Fechner's Distribution and Connections to Skew Brownian Motion

Jon A. Wellner

Abstract This note investigates two aspects of Fechner's two-piece normal distribution: (1) connections with the mean-median-mode inequality and (strong) log-concavity; (2) connections with skew and oscillating Brownian motion processes. The developments here have been inspired by Wallis (Stat Sci 29:106–112, 2014) and rely on Chen and Zili (Sci China Math 58:97–108, 2015).

Keywords Fechner's law • Local time • Mean • Median • Mode • Oscillating Brownian motion • Pieced half normal • Quantiles • Skewed Brownian motion

Mathematics Subject Classification (2010). Primary 62E20; Secondary 62G20, 62D99, 62N01

1 Three Two-Piece Half-Normal Distributions

The standard Gaussian density ϕ and distribution function Φ are given by

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2), \quad z \in \mathbb{R},$$

and

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx, \quad z \in \mathbb{R}.$$

J.A. Wellner (🖂)

© Springer International Publishing Switzerland 2016

Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA e-mail: jaw@stat.washington.edu

C. Houdré et al. (eds.), High Dimensional Probability VII,

Progress in Probability 71, DOI 10.1007/978-3-319-40519-3_9

Now let $\sigma_+, \sigma_- > 0$ be two positive numbers with $\sigma_+ \neq \sigma_-$ in general, and consider the following three densities on \mathbb{R} :

$$f(x; \sigma_{+}, \sigma_{-}) \equiv \begin{cases} \frac{2\sigma_{-}}{\sigma_{+} + \sigma_{-}} \cdot \frac{1}{\sigma_{-}} \phi(x/\sigma_{-}), & x < 0, \\ \frac{2\sigma_{+}}{\sigma_{+} + \sigma_{-}} \cdot \frac{1}{\sigma_{+}} \phi(x/\sigma_{+}), & x \ge 0; \end{cases}$$

$$g(x; \sigma_{+}, \sigma_{-}) \equiv \begin{cases} \frac{1}{\sigma_{-}} \phi(x/\sigma_{-}), & x < 0, \\ \frac{1}{\sigma_{+}} \phi(x/\sigma_{+}), & x \ge 0; \end{cases}$$

$$h(x; \sigma_{+}, \sigma_{-}) \equiv \begin{cases} \frac{2\sigma_{+}}{\sigma_{+} + \sigma_{-}} \cdot \frac{1}{\sigma_{-}} \phi(x/\sigma_{-}), & x < 0, \\ \frac{2\sigma_{-}}{\sigma_{+} + \sigma_{-}} \cdot \frac{1}{\sigma_{+}} \phi(x/\sigma_{+}), & x \ge 0. \end{cases}$$
(1.1)

It is easily seen that f, g, and h differ only in the scaling of the two half normal densities $\phi(x/\sigma_{\pm})/\sigma_{\pm}1_{(0,\infty)}(x \operatorname{sign}(x))$. Thus with $\theta \equiv \sigma_{-}/(\sigma_{-} + \sigma_{+})$ we have

$$f(x;\sigma_{+},\sigma_{-}) \equiv \begin{cases} 2\theta \cdot \frac{1}{\sigma_{-}}\phi(x/\sigma_{-}), & x < 0, \\ 2(1-\theta) \cdot \frac{1}{\sigma_{+}}\phi(x/\sigma_{+}), & x \ge 0; \end{cases}$$
$$g(x;\sigma_{+},\sigma_{-}) \equiv \begin{cases} \frac{1}{\sigma_{-}}\phi(x/\sigma_{-}), & x < 0, \\ \frac{1}{\sigma_{+}}\phi(x/\sigma_{+}), & x \ge 0; \end{cases}$$
$$h(x;\sigma_{+},\sigma_{-}) \equiv \begin{cases} 2(1-\theta) \cdot \frac{1}{\sigma_{-}}\phi(x/\sigma_{-}), & x < 0, \\ 2\theta \cdot \frac{1}{\sigma_{+}}\phi(x/\sigma_{+}), & x \ge 0. \end{cases}$$

The density f is continuous on \mathbb{R} , while the densities g and h are discontinuous at 0. The density f is associated with [8] and "Fechner's Lagegesetz der Mittlewerte"; see [20, 25]. (Also see [9, 21, 22], and [23, Chap. 7] for further historical information about Fechner.) As noted by Wallis [25], this density (and the version thereof with an additional shift parameter) has been rediscovered repeatedly. It is interesting to note that the density f is *log-concave* (see e.g. [7]) and even *strongly log-concave* (see e.g. [28]).

