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Abstract This note investigates two aspects of Fechner’s two-piece normal distri-
bution: (1) connections with the mean-median-mode inequality and (strong) log-
concavity; (2) connections with skew and oscillating Brownian motion processes.
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1 Three Two-Piece Half-Normal Distributions

The standard Gaussian density � and distribution function ˆ are given by
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Now let �C; �� > 0 be two positive numbers with �C 6D �� in general, and consider
the following three densities on R:
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(1.1)

It is easily seen that f , g, and h differ only in the scaling of the two half normal
densities �.x=�˙/=�˙1.0;1/.xsign.x//. Thus with � � ��=.�� C �C/ we have
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The density f is continuous on R, while the densities g and h are discontinuous at
0. The density f is associated with [8] and “Fechner’s Lagegesetz der Mittlewerte”;
see [20, 25]. (Also see [9, 21, 22], and [23, Chap. 7] for further historical information
about Fechner.) As noted by Wallis [25], this density (and the version thereof with
an additional shift parameter) has been rediscovered repeatedly. It is interesting to
note that the density f is log-concave (see e.g. [7]) and even strongly log-concave
(see e.g. [28]).

The density g is the limit distribution of the median of i.i.d random variables
with density p when when p is discontinuous at its median m, and then �2˙ D
1=.4p.m˙/2/ where p.m˙/ denote the left and right limits of p at m respectively;
see e.g. [27, pp. 343–354], [14, 15].

The density h is the marginal density of oscillating Brownian motion, see e.g.
[13, p. 302]. This process, which is closely related to skew Brownian motion (see
e.g. [3, 10, 12, 16, 19]), arises as the weak limit of random walk processes which
are inhomogeneous in space: imagine letting the increment distributions change as
the walk crosses through 0 with variance �2C for x � 0 and variance �2� for x < 0.
See [13] for a first theorem of this type and [11] for further convergence results in
this direction.
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One point of interest here is the connection with the mean–median–mode
inequality going back to Fechner and Pearson.

Fechner proved that for the density f with �� � �C the inequality

mean � median � mode (1.2)

holds true, and that strict inequalities hold when �� > �C. Fechner did this by
examining the ratio .Med � Mode/=.Mean � Mode/ and considering the limits as
�C % �� and as �C & 0 for fixed �C. In our notation this ratio becomes (see
Table 1)

Med � Mode

Mean � Mode
D
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C

C�
�

4�
�

�
p

2=�.�C � ��/

!
�

�=4; as �C % ��;p
�=4ˆ�1.3=4/; as �C ! 0;

D
�

0:785398 : : : ;

0:845348 : : :

�
< 1:

Apparently the phenomena of the inequalities in (1.2) was observed (but not proved)
by Pearson [17] in connection with his Type III curves.

The inequalities in (1.2) are illustrated in Fig. 1.
As a result of the series of papers [2, 6, 20, 24], and counterexamples (see

e.g. [1]), this phenomena is now well-understood. In particular, from [6], for
distributions F with median m D 0 (so that, with X � F, P.X � m/ � 1=2

and P.X � m/ � 1=2) and � D E.X/ assumed finite, if XC D maxfX; 0g and

Fig. 1 Fechner’s density f .xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1; mean (solid line), median
(dashed line)
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Fig. 2 Fechner stochastic order plot: F
C

, dashed curve, F
�

, solid curve; �
�

D 3=2, �
C

D 1

Fig. 3 Quantile limit density g.xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1, mean at dashed line

X� � � minf0; Xg satisfy X� >s XC, then there is at least one mode M such that
� � 0 � M. This is illustrated in Fig. 2.

Here we note that while the densities g and h also have mode at 0, the density
g has median 0 and mean < 0 (when �� > �C), the density h has mean 0 and
median > 0. Thus g gives an example of a density in which the equality median
D mode occurs, while h gives an example of a density for which the median
fails to fall between the mean and mode, and thus, necessarily, X� fails to be
stochastically larger (or smaller) than XC. These facts are illustrated in Figs. 3, 4,
and 5, 6, respectively.

Finally, Fig. 7 gives a plot of all three of these densities together, all with �� D
3=2, �C D 1.
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Fig. 4 Quantile stochastic order plot: G
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Fig. 5 Oscillating Brownian motion limit density h.xI �
�

; �
C

/ with �
�

D 3=2, �
C

D 1, median
at dashed line

2 Summary of the Properties of f , g, and h

Table 1 summarizes some of the properties of the densities f , g, and h. The formulas
for the median are given only for the case that �� > �C.

