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Summary

A review is given of recent applications of empirical process theory and methods to statistics with
emphasis on empirical processes indexed by sets and functions. After a brief survey of empirical
process theory, we review applications of this theory to estimation (censoring, truncation, biased
sampling, regression and density function estimation, minimum distance methods), testing (classical
goodness of fit and minimum distance tests, permutation and bootstrap tests, local alternatives and
power), pattern recognition, clustering, and classification, bootstrapping of empirical measures, and
the delta method. One new theorem on the asymptotic behavior of empirical processes under local
alternatives is presented.
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tion; Clustering; Density function; Differentiable functions; Donsker theorem or CLT; Empirical
distribution function; Empirical measure; Empirical process; Estimation Glivenko-Cantelli theorem
or SLLN; Inequalities; Local alternatives; Minimum distance; Nonstandard asymptotics; Omnibus
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I Introduction

The theory of empirical measures and processes has developed rapidly over the past 13
years since the key paper by Dudley (1978). This vigorous theoretical development has
gone hand in hand with advances in probability theory, notably the theory of Gaussian
processes (e.g. Adler (1990) for an introduction) and limit theory for probability
distributions on Banach spaces (e.g. the recent book by Ledoux & Talagrand (1991)). For
a recent excellent expository paper, see Pollard (1989), and the discussion thereof. This
development includes a wealth of tools and techniques for asymptotic theory in statistics.

Applications of general empirical process theory in statistics have developed somewhat
more slowly in the past decade, however. The purpose of this paper is to review
applications of empirical process theory in statistics. As recently as 1984, Pyke ((1984),
page 251) wrote:

‘The asymptotic results that have been obtained during the seventies for empirical
processes indexed by families of sets have as yet not been applied significantly to
problems of inference’.

As we will see in the course of this review, some progress has been made in this direction
in the meantime—often involving further theoretical developments.
Of course the difficult question

What is an application of empirical processes?

rears its head immediately. One possible definition would be to include only papers which
involved ‘real data’. Unfortunately, this narrow definition would virtually reduce this
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review to a null set (in spite of 5 pages with the heading ‘empirical’ in Science Citation
Indices for 1985-1989). In this sense, Pyke's statement in 1984 may still be true! In
analogy with the well-known ‘Erdés number’ associated with each mathematician, any
paper on empirical processes might be given a ‘real data number’ indicating at how many
papers removed is the ‘real data’ motivating the theoretical development. Thus I would
assign a ‘real data number’ of 0 to the recent paper by Olshen, Biden, Wyatt, &
Sutherland (1989) since it contains both an application of empirical process theory and
‘real data’ (from ‘gain analysis’); while the paper of Pakes & Poliard (1989) would
receive a ‘real data number’ of 1 since the ‘real data’ (involving renewal of patents) was
given in Pakes (1986).

I will, however, take a rather broad perspective and answer this question here by
defining an application of empirical processes to be any development in statistics resulting
in an understanding of the properties of some particular statistical procedure or method
which has used empirical process tools or methods.

Moreover, this review will emphasize ‘applications’ in the above sense which use
modern empirical process theory—as developed since 1978—for data with values in a
possibly high dimensional space. In fact, modern empirical process theory deals with
empirical measures and processes for data with values in a completely arbitrary, perhaps
infinite-dimensional sample space. This aspect of the theory will undoubtedly become
more important in future applications as statisticians develop methods for dealing with
‘function’ and ‘picture’-valued data such as seismographs, noise level tracings, electrocar-
diograms, and high-dimensional biomedical data (survival times together with hundreds
of covariates). i

I believe that one important consequence of the rapid developments in modern
empirical process tools and techniques is a shortening of the lag time between the
introduction of a new method (e.g. a new estimator or test statistic) in statistics and the
development of an understanding of the properties and performance of the method. The
following table gives some support to this claim. The table contains the (approximate?)
times of introduction of a few selected estimators or methods, together with the date of

Estimator/Problem Date introduced Date CLT first established ' Lag
(years)

empirical df Cramér (1928) Donsker (1952) 24

empirical measure Fortet & Mourier (1953) Dudley (1978) 25

Pollard (1982b)
Ossiander (1987)
Giné & Zinn (1984)

monotone density Grenander (1956) Prakasa Rao (1969) 13
Groeneboom (1985) 29
Kim & Pollard (1990) 34
right censoring Kaplan & Meier (1958) Breslow & Crowley (1974) 16
; Gill (1983) ]
k-means clustering MacQueen (1967) Pollard (1982a) 15
left truncation Lynden-Bell (1971) Woodroofe (1985) 14
double censoring Turnbuli (1974) Chang (1990) 16
Efron’s bootstrap Efron (1979)
: df: Bickel & Freedman (1981) 3
measure: Giné & Zinn (1990) 11
Rubin’s Bayesian bootstrap ~ Rubin (1981)
df: Lo (1987) 6
measure: Praestgaard (1991) 10
censored regr. Powell (1984) Pollard (1990) 6
biased sampling © Vardi (1985) Gill, Vardi & Wellner (1988) 3
simplicial depth process Liu (1990) Arcones & Giné (1991) 1
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publication of the central limit theorem (or analog thereof) and the resulting lag times. Of
course the methods chosen for inclusion in this table reflect my own biases and subjective
preferences, and thereof suffer severely from selection bias!