The density g is the limit distribution of the median of i.i.d random variables with density p when when p is discontinuous at its median m, and then $\sigma_{\pm}^2 = 1/(4p(m\pm)^2)$ where $p(m\pm)$ denote the left and right limits of p at m respectively; see e.g. [27, pp. 343–354], [14, 15].

The density *h* is the marginal density of oscillating Brownian motion, see e.g. [13, p. 302]. This process, which is closely related to skew Brownian motion (see e.g. [3, 10, 12, 16, 19]), arises as the weak limit of random walk processes which are inhomogeneous in space: imagine letting the increment distributions change as the walk crosses through 0 with variance σ_+^2 for $x \ge 0$ and variance σ_-^2 for x < 0. See [13] for a first theorem of this type and [11] for further convergence results in this direction.

One point of interest here is the connection with the mean-median-mode inequality going back to Fechner and Pearson.

Fechner proved that for the density f with $\sigma_{-} \geq \sigma_{+}$ the inequality

$$mean \le median \le mode \tag{1.2}$$

holds true, and that strict inequalities hold when $\sigma_- > \sigma_+$. Fechner did this by examining the ratio (Med – Mode)/(Mean – Mode) and considering the limits as $\sigma_+ \nearrow \sigma_-$ and as $\sigma_+ \searrow 0$ for fixed σ_+ . In our notation this ratio becomes (see Table 1)

$$\frac{\text{Med} - \text{Mode}}{\text{Mean} - \text{Mode}} = \frac{\sigma_{-}\Phi^{-1}\left(\frac{\sigma_{+}+\sigma_{-}}{4\sigma_{-}}\right)}{\sqrt{2/\pi}(\sigma_{+}-\sigma_{-})}$$
$$\rightarrow \begin{cases} \pi/4, & \text{as } \sigma_{+} \nearrow \sigma_{-}, \\ \sqrt{\pi/4}\Phi^{-1}(3/4), & \text{as } \sigma_{+} \rightarrow 0, \end{cases}$$
$$= \begin{cases} 0.785398\dots, \\ 0.845348\dots \end{cases} < 1.$$

Apparently the phenomena of the inequalities in (1.2) was observed (but not proved) by Pearson [17] in connection with his Type III curves.

The inequalities in (1.2) are illustrated in Fig. 1.

As a result of the series of papers [2, 6, 20, 24], and counterexamples (see e.g. [1]), this phenomena is now well-understood. In particular, from [6], for distributions F with median m = 0 (so that, with $X \sim F$, $P(X \leq m) \geq 1/2$ and $P(X \geq m) \geq 1/2$) and $\mu = E(X)$ assumed finite, if $X^+ = \max\{X, 0\}$ and

Fig. 1 Fechner's density $f(x; \sigma_{-}, \sigma_{+})$ with $\sigma_{-} = 3/2$, $\sigma_{+} = 1$; mean (solid line), median (dashed line)

Fig. 2 Fechner stochastic order plot: F_+ , dashed curve, F_- , solid curve; $\sigma_- = 3/2$, $\sigma_+ = 1$

Fig. 3 Quantile limit density $g(x; \sigma_{-}, \sigma_{+})$ with $\sigma_{-} = 3/2, \sigma_{+} = 1$, mean at *dashed line*

 $X^- \equiv -\min\{0, X\}$ satisfy $X^- >_s X^+$, then there is at least one mode *M* such that $\mu \le 0 \le M$. This is illustrated in Fig. 2.