In addition, the variances are given as follows:

Varf .X/ D
�

1 � 2

�

�
.�C � ��/2 C �C��;

Varg.X/ D 1

2

�
1 � 1

�

�
.�C � ��/2 C �C��;

Varh.X/ D �C��:
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Fig. 6 Oscillating BM limit stochastic order plot: H
C

, dashed curve, H
�

solid curve; �
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Fig. 7 The three densities f (solid), g (dotted), and h dashed; �
�

D 3=2, �
C

D 1

Table 1 The mode, median, and mean of three (marginal) densities: Fechner, (nonstandard)
quantile limit, and oscillating Brownian motion, as functions of �

C

and �
�

Fechner Quantile limit Osc BM limit
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3 Questions

We know that skew Brownian motion was studied by Walsh [26] because it provides
an example of a diffusion process with discontinuous local time. We know that
oscillating Brownian motion with �C 6D �� (or q 6D p and ˛ D 0 in the notation of
following sections) has both discontinuous marginal (which are scaled versions of
the density h), and discontinuous local time. What are the properties of processes (if
any) related to the densities f and g?

• Does Fechner’s density f arise as the marginal density of a diffusion process in
R?

• Does the median zero density g arise as the marginal density of a diffusion
process?

• What are the continuity properties of the marginal densities of the processes
connected to the densities f and g?

• What are the continuity properties of the corresponding local time processes?

We will give answers to these questions in the next two sections.

4 A General Three-Parameter Mixture Family

Of course it is clear that f , g, and h as defined in Sect. 1 are special cases of the
following mixture family: For � 2 Œ0; 1� and �C; �� > 0, let

q.xI �C; ��; �/ D �
2

��
�

�
x

��

�
1.�1;0/.x/ C .1 � �/

2

�C
�

�
x

�C

�
1Œ0;1/.x/:
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q.xI �C; ��; �/ D

8̂
<
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f .xI �C; ��/; if � D �f � �
�

�
C

C �
�

;

g.xI �C; ��/; if � D �g � 1=2;

h.xI �C; ��/; if � D �h � �
C

�
C

C �
�

:

For this three-parameter family, with X � q,

EqX D
r

2

�
f.1 � �/�C � ���g ;

median.X/ D
(

��ˆ�1
�

1
4�

	
; if � � 1=2;

�Cˆ�1
�
1 � 1

4.1��/

�
; if � < 1=2;
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Fig. 8 The densities q.�I 3=2; 1; �/ for � 2 ff:1; :2; : : : ; :9g

Fig. 9 Mean (solid), median (dotted), and mode (dashed) of the densities q.�I 3=2; 1; �/ for � 2
.0; 1/

Varq.X/ D .1 � �/�2C C ��2� � ..1 � �/�C � ���/2 2

�
;

Pq.X > 0/ D 1 � �:

Figure 8 shows the densities q.�I 3=2; 1; �/ with � 2 f:1; :2; : : : ; :9g
In Fig. 9 we see that the mean median and mode follow the inequality (1.2) for

� � 1=2, and the reverse inequalities

mode � median � mean (4.1)

for � � :108389 : : :, but that such inequalities fail for � 2 .:108389; :5/.
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5 Skew and Oscillating Brownian Motion Connections

How do these various densities connect with processes? From [19, Exercise 1.16,
p. 82], we see that q.�I t; t; �/ is the marginal density of skew Brownian motion
with parameter 1 � � at time t starting from 0 at t D 0. This process is denoted by
X1��

t in [19]. Moreover, from [19, Exercise 2.24, p. 401], X1��
t D r1�� .Y1��

t / where
r1�� .x/ D .x=�/1Œ0;1/.x/C.x=.1��//1.�1;0/.x/. Equivalently, Y1��

t D s1�� .X1��
t /

where

s1�� .x/ D �x1Œ0;1/.x/ C .1 � �/x1.�1;0/.x/:

Thus Y1��
t has marginal density h.�=t; �; 1 � �/ D q.�=tI �; 1 � �; �/, and it becomes

clear that Y1��
t is oscillating Brownian motion with �C D � , �� D 1 � � .

Now consider Z1��
t � v� .X1��

t / where

v� .x/ D .1 � �/x1Œ0;1/.x/ C �x1.�1;0/.x/:

Then Z1��
t has marginal density f .�=t; 1��; �/ D q.�=tI 1��; �; �/. This is Fechner’s

density, and hence we call the process Z1��
t the Fechner process.

