because of the somewhat inexplicit nature of the bound in (1.1), this proposition seems not to have been greatly used so far.

Furthermore, [4] (Theorem 4.27, page 63; Proposition 4.38, page 64) showed that $S(1, k) \leq 2 k+1$ for all $k \geq 1$ with equality for $k=1,2,3$.

Here we give a further more explicit bound for $T\left(V_{1}, V_{2}\right)$ and extend the bounds to the case of general $m \geq 2$. Our main result is the following proposition.
Theorem 1.1. Let $V \equiv \sum_{j=1}^{m} V_{j}$. Then the following bounds hold:

$$
\left\{\begin{array}{l}
V\left(\sqcup_{j=1}^{m} \mathcal{C}_{j}\right) \tag{1.2}\\
V\left(\sqcap_{j=1}^{m} \mathcal{C}_{j}\right) \\
V\left(\boxtimes_{1}^{m} \mathcal{D}_{j}\right)
\end{array}\right\} \leq c_{1} V \log \left(\frac{c_{2} m}{e^{E n t(\underline{V}) / \bar{V}}}\right) \leq c_{1} V \log \left(c_{2} m\right),
$$

where $\underline{V} \equiv\left(V_{1}, \ldots, V_{m}\right), c_{1} \equiv \frac{e}{(e-1) \log (2)} \doteq 2.28231 \ldots, c_{2} \equiv \frac{e}{\log 2} \doteq 3.92165 \ldots$,

$$
\operatorname{Ent}(\underline{V}) \equiv m^{-1} \sum_{j=1}^{m} V_{j} \log V_{j}-\bar{V} \log \bar{V}
$$

is the "entropy" of the V_{j} 's under the discrete uniform distribution with weights $1 / m$ and $\bar{V}=m^{-1} \sum_{j=1}^{m} V_{j}$.
Corollary 1.1. For $m=2$ the following bounds hold:

$$
S\left(V_{1}, V_{2}\right) \leq T\left(V_{1}, V_{2}\right) \leq\left\lfloor c_{1}\left(V_{1}+V_{2}\right) \log \left(\frac{2 c_{2}}{\exp (\operatorname{Ent}(\underline{V}) / \bar{V})}\right)\right\rfloor \equiv R\left(V_{1}, V_{2}\right)
$$

where $c_{1}, c_{2}, \operatorname{Ent}(\underline{V})$, and \bar{V} are as in Theorem 1.
Proof. The subsets picked out by $\Pi_{i} \mathcal{C}_{i}$ from a given set of points $\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathcal{X} are the sets $C_{1} \cap \cdots \cap C_{m} \cap\left\{x_{1}, \ldots, x_{n}\right\}$. They can be formed by first forming all different sets of the form $C_{1} \cap\left\{x_{1}, \ldots, x_{n}\right\}$ for $C_{1} \in \mathcal{C}_{1}$, next intersecting each of these sets by sets in \mathcal{C}_{2} giving all sets of the form $C_{1} \cap C_{2} \cap$ $\left\{x_{1}, \ldots, x_{n}\right\}$, etc. If $\Delta_{n}\left(\mathcal{C}, y_{1}, \ldots, y_{n}\right) \equiv \#\left\{C \cap\left\{y_{1}, \ldots, y_{n}\right\}: C \in \mathcal{C}\right\}$ and $\Delta_{n}(\mathcal{C})=$ $\max _{y_{1}, \ldots, y_{n}} \Delta_{n}\left(\mathcal{C}, y_{1}, \ldots, y_{n}\right)$ for every collection of sets \mathcal{C} and points y_{1}, \ldots, y_{n} (as
in [11], page 135), then in the first step we obtain at most $\Delta_{n}\left(\mathcal{C}_{1}\right)$ different sets, each with n or fewer points. In the second step each of these sets gives rise to at most $\Delta_{n}\left(\mathcal{C}_{2}\right)$ different sets, etc. We conclude that

$$
\Delta_{n}\left(\sqcap_{i} \mathcal{C}_{i}\right) \leq \prod_{i} \Delta_{n}\left(\mathcal{C}_{i}\right) \leq \prod_{i}\left(\frac{e n}{V_{i}}\right)^{V_{i}}
$$

by [11], Corollary 2.6.3, page 136, and the bound $(\mathrm{en} / \mathrm{s})^{s}$ for the number of subsets of size smaller than s for $n \geq s$. By definition the left side of the display is 2^{n} for n equal to the VC-dimension of $\square_{i} \mathcal{C}_{i}$. We conclude that

$$
2^{n} \leq \prod_{i=1}^{m}\left(\frac{e n}{V_{i}}\right)^{V_{i}}
$$

or

$$
n \log 2 \leq \sum_{i=1}^{m} V_{i} \log \left(e / V_{i}\right)+\left(\sum_{i=1}^{m} V_{i}\right) \log n .
$$