Here we note that while the densities g and h also have mode at 0, the density g has median 0 and mean < 0 (when $\sigma_{-} > \sigma_{+}$), the density h has mean 0 and median > 0. Thus g gives an example of a density in which the equality median = mode occurs, while h gives an example of a density for which the median fails to fall between the mean and mode, and thus, necessarily, X^{-} fails to be stochastically larger (or smaller) than X^{+} . These facts are illustrated in Figs. 3, 4, and 5, 6, respectively.

Finally, Fig. 7 gives a plot of all three of these densities together, all with $\sigma_{-} = 3/2$, $\sigma_{+} = 1$.

Fig. 4 Quantile stochastic order plot: G_+ , *dashed curve*, G_- solid curve; $\sigma_- = 3/2$, $\sigma_+ = 1$

Fig. 5 Oscillating Brownian motion limit density $h(x; \sigma_{-}, \sigma_{+})$ with $\sigma_{-} = 3/2, \sigma_{+} = 1$, median at *dashed line*

2 Summary of the Properties of f, g, and h

Table 1 summarizes some of the properties of the densities f, g, and h. The formulas for the median are given only for the case that $\sigma_- > \sigma_+$.

In addition, the variances are given as follows:

$$Var_f(X) = \left(1 - \frac{2}{\pi}\right)(\sigma_+ - \sigma_-)^2 + \sigma_+ \sigma_-,$$
$$Var_g(X) = \frac{1}{2}\left(1 - \frac{1}{\pi}\right)(\sigma_+ - \sigma_-)^2 + \sigma_+ \sigma_-,$$
$$Var_h(X) = \sigma_+ \sigma_-.$$

Fig. 6 Oscillating BM limit stochastic order plot: H_+ , *dashed curve*, H_- *solid curve*; $\sigma_- = 3/2$, $\sigma_+ = 1$

Fig. 7 The three densities *f* (*solid*), *g* (*dotted*), and *h* dashed; $\sigma_{-} = 3/2$, $\sigma_{+} = 1$

Table 1 The mode, median, and mean of three (marginal) densities: Fechner, (nonstandard) quantile limit, and oscillating Brownian motion, as functions of σ_+ and σ_-

	Fechner	Quantile limit	Osc BM limit
Symbol	f	g	h
Mode	0	0	0
Median	$\sigma_{-}\Phi^{-1}\left(\frac{\sigma_{+}+\sigma_{-}}{4\sigma_{-}}\right)$	0	$\sigma_{+}\Phi^{-1}\left(1-\left(\frac{4\sigma_{-}}{\sigma_{+}+\sigma_{-}}\right)^{-1}\right)$
Mean	$\sqrt{\frac{2}{\pi}}(\sigma_+ - \sigma)$	$\frac{1}{\sqrt{2\pi}}(\sigma_+ - \sigma)$	0
P(X > 0)	$\frac{\sigma_+}{\sigma_+ + \sigma} = 1 - \theta$	1/2	$\frac{\sigma_{-}}{\sigma_{+}+\sigma_{-}} = \theta$

3 Questions

We know that skew Brownian motion was studied by Walsh [26] because it provides an example of a diffusion process with discontinuous local time. We know that oscillating Brownian motion with $\sigma_+ \neq \sigma_-$ (or $q \neq p$ and $\alpha = 0$ in the notation of following sections) has both discontinuous marginal (which are scaled versions of the density *h*), and discontinuous local time. What are the properties of processes (if any) related to the densities *f* and *g*?

- Does Fechner's density f arise as the marginal density of a diffusion process in \mathbb{R} ?
- Does the median zero density g arise as the marginal density of a diffusion process?
- What are the continuity properties of the marginal densities of the processes connected to the densities *f* and *g*?
- What are the continuity properties of the corresponding local time processes?

We will give answers to these questions in the next two sections.