6 More on the Fechner Process

Chen and Zili [5] study the following stochastic differential equation:

�
dYx

t D �
p1fYx

t �0g C q1f0<Yx
t �ag C r1fa<Yx

t g
	

dBt C ˛
2

dL0
t .Yx/ C ˇ

2
dLa

t .Yx/;

Y0 D x 2 R;

where ˛; ˇ 2 .�1; 1/, B is a one-dimensional standard Brownian motion, and for
w 2 R, Lw

t .Yx/ is the semimartingale local time for Yx at level w; that is,

Lw
t .Yx/ D lim

�!0

1

�

Z t

0

1Œw;wC��.Y
x
s /dhYxis:

Here hYxi denotes the predictable quadratic variation process of Y. They note that
in the special case p D q D r D 1 and ˇ D 0, Yx

t is a skew Brownian motion
with skew parameter 1=.2 � ˛/; and in the special case when p D q D r D 1 the
process Yx

t is a double-skewed Brownian motion. Another special case of interest is
p 6D q D r, ˛ D 0, and ˇ D 0, which corresponds to oscillating Brownian motion
in the terminology of [13]. In the special case of r D q and ˇ D 0, Yx

t is a skewed
oscillating Brownian motion process, to use a combination of the terminology of
[5, 13]. For further developments and applications of processes defined by the
stochastic differential equation in the last display, see [18].



J.A. Wellner

We are interested in a particular member of this class of processes, namely the
Fechner process having continuous marginal densities.

Chen and Zili [5] show that the resulting SDE in this latter case, namely

�
dXx

t D �
p1fYx

t �0g C q1f0<Yx
t g

	
dBt C ˛

2
dL0

t .Xx//;

Xx
0 D x 2 R;

(6.1)

has a unique strong solution, and that moreover the transition density of the diffusion
Xx is given by

pX
t .x; y/ D 1p

2�t

�
1fy�0g

p
C 1fy>0g

q

�
�

�
exp

�
� .f .x/ � f .y//2
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C p C q.˛ � 1/

p � q.˛ � 1/
sign.y/ exp

�
� .j f .x/j C j f .y/j/2

2t

��
(6.2)

where f .y/ � .y=p/1Œy�0� C .y=q/1Œy>0�. This implies that the transition density
pX

t .0; y/ is given by

pX
t .0; y/ D 1p
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�
1

fy�0g

p
C 1

fy>0g
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�
�

�
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�
� f .y/2
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�

C p C q.˛ � 1/

p � q.˛ � 1/
sign.y/ exp

�
� f .y/2

2t

��

D 1p
2� t

�
1

fy�0g

p
C 1
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q

�
�

�
1 C p C q.˛ � 1/

p � q.˛ � 1/
sign.y/

�
exp

�
� f .y/2

2t

�

D
8<
:

1
p

2� t
� 1

p

�
1 � pCq.˛�1/

p�q.˛�1/

�
� exp

�
� f .y/2

2t

�
; y � 0;

1
p

2� t
� 1

q

�
1 C pCq.˛�1/

p�q.˛�1/

�
� exp

�
� f .y/2

2t

�
; y > 0:

(6.3)

This family of marginal densities for the process X0
t � Xt is continuous at 0 if

1

p

�
1 � p C q.˛ � 1/

p � q.˛ � 1/

�
D 1

q

�
1 C p C q.˛ � 1/

p � q.˛ � 1/

�
:

and this is easily seen to hold if and only if

1 � ˛ D p2

q2
; or if ˛ D 1 � p2

q2
2 .�1; 1/: (6.4)
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Then

pX
t .0; y/ D

8<
:

1p
2� t

� 2
pCq � exp

�
� y2

2p2t

�
; y � 0;

1p
2� t

� 2
pCq � exp

�
� y2

2q2t

�
; y > 0:

D f .y=
p

tI p; q/=
p

t

where f .�I �; �/ is Fechner’s density as given in (1.1). Again, note that f is a
continuous function of its first (and all) arguments. Furthermore, the transition
density pX

t .x; y/ is now given by

pX
t .x; y/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

1p
2� t

1
q

n
exp

�
� .x�y/2

2q2 t

�
C 1�p=q

1Cp=q exp
�
� .xCy/2

2q2t

�o
; x > 0; y > 0;

1p
2� t

1
p

n
exp

�
� .x�y/2

2p2 t

�
� 1�p=q

1Cp=q exp
�
� .jxjCjyj/2

2p2t

�o
; x � 0; y � 0;

1p
2� t

1
q

�
exp

�
� . x

p � y
q /2

2t

�
C 1�p=q

1Cp=q exp

�
� . jxj

p C jyj

q /2

2t

��
; x � 0; y > 0;

1p
2� t

1
p

�
exp

�
� . x

q � y
p /2

2t

�
� 1�p=q

1Cp=q exp

�
� . jxj

q C jyj

p /2

2t

��
; x > 0; y � 0;

which is jointly continuous as a function of .x; y/. See Fig. 10. In general the
transition densities of skewed oscillating Brownian motion given in (6.2) are
discontinuous; see Fig. 11.