With $V \equiv \sum_{i} V_{i}$, define $r=e n / V$. Then the last display implies that

$$
r V \frac{\log 2}{e} \leq \sum_{i} V_{i} \log \left(e / V_{i}\right)+V \log (r V / e)
$$

or

$$
\begin{aligned}
r \frac{\log 2}{e} & \leq \log r+\log V-\frac{\sum_{i} V_{i} \log V_{i}}{V} \\
& =\log r+\log m-\frac{E n t(\underline{V})}{\bar{V}}=\log \left(\frac{m r}{e^{E n t(\underline{V}) / \bar{V}}}\right),
\end{aligned}
$$

and this inequality can in turn be rewritten as

$$
\frac{x}{\log x} \equiv \frac{m r / e^{E n t(\underline{V}) / \bar{V}}}{\log \left(m r / e^{E n t(\underline{V}) / \bar{V}}\right)} \leq \frac{m}{e^{\operatorname{Ent}(\underline{V}) / \bar{V}}} \cdot \frac{e}{\log 2} \equiv y
$$

Now note that $g(x) \equiv x / \log x \leq y$ for $x \geq e$ implies that $x \leq(e /(e-1)) y \log y: g$ is minimized by $x=e$ and is increasing; furthermore $y \geq g(x)$ for $x \geq e$ implies that

$$
\log y \geq \log x-\log \log x=\log x\left(1-\frac{\log \log x}{\log x}\right) \geq \log x\left(1-\frac{1}{e}\right)
$$

so that

$$
x \leq y \log x \leq y\left(1-\frac{1}{e}\right)^{-1} \log y=\frac{e}{e-1} y \log y
$$

Thus we conclude that

$$
\frac{m r}{e^{\operatorname{Ent}(\underline{V}) / \bar{V}}} \leq \frac{e}{e-1} \frac{m e}{e^{\operatorname{Ent}(\underline{V}) / \bar{V}} \log 2} \log \left(\frac{m}{\left.e^{\operatorname{Ent}(\underline{V}) / \bar{V}} \cdot \frac{e}{\log 2}\right), ~, ~, ~}\right.
$$

which implies that

$$
r \leq \frac{e^{2}}{(e-1) \log 2} \log \left(\frac{m}{\exp (E n t(\underline{V}) / \bar{V})} \cdot \frac{e}{\log 2}\right)
$$

Expressing this in terms of n yields the first inequality (1.2). The second inequality holds since $\operatorname{Ent}(\underline{V}) \geq 0$ implies $\exp (\operatorname{Ent}(\underline{V}) / \bar{V}) \geq 1$.

The corresponding statement for the unions follows because a class \mathcal{C} of sets and the class \mathcal{C}^{c} of their complements possess the same VC-dimension, and $\cup_{i} C_{i}=$ $\left(\cap_{i} C_{i}^{c}\right)^{c}$.

In the case of products, note that

$$
\Delta_{n}\left(\boxtimes_{1}^{m} \mathcal{D}_{j}\right) \leq \prod_{1}^{m} \Delta_{n}\left(\mathcal{D}_{j}\right) \leq \prod_{j=1}^{m}\left(\frac{e n}{V_{j}}\right)^{V_{j}},
$$

and then the rest of the proof proceeds as in the case of intersections.
It follows from concavity of $x \mapsto \log x$ that with $p_{j} \equiv V_{j} / \sum_{i=1}^{m} V_{i}$,

$$
\frac{\sum_{j=1}^{m} V_{j} \log V_{j}}{\sum_{j=1}^{m} V_{j}}=\sum_{1}^{m} p_{j} \log V_{j} \leq \log \left(\sum_{1}^{m} p_{j} V_{j}\right) \leq \log \left(\sum_{1}^{m} V_{j}\right)
$$

and hence

$$
\begin{equation*}
1 \leq \frac{m}{e^{\operatorname{Ent}(\underline{V}) / \bar{V}}} \leq m, \tag{1.3}
\end{equation*}
$$