4 A General Three-Parameter Mixture Family

Of course it is clear that f, g, and h as defined in Sect. 1 are special cases of the following mixture family: For $\theta \in [0, 1]$ and $\sigma_+, \sigma_- > 0$, let

$$q(x;\sigma_+,\sigma_-,\theta) = \theta \frac{2}{\sigma_-} \phi\left(\frac{x}{\sigma_-}\right) \mathbf{1}_{(-\infty,0)}(x) + (1-\theta) \frac{2}{\sigma_+} \phi\left(\frac{x}{\sigma_+}\right) \mathbf{1}_{[0,\infty)}(x).$$

Then

$$q(x;\sigma_+,\sigma_-,\theta) = \begin{cases} f(x;\sigma_+,\sigma_-), \text{ if } \theta = \theta_f \equiv \frac{\sigma_-}{\sigma_+ + \sigma_-}, \\ g(x;\sigma_+,\sigma_-), \text{ if } \theta = \theta_g \equiv 1/2, \\ h(x;\sigma_+,\sigma_-), \text{ if } \theta = \theta_h \equiv \frac{\sigma_+}{\sigma_+ + \sigma_-}. \end{cases}$$

For this three-parameter family, with $X \sim q$,

$$E_q X = \sqrt{\frac{2}{\pi}} \left\{ (1-\theta)\sigma_+ - \theta\sigma_- \right\},$$

median(X) =
$$\begin{cases} \sigma_- \Phi^{-1}\left(\frac{1}{4\theta}\right), & \text{if } \theta \ge 1/2, \\ \sigma_+ \Phi^{-1}\left(1 - \frac{1}{4(1-\theta)}\right), & \text{if } \theta < 1/2, \end{cases}$$

Fig. 8 The densities $q(\cdot; 3/2, 1, \theta)$ for $\theta \in \{\{.1, .2, ..., .9\}$

Fig. 9 Mean (*solid*), median (*dotted*), and mode (*dashed*) of the densities $q(\cdot; 3/2, 1, \theta)$ for $\theta \in (0, 1)$

$$Var_{q}(X) = (1 - \theta)\sigma_{+}^{2} + \theta\sigma_{-}^{2} - ((1 - \theta)\sigma_{+} - \theta\sigma_{-})^{2}\frac{2}{\pi},$$

$$P_{q}(X > 0) = 1 - \theta.$$

Figure 8 shows the densities $q(\cdot; 3/2, 1, \theta)$ with $\theta \in \{.1, .2, ..., .9\}$

In Fig. 9 we see that the mean median and mode follow the inequality (1.2) for $\theta \ge 1/2$, and the reverse inequalities

$$mode \le median \le mean$$
 (4.1)

for $\theta \leq .108389...$, but that such inequalities fail for $\theta \in (.108389, .5)$.

5 Skew and Oscillating Brownian Motion Connections

How do these various densities connect with processes? From [19, Exercise 1.16, p. 82], we see that $q(\cdot; t, t, \theta)$ is the marginal density of *skew Brownian motion* with parameter $1 - \theta$ at time *t* starting from 0 at t = 0. This process is denoted by $X_t^{1-\theta}$ in [19]. Moreover, from [19, Exercise 2.24, p. 401], $X_t^{1-\theta} = r_{1-\theta}(Y_t^{1-\theta})$ where $r_{1-\theta}(x) = (x/\theta)1_{[0,\infty)}(x) + (x/(1-\theta))1_{(-\infty,0)}(x)$. Equivalently, $Y_t^{1-\theta} = s_{1-\theta}(X_t^{1-\theta})$ where

$$s_{1-\theta}(x) = \theta x \mathbf{1}_{[0,\infty)}(x) + (1-\theta) x \mathbf{1}_{(-\infty,0)}(x).$$

Thus $Y_t^{1-\theta}$ has marginal density $h(\cdot/t, \theta, 1-\theta) = q(\cdot/t; \theta, 1-\theta, \theta)$, and it becomes clear that $Y_t^{1-\theta}$ is oscillating Brownian motion with $\sigma_+ = \theta$, $\sigma_- = 1 - \theta$.