Fig. 10 Fechner process transition density pX
1 .x; y/ with p D 1 and q D 3
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Fig. 11 Skewed oscillating Brownian motion process transition density pX
1 .x; y/ with p D 1, q D

3, and ˛ D 1=2

Question: With ˛ related to p and q as in (6.4), does the process Xx
t have a jointly

continuous local time process Lw
t .Xx/? (In particular is it continuous in w?)

The answer is no as shown by Chen [4]. Moreover, Chen [4] shows that the local
time process Lw

t .Xx/ is jointly continuous only when ˛ D 1 � p=q.

Here is the proof of the two assertions from [4]. Define

f .y/ D
�

y=p; for y � 0;

y=q; for y > 0:

By Chen and Zili [5, Eq. (2.9)]

L0
t .Xx/ D 2

2 � ˛
bL0

t .Xx/; (6.5)

where bL0
t .Xx/ is the symmetric local time of Xx at 0. From the proof of [5],

Corollary 2.3, we see that Zf .x/ � f .Xx/ is a skew driven Brownian motion driven
by B starting from f .x/:

dZf .x/
t D dBt C 1

2

�
q.˛ � 1/

p
C 1

�
dL0

t .Zf .x//:



An Example for Birkjour

By use of (6.5) we can rewrite the last display in term by symmetric semimartingale
local time:

dZf .x/
t D dBt C 1

2

�
p C q.˛ � 1/

p � q.˛ � 1/

�
dbL0

t .Zf .x//:

By the same computation as for (2.5) of [5], it follows that L0
t .Xx/ D qL0

t .Zf .x//, and
hence that

bL0
t .Xx/ D .2 � ˛/q

p C q.1 � ˛/
bL0

t .Zf .x//: (6.6)

Since Z is a skew Brownian motion, it follows from [3, Theorem 1.2], that unless
p C q.˛ � 1/ D 0 (i.e. unless ˛ D 1 � .p=q/), the process

w 7! w C p C q.˛ � 1/

p � q.˛ � 1/
bL0

T.Zw/

is a discontinuous homogeneous Markov process, where T D infft > 0 W bL0
t .Z0/ D

1g. Thus, unless ˛ D 1 � .p=q/, by (6.6) we have x 7! bL0
T.Xx/ is discontinuous, and

so in view of (6.5), x 7! L0
T.Xx/ is discontinuous. For the Fechner process, L0

t .Xx/

cannot be jointly continuous in .t; x/, nor is it continuous in x.
When ˛ D 1 � p=q we see that the factors

�
1 ˙ p C q.˛ � 1/

p � q.˛ � 1/

�
D 1;

and hence the marginal density pX
t .0; y/ in (6.3) reduces the form of g given in (1.1).

Summarizing the discussion above leads to the following proposition:

Proposition Let Xx
t � Xx

t .p; q; ˛/ denote the (strong) solution of the stochastic
differential equation (6.1).

(a) For ˛ D 1 � .p=q/2, Xx
t has continuous transition densities and marginal

densities for x D 0 which are scaled versions of the Fechner density f given
in (1.1). On the other hand, the local time process Lx

t .X
x/ is discontinuous (at

x D 0).
(b) For ˛ D 1 � p=q, Xx

t has discontinuous transition densities and marginal
densities for x D 0 which are scaled versions of the median zero density g
given in (1.1). On the other hand, the local time process Lx

t .X
x/ is continuous.

Acknowledgements I owe thanks to Zheng-Qing Chen for sharing Chen and Zili [5] and Chen
[4] with me. I also owe thanks to Kenneth Wallis for keeping me straight on Fechner’s arguments
concerning the mean-median-mode inequality (2) and the relative contributions of Fechner and
Pearson.

Supported in part by NSF Grant DMS-1104832 and NI-AID grant 2R01 AI291968-04.