For an interesting review of applications up to 1980, see Dudley (1981). For
applications of empirical process theory, and probabilistic methods more generally, to the
theory of Banach spaces, see Pisier (1986), (1989) and Ledoux & Talagrand (1991),
chapters 14 and 15. Pyke (1992) gives a survey and a variety of open problems connected
with empirical processes and related product processes.

Il A Brief Review of Empirical Process Theory
II.1 Limit Theorems for Empirical Measures and Processes

Suppose that X,,..., X,,... are independent and identically distributed from a
distribution P on an arbitrary measurable space (A4, A). Here A is the ‘sample space’, and
A is some sigma-field of subsets of A. Usually (A, A) will be (R*, BX), k-dimensional
Euclidean space with its Borel sigma-field for some fixed k, but it could be completely
arbitrary. Let &, denote the probability measure with mass 1 at x € 4, and let

Po=pt z Ox, (1)

denote the empirical measure of the first n of the observations X;. Thus for any set B € A

5 #ik=n:X_e€B
P.(B)=n"'3) 6 ()= 2HE=n B
i=1

Of course, the importance for statistics is that: (i) P, is the nonparametric maximum
likelihood estimator of P (see e.g. Kiefer & Wolfowitz (1956), Scholz (1980)); (ii) P, is
sufficient for P € M := {all probability distributions on A} (see Dudley (1984), theorem
10.1.3, page 95); and (iii)

P, is ‘close’ to P for n large. Dy

These facts, together with the classical central limit theorem lead us to define the
empirical process X, by

X, :==Vn (P, — P). 3)

Our goal in this section is to briefly review/survey the available limit theory making the
assertion (2) precise, with emphasis on laws of large numbers (Glivenko—Cantelli
theorems) and central limit theorems (Donsker theorems).

Modern empirical process theory views the empirical measure P, as a stochastic process
indexed by a large class of functions F or sets C as follows: suppose that F is a collection
of real-valued measurable functions defined on A, and write Pf for [ fdP. Thus, for f € F,

1 n
P.f = [ fdP, == f(x).
i=1
If C c A is a class of (measurable) subsets of A, then

1.2 1
Pnc=f]-(."d[pn =;2 1C(X‘.):;#{k=£n:XkeC}.
i=1
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In either case, the resulting stochastic process, as f e F or C € C varies, is just
{P.f:feF} or {P,C:CeC}.

If the sample space (4, A) is (R', B') and the collection of sets C is the collection of left
orthants, C= {(—, x]:x € R'}, then

P,C:CeC} ={P,((—», x]:xeR'}

is just the usual one-dimensional empirical distribution function (df) for the real-valued
data X, ..., X,. Since the indicator functions of sets C are just particular functions, we
will formulate results below for PP, indexed by classes of functions F.

To get limit theorems for P, indexed by F which are uniform over all f € F we need to
rule out two potential problems: First, as in the case of the moment hypotheses for the
usual strong law of large numbers or central limit theorem, the functions in F should not
be ‘too big pointwise.” Second, there should not be ‘too many of them.” To make these
more precise, we define two more notions: the envelope function F of F, and the entropy
of F.

For a given class F of measurable real-valued functions on A, define a function G by

G(x):ziurp{f(xﬂ for xeA.

Thus G(x)=|f(x)| for all x e A and all f € F. Since G is not nesessarily measurable, we
let F be the smallest measurable function above G, often denoted by G*. Thus

F(x)=G*() = (sup I @)1)
feF

is the least measurable envelope of F, and we refer to it from now on as simply the
envelope of .

The second notion is that of an entropy number for the size of F. Viewing F as a subset
of a metric space (D, d) (such as (L,(P), ||-||,)). for any £ >0 we can consider covering F
with ¢ balls B(f;, €) with centers f; in F. Let N(¢, F, d) be the number of such balls
required to cover F. Thus Fcl ™, B(f, ) for some f,eF with m = N(¢, F,d). If
Fc L,(P), define py(f, ) for f, g € F by p3(f, g) = Varp (f(X) — g(X)).