Now consider $Z_t^{1-\theta} \equiv v_{\theta}(X_t^{1-\theta})$ where

$$v_{\theta}(x) = (1 - \theta) x \mathbf{1}_{[0,\infty)}(x) + \theta x \mathbf{1}_{(-\infty,0)}(x).$$

Then $Z_t^{1-\theta}$ has marginal density $f(\cdot/t, 1-\theta, \theta) = q(\cdot/t; 1-\theta, \theta, \theta)$. This is Fechner's density, and hence we call the process $Z_t^{1-\theta}$ the Fechner process.

6 More on the Fechner Process

Chen and Zili [5] study the following stochastic differential equation:

$$\begin{cases} dY_t^x = \left(p \mathbf{1}_{\{Y_t^x \le 0\}} + q \mathbf{1}_{\{0 < Y_t^x \le a\}} + r \mathbf{1}_{\{a < Y_t^x\}}\right) dB_t + \frac{\alpha}{2} dL_t^0(Y^x) + \frac{\beta}{2} dL_t^a(Y^x),\\ Y_0 = x \in \mathbb{R}, \end{cases}$$

where $\alpha, \beta \in (-\infty, 1)$, *B* is a one-dimensional standard Brownian motion, and for $w \in \mathbb{R}$, $L_t^w(Y^x)$ is the semimartingale local time for Y^x at level *w*; that is,

$$L_t^w(Y^x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \mathbb{1}_{[w,w+\epsilon]}(Y_s^x) d\langle Y^x \rangle_s.$$

Here $\langle Y^x \rangle$ denotes the predictable quadratic variation process of *Y*. They note that in the special case p = q = r = 1 and $\beta = 0$, Y_t^x is a *skew Brownian motion* with skew parameter $1/(2 - \alpha)$; and in the special case when p = q = r = 1 the process Y_t^x is a *double-skewed Brownian motion*. Another special case of interest is $p \neq q = r$, $\alpha = 0$, and $\beta = 0$, which corresponds to *oscillating Brownian motion* in the terminology of [13]. In the special case of r = q and $\beta = 0$, Y_t^x is a *skewed oscillating Brownian motion process*, to use a combination of the terminology of [5, 13]. For further developments and applications of processes defined by the stochastic differential equation in the last display, see [18]. We are interested in a particular member of this class of processes, namely the *Fechner process* having continuous marginal densities.

Chen and Zili [5] show that the resulting SDE in this latter case, namely

$$\begin{cases} dX_t^x = \left(p \mathbf{1}_{\{Y_t^x \le 0\}} + q \mathbf{1}_{\{0 < Y_t^x\}} \right) dB_t + \frac{\alpha}{2} dL_t^0(X^x)), \\ X_0^x = x \in \mathbb{R}, \end{cases}$$
(6.1)

has a unique strong solution, and that moreover the transition density of the diffusion X^x is given by

$$p_t^X(x,y) = \frac{1}{\sqrt{2\pi t}} \left(\frac{1_{\{y \le 0\}}}{p} + \frac{1_{\{y>0\}}}{q} \right) \times \left\{ \exp\left(-\frac{(f(x) - f(y))^2}{2t} \right) + \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \operatorname{sign}(y) \exp\left(-\frac{(|f(x)| + |f(y)|)^2}{2t} \right) \right\}$$
(6.2)

where $f(y) \equiv (y/p)\mathbf{1}_{[y \le 0]} + (y/q)\mathbf{1}_{[y > 0]}$. This implies that the transition density $p_t^X(0, y)$ is given by

$$p_{t}^{X}(0, y) = \frac{1}{\sqrt{2\pi t}} \left(\frac{1_{\{y \le 0\}}}{p} + \frac{1_{\{y > 0\}}}{q} \right) \times \left\{ \exp\left(-\frac{f(y)^{2}}{2t}\right) + \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \operatorname{sign}(y) \exp\left(-\frac{f(y)^{2}}{2t}\right) \right\}$$

$$= \frac{1}{\sqrt{2\pi t}} \left(\frac{1_{\{y \le 0\}}}{p} + \frac{1_{\{y > 0\}}}{q} \right) \times \left\{ 1 + \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \operatorname{sign}(y) \right\} \exp\left(-\frac{f(y)^{2}}{2t}\right)$$

$$= \left\{ \frac{\frac{1}{\sqrt{2\pi t}} \cdot \frac{1}{p} \left(1 - \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \right) \cdot \exp\left(-\frac{f(y)^{2}}{2t}\right), \ y \le 0, \\ \frac{1}{\sqrt{2\pi t}} \cdot \frac{1}{q} \left(1 + \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \right) \cdot \exp\left(-\frac{f(y)^{2}}{2t}\right), \ y > 0.$$
(6.3)