J.A. Wellner

References

1. K.M. Abadir, The mean-median-mode inequality: counterexamples. Econ. Theory 21, 477–482
(2005)

2. B. Abdous, R. Theodorescu, Mean, median, mode. IV. Statist. Neerlandica 52, 356–359 (1998)
3. K. Burdzy, Z.-Q. Chen, Local time flow related to skew Brownian motion. Ann. Probab. 29,

1693–1715 (2001)
4. Z.-Q. Chen, Local times of some skew processes. Tech. rep., University of Washington.

Personal communication (2013)
5. Z.-Q. Chen, M. Zili, One-dimensional heat equation with discontinuous conductance. Sci.

China Math. 58, 97–108 (2015)
6. S.W. Dharmadhikari, K. Joag-Dev, Mean, median, mode. III. Statist. Neerlandica 37, 165–168

(1983)
7. S. Dharmadhikari, K. Joag-Dev, Unimodality, Convexity, and Applications. Probability and

Mathematical Statistics (Academic Press Inc., Boston, MA, 1988)
8. G.T. Fechner, Kollektivmasslehre, ed. by G.F. Lipps (Engelmann, Leipzig, 1897)
9. H.G. Fellner, W.F. Lindgren, Gustav Theodor Fechner: pioneer of the fourth dimension. Math.

Intell. 33, 126–137 (2011)
10. J.M. Harrison, L.A. Shepp, On skew Brownian motion. Ann. Probab. 9, 309–313 (1981)
11. I.S. Helland, Convergence to diffusions with regular boundaries. Stoch. Process. Appl. 12,

27–58 (1982)
12. K. Itô, H.P. McKean Jr., Diffusion Processes and Their Sample Paths (Springer, Berlin, 1974).

Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125
13. J. Keilson, J.A. Wellner, Oscillating Brownian motion. J. Appl. Probab. 15, 300–310 (1978)
14. J. Kiefer, Old and new methods for studying order statistics and sample quantiles, in Nonpara-

metric Techniques in Statistical Inference (Proc. Sympos., Indiana University, Bloomington,
IN, 1969) (Cambridge University Press, London, 1970), pp. 349–357

15. K. Knight, What are the limiting distributions of quantile estimators? in Statistical Data
Analysis Based on the L1-Norm and Related Methods (Neuchâtel, 2002). Stat. Ind. Technol.
(Birkhäuser, Basel, 2002), pp. 47–65

16. A. Lejay, On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006)
17. K. Pearson, Contributions to the mathematical theory of evolution. II. Skew variation in

homogeneous material. Philos. Trans. R. Soc. Lond. Ser. A 186, 343–414 (1895)
18. J.M. Ramirez, E.A. Thomann, E.C. Waymire, Advection-dispersion across interfaces. Stat. Sci.

28, 487–509 (2013)
19. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293,
2nd edn. (Springer, Berlin, 1994)

20. J.T. Runnenburg, Mean, median, mode. Statist. Neerlandica 32, 73–79 (1978)
21. W. Schreier, Gustav Theodor Fechner (1801–1887). Wiss. Z. Karl-Marx-Univ. Leipzig Math.-

Natur. Reihe 34, 60–62 (1985)
22. O. Sheynin, Fechner as a statistician. Br. J. Math. Stat. Psychol. 57, 53–72 (2004)
23. S.M. Stigler, The History of Statistics (The Belknap Press of Harvard University Press,

Cambridge, MA, 1986). The measurement of uncertainty before 1900
24. W.R. van Zwet, Mean, median, mode. II. Statist. Neerlandica 33, 1–5 (1979)
25. K.F. Wallis, The two-piece normal, binormal, or double Gaussian distribution: its origin and

rediscoveries. Stat. Sci. 29, 106–112 (2014)
26. J. Walsh, A diffusion with discontinuous local time. Astérisque 52–53, 37–45 (1978)
27. L. Weiss, Asymptotic distributions of quantiles in some non-standard cases, in Nonparametric

Techniques in Statistical Inference (Proc. Sympos., Indiana University, Bloomington, IN, 1969)
(Cambridge University Press, London, 1970), pp. 343–348

28. J.A. Wellner, Strong log-concavity is preserved by convolution, in High Dimensional Probabil-
ity VI: The Banff Volume. Progress in Probability, vol. 66 (Birkhauser, Basel, 2013), pp. 95–102


	Fechner's Distribution and Connections to Skew Brownian Motion
	1 Three Two-Piece Half-Normal Distributions
	2 Summary of the Properties of f, g, and h
	3 Questions
	4 A General Three-Parameter Mixture Family
	5 Skew and Oscillating Brownian Motion Connections
	6 More on the Fechner Process
	References