Now a heuristic summary of the two types of limit theorems below is as follows:

sLLn or Glivenko theorem: If an ‘appropriate’ entropy number N(g, F, d) is finite for
every ¢ >0 and F has integrable envelope function F (F € L,(P)), then

IP, — Pllg :=sup [P.f — Pf|—>,,0 as n—>o.
feF

cLT or Donsker theorem: If an ‘appropriate’ entropy number N(e, F,d) is Vlog e-
integrable

1
(i.e‘ J (log N(u, F, d)}* du <oc),
4]
and the envelope function ¥ of F is square integrable, then

Vn (P, - P)=>Gp

where Gp i1s a P-Brownian bridge process with pe-continuous sample paths: i.e. Gp is a
mean zero Gaussian process on F with covariance function

Cov (Gp(f), Gelg))= P(fg) — PfPg, for f,geF
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and Gp takes values in C,(F, pp) the subcollection of /”(F) consisting of all (bounded and)
pp-uniformly continuous functions on F. Note that when F is the collection of indicators
of a class of sets C, F = {1,:C € C}, this covariance becomes

Cov (Gp(B), Go(C)) = P(B N C)— P(B)P(C), for B, CeC;

and when this is specialized still further to the one-dimensional df case with C=
{1(—w,):x € R'}, this becomes, with Gp(—, x]:= Gp(x), P(—», x]:= H(x),

Cov (Gp(x), Gp(y)) = H(x A y) — H(x)H(y)
=H(x) A H(y)— H(x)H(y) for x,yeR',

the covariance function of the usual H-Brownian bridge process in one-dimension U(H)
where U is a standard Brownian bridge process on [0, 1].

Here are my favorite two examples of each of these two types of limit theorems. To
make the statements precise we define two types of entropy numbers as follows.

First, for r >0 and & >0, define the L.(P)-metric entropy with bracketing by

there exist iyt o ol o wlae B (P)
N{(¢, F, P):=minq k: such that for each f e F there are i, j <k
suchthat<f=u;, P(u,— L) ¢
The second type of entropy number is defined in terms of the envelope function F and
" probability measures O on A of the same form as the empirical measure as follows: for
r>0, €¢>0, and any measure O on A of the form QO =k™' ¥X, 6, for some finite
collection x(1), . . . , x(k) of points in A, let N¥(¢, F, Q) be the number of balls of radius
€ ||Flp,, required to cover F in (L .(Q), ||-|lo.,); here ||fllo., = O(f"). Then set

N@(e, F):=sup N?(¢, F, Q).
o

This is the combinatorial entropy of F defined by Pollard (1982b) and Kolginskii (1981).
Here are Glivenko—Cantelli theorems and Donsker theorems formulated in terms of
these entropies (and ignoring some measurability issues):
Tueorem 1 (sLiN or Glivenko-Cantelli theorem). Suppose that:
(i) NP(e, F) < for every ¢ >0, or
(i") N{P(e, F, P) < for every &> 0.
(ii) F e Li«(P).
Then F € sLLN(P):||P, — P|lg—,..0 as n— .
The first part of Theorem 1—using the hypothesis (i) on the Pollard-Kol¢inskii entropy
N®(e, F)—is due to Pollard (1982b) with refinements by Dudley (1984); see Dudley
(1984), theorem 11.1.6. The second part of Theorem 1—using the hypothesis (i") on the
entropy with bracketing N{}(¢, F)—is due to Blum (1955) and Dehardt (1971), again with
refinement by Dudley (1984); see Dudley (1984), theorem 6.1.5.

THEOREM 2 (cLT or Donsker theorem). Suppose that:
1
(i) j Viog N$2(u, F) du <=, or,
0
1
(i) L Viog NP(u, F, P) du <.

(i) Fie Lo(P).
Then F e cLt(P):X, =Vn (P, — P)=> Gp as n—> .
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The first part of Theorem 2—using the hypothesis (i) on the Pollard—Kol&inskii entropy
N@(e, F)—is due to Pollard (1982b). The second part of Theorem 2—using the
hypothesis (i) on the entropy with bracketing N{}(e, F)—is due to Ossiander (1987).

A great variety of different theorems of this type have now been established, notably by
Alexander (1987b), Andersen, Giné, Ossiander & Zinn (1988), Bolthausen (1978),
Dudley (1978), (1984), (1987), Giné & Zinn (1984), (1986), and Pollard (1990). The
influence of techniques from probability in Banach spaces on this development have been
deep and profound; see especially Giné & Zinn (1984), (1986), (1990), (1991) and their
discussion of Pollard (1989).

Perhaps the most important corollary