This family of marginal densities for the process $X_t^0 \equiv X_t$ is continuous at 0 if

$$\frac{1}{p}\left(1 - \frac{p+q(\alpha-1)}{p-q(\alpha-1)}\right) = \frac{1}{q}\left(1 + \frac{p+q(\alpha-1)}{p-q(\alpha-1)}\right)$$

and this is easily seen to hold if and only if

$$1 - \alpha = \frac{p^2}{q^2}$$
, or if $\alpha = 1 - \frac{p^2}{q^2} \in (-\infty, 1)$. (6.4)

Then

$$p_t^X(0, y) = \begin{cases} \frac{1}{\sqrt{2\pi t}} \cdot \frac{2}{p+q} \cdot \exp\left(-\frac{y^2}{2p^2 t}\right), \ y \le 0, \\ \frac{1}{\sqrt{2\pi t}} \cdot \frac{2}{p+q} \cdot \exp\left(-\frac{y^2}{2q^2 t}\right), \ y > 0. \end{cases}$$
$$= f(y/\sqrt{t}; p, q)/\sqrt{t}$$

where $f(\cdot; \cdot, \cdot)$ is Fechner's density as given in (1.1). Again, note that f is a continuous function of its first (and all) arguments. Furthermore, the transition density $p_t^X(x, y)$ is now given by

$$p_t^X(x,y) = \begin{cases} \frac{1}{\sqrt{2\pi t}} \frac{1}{q} \left\{ \exp\left(-\frac{(x-y)^2}{2q^2 t}\right) + \frac{1-p/q}{1+p/q} \exp\left(-\frac{(x+y)^2}{2q^2 t}\right) \right\}, & x > 0, \ y > 0, \\ \frac{1}{\sqrt{2\pi t}} \frac{1}{p} \left\{ \exp\left(-\frac{(x-y)^2}{2p^2 t}\right) - \frac{1-p/q}{1+p/q} \exp\left(-\frac{(|x|+|y|)^2}{2p^2 t}\right) \right\}, & x \le 0, \ y \le 0, \\ \frac{1}{\sqrt{2\pi t}} \frac{1}{q} \left\{ \exp\left(-\frac{(\frac{x}{p}-\frac{y}{q})^2}{2t}\right) + \frac{1-p/q}{1+p/q} \exp\left(-\frac{(\frac{|x|}{p}+\frac{|y|}{q})^2}{2t}\right) \right\}, & x \le 0, \ y > 0, \\ \frac{1}{\sqrt{2\pi t}} \frac{1}{p} \left\{ \exp\left(-\frac{(\frac{x}{q}-\frac{y}{p})^2}{2t}\right) - \frac{1-p/q}{1+p/q} \exp\left(-\frac{(\frac{|x|}{q}+\frac{|y|}{p})^2}{2t}\right) \right\}, & x > 0, \ y \ge 0, \end{cases}$$

which is jointly continuous as a function of (x, y). See Fig. 10. In general the transition densities of skewed oscillating Brownian motion given in (6.2) are discontinuous; see Fig. 11.

Fig. 10 Fechner process transition density $p_1^X(x, y)$ with p = 1 and q = 3

J.A. Wellner

Fig. 11 Skewed oscillating Brownian motion process transition density $p_1^X(x, y)$ with p = 1, q = 3, and $\alpha = 1/2$

Question: With α related to *p* and *q* as in (6.4), does the process X_t^x have a jointly continuous local time process $L_t^w(X^x)$? (In particular is it continuous in *w*?)