or $0 \leq \operatorname{Ent}(\underline{V}) / \bar{V} \leq \log m$, or

$$
0 \leq \operatorname{Ent}(\underline{V}) \leq \bar{V} \log m .
$$

Here are two examples showing that the quantity $m / e^{\operatorname{Ent}(\underline{V}) / \bar{V}}$ can be very close to 1 (rather than m) if the V_{i} 's are quite heterogeneous, even if m is large.
Example 1.1. Suppose that $r \in \mathbb{N}$ (large), and that $V_{i}=r^{i}$ for $i=1, \ldots, m$. Then it is not hard to show that

$$
\frac{m}{e^{E n t}(\underline{V}) / \bar{V}} \rightarrow \frac{r}{r-1} r^{1 /(r-1)}=\frac{r}{r-1} \exp \left((r-1)^{-1} \log r\right)
$$

as $m \rightarrow \infty$ where the right side can be made arbitrarily close to 1 by choosing r large.

Example 1.2. Suppose that $m=2$ and that $V_{1}=k, V_{2}=r k$ for some $r \in \mathbb{N}$. Then

$$
\operatorname{Ent}(\underline{V}) / \bar{V}=\log 2-\frac{1}{r+1} \log \left((r+1)(1+1 / r)^{r}\right) \rightarrow \log 2
$$

as $r \rightarrow \infty$ for any fixed k. Therefore

$$
\frac{2}{e^{\operatorname{Ent}(\underline{V}) / \bar{V}}} \rightarrow 1
$$

as $r \rightarrow \infty$ for any fixed k.
Our last example shows that the bound of Theorem 1.1 may improve considerably on the bounds resulting from iteration of Dudley's bound $S(1, k) \leq 2 k+1$.

Example 1.3. Suppose $V_{1}=V\left(\mathcal{C}_{1}\right)=k$ and $V_{j}=V\left(\mathcal{C}_{j}\right)=1$ for $j=2, \ldots, m$. Iterative application of Dudley's bound $S(1, k) \leq 2 k+1$ yields $V\left(\square_{j=1}^{m} \mathcal{C}_{j}\right) \leq$ $2^{m-1}(k+1)-1$, which grows exponentially as $m \rightarrow \infty$. On the other hand, Theorem 1.1 yields $V\left(\square_{j=1}^{m} \mathcal{C}_{j}\right) \leq c_{1}(m+k-1) \log \left(c_{2} m\right)$ which is of order $c_{1} m \log m$ as $m \rightarrow \infty$.

Although we have succeeded here in providing quantitative bounds for $V\left(\sqcup_{j=1}^{m} \mathcal{C}_{j}\right), V\left(\square_{j=1}^{m} \mathcal{C}_{j}\right)$, and $V\left(\boxtimes_{1}^{m} \mathcal{D}_{j}\right)$, it seems that we are far from being able to provide quantitative bounds for the VC - dimensions of the (much larger) classes involved in [6], [7], and [10].

Acknowledgement

We owe thanks to a helpful referee for pointing out [4] and for suggesting Example 1.3.

References

[1] Assouad, P. (1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33 233-282.
[2] Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929 (1979).
[3] Dudley, R. M. (1984). A course on empirical processes. In École d'été de probabilités de Saint-Flour, XII-1982. Lecture Notes in Math. 1097 1-142. Springer, Berlin.
[4] Dudley, R. M. (1999). Notes on Empirical Processes. MaPhySto Lecture Notes 4.
[5] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63. Cambridge University Press, Cambridge.
[6] Laskowski, M. C. (1992). Vapnik-Chervonenkis classes of definable sets. J. London Math. Soc. (2) 45 377-384.
[7] Olshen, R. A., Biden, E. N., Wyatt, M. P. and Sutherland, D. H. (1989). Gait analysis and the bootstrap. Ann. Statist. 17 1419-1440.
[8] Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica 57 1027-1057.
[9] Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics. Springer-Verlag, New York.
[10] Stengle, G. and Yukich, J. E. (1989). Some new Vapnik-Chervonenkis classes. Ann. Statist. 17 1441-1446.
[11] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics.

[^0]: *Supported in part by NSF Grant DMS-0804587, and by NI-AID grant 2R01 AI291968-04.
 ${ }^{1}$ Department of Mathematics, Faculty of Sciences, Vrije Universiteit De Boelelaan 1081a, 1081 HV Amsterdam, e-mail: aad@cs.vu.nl
 ${ }^{2}$ Department of Statistics, University of Washington, Seattle, WA 98195-4322, e-mail: jaw@stat.washington.edu

 AMS 2000 subject classifications: Primary 60B99; secondary 62G30.
 Keywords and phrases: Vapnik-Chervonenkis class, combining classes, inequality, entropy.