The answer is *no* as shown by Chen [4]. Moreover, Chen [4] shows that the local time process $L_t^w(X^x)$ is jointly continuous only when $\alpha = 1 - p/q$.

Here is the proof of the two assertions from [4]. Define

$$f(y) = \begin{cases} y/p, \text{ for } y \le 0, \\ y/q, \text{ for } y > 0. \end{cases}$$

By Chen and Zili [5, Eq. (2.9)]

$$L_t^0(X^x) = \frac{2}{2-\alpha} \widehat{L}_t^0(X^x),$$
(6.5)

where $\widehat{L}_t^0(X^x)$ is the symmetric local time of X^x at 0. From the proof of [5], Corollary 2.3, we see that $Z^{f(x)} \equiv f(X^x)$ is a skew driven Brownian motion driven by *B* starting from f(x):

$$dZ_t^{f(x)} = dB_t + \frac{1}{2} \left(\frac{q(\alpha - 1)}{p} + 1 \right) dL_t^0(Z^{f(x)}).$$

By use of (6.5) we can rewrite the last display in term by symmetric semimartingale local time:

$$dZ_t^{f(x)} = dB_t + \frac{1}{2} \left(\frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \right) d\widehat{L}_t^0(Z^{f(x)}).$$

By the same computation as for (2.5) of [5], it follows that $L_t^0(X^x) = qL_t^0(Z^{f(x)})$, and hence that

$$\widehat{L}_{t}^{0}(X^{x}) = \frac{(2-\alpha)q}{p+q(1-\alpha)}\widehat{L}_{t}^{0}(Z^{f(x)}).$$
(6.6)

Since *Z* is a skew Brownian motion, it follows from [3, Theorem 1.2], that unless $p + q(\alpha - 1) = 0$ (i.e. unless $\alpha = 1 - (p/q)$), the process

$$w \mapsto w + \frac{p + q(\alpha - 1)}{p - q(\alpha - 1)} \widehat{L}_T^0(Z^w)$$

is a discontinuous homogeneous Markov process, where $T = \inf\{t > 0 : \widehat{L}_t^0(Z^0) = 1\}$. Thus, unless $\alpha = 1 - (p/q)$, by (6.6) we have $x \mapsto \widehat{L}_T^0(X^x)$ is discontinuous, and so in view of (6.5), $x \mapsto L_T^0(X^x)$ is discontinuous. For the Fechner process, $L_t^0(X^x)$ cannot be jointly continuous in (t, x), nor is it continuous in x.

When $\alpha = 1 - p/q$ we see that the factors

$$\left(1 \pm \frac{p+q(\alpha-1)}{p-q(\alpha-1)}\right) = 1.$$

and hence the marginal density $p_t^X(0, y)$ in (6.3) reduces the form of g given in (1.1). Summarizing the discussion above leads to the following proposition:

Proposition Let $X_t^x \equiv X_t^x(p,q,\alpha)$ denote the (strong) solution of the stochastic differential equation (6.1).

- (a) For $\alpha = 1 (p/q)^2$, X_t^x has continuous transition densities and marginal densities for x = 0 which are scaled versions of the Fechner density f given in (1.1). On the other hand, the local time process $L_t^x(X^x)$ is discontinuous (at x = 0).
- (b) For $\alpha = 1 p/q$, X_t^x has discontinuous transition densities and marginal densities for x = 0 which are scaled versions of the median zero density g given in (1.1). On the other hand, the local time process $L_t^x(X^x)$ is continuous.

Acknowledgements I owe thanks to Zheng-Qing Chen for sharing Chen and Zili [5] and Chen [4] with me. I also owe thanks to Kenneth Wallis for keeping me straight on Fechner's arguments concerning the mean-median-mode inequality (2) and the relative contributions of Fechner and Pearson.

Supported in part by NSF Grant DMS-1104832 and NI-AID grant 2R01 AI291968-04.

References

- 1. K.M. Abadir, The mean-median-mode inequality: counterexamples. Econ. Theory **21**, 477–482 (2005)
- 2. B. Abdous, R. Theodorescu, Mean, median, mode. IV. Statist. Neerlandica 52, 356-359 (1998)
- K. Burdzy, Z.-Q. Chen, Local time flow related to skew Brownian motion. Ann. Probab. 29, 1693–1715 (2001)
- 4. Z.-Q. Chen, Local times of some skew processes. Tech. rep., University of Washington. Personal communication (2013)
- Z.-Q. Chen, M. Zili, One-dimensional heat equation with discontinuous conductance. Sci. China Math. 58, 97–108 (2015)
- S.W. Dharmadhikari, K. Joag-Dev, Mean, median, mode. III. Statist. Neerlandica 37, 165–168 (1983)
- 7. S. Dharmadhikari, K. Joag-Dev, *Unimodality, Convexity, and Applications*. Probability and Mathematical Statistics (Academic Press Inc., Boston, MA, 1988)
- 8. G.T. Fechner, Kollektivmasslehre, ed. by G.F. Lipps (Engelmann, Leipzig, 1897)
- H.G. Fellner, W.F. Lindgren, Gustav Theodor Fechner: pioneer of the fourth dimension. Math. Intell. 33, 126–137 (2011)
- 10. J.M. Harrison, L.A. Shepp, On skew Brownian motion. Ann. Probab. 9, 309–313 (1981)
- I.S. Helland, Convergence to diffusions with regular boundaries. Stoch. Process. Appl. 12, 27–58 (1982)
- K. Itô, H.P. McKean Jr., *Diffusion Processes and Their Sample Paths* (Springer, Berlin, 1974). Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125
- 13. J. Keilson, J.A. Wellner, Oscillating Brownian motion. J. Appl. Probab. 15, 300-310 (1978)
- J. Kiefer, Old and new methods for studying order statistics and sample quantiles, in *Nonpara*metric Techniques in Statistical Inference (Proc. Sympos., Indiana University, Bloomington, IN, 1969) (Cambridge University Press, London, 1970), pp. 349–357
- 15. K. Knight, What are the limiting distributions of quantile estimators? in *Statistical Data Analysis Based on the L₁-Norm and Related Methods (Neuchâtel, 2002)*. Stat. Ind. Technol. (Birkhäuser, Basel, 2002), pp. 47–65
- 16. A. Lejay, On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006)
- K. Pearson, Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. Ser. A 186, 343–414 (1895)
- J.M. Ramirez, E.A. Thomann, E.C. Waymire, Advection-dispersion across interfaces. Stat. Sci. 28, 487–509 (2013)
- D. Revuz, M. Yor, *Continuous Martingales and Brownian Motion*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 2nd edn. (Springer, Berlin, 1994)
- 20. J.T. Runnenburg, Mean, median, mode. Statist. Neerlandica 32, 73–79 (1978)
- W. Schreier, Gustav Theodor Fechner (1801–1887). Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 34, 60–62 (1985)
- 22. O. Sheynin, Fechner as a statistician. Br. J. Math. Stat. Psychol. 57, 53-72 (2004)
- 23. S.M. Stigler, *The History of Statistics* (The Belknap Press of Harvard University Press, Cambridge, MA, 1986). The measurement of uncertainty before 1900
- 24. W.R. van Zwet, Mean, median, mode. II. Statist. Neerlandica 33, 1–5 (1979)
- K.F. Wallis, The two-piece normal, binormal, or double Gaussian distribution: its origin and rediscoveries. Stat. Sci. 29, 106–112 (2014)
- 26. J. Walsh, A diffusion with discontinuous local time. Astérisque 52-53, 37-45 (1978)
- L. Weiss, Asymptotic distributions of quantiles in some non-standard cases, in *Nonparametric Techniques in Statistical Inference* (Proc. Sympos., Indiana University, Bloomington, IN, 1969) (Cambridge University Press, London, 1970), pp. 343–348
- J.A. Wellner, Strong log-concavity is preserved by convolution, in *High Dimensional Probability VI: The Banff Volume*. Progress in Probability, vol. 66 (Birkhauser, Basel, 2013), pp. 95–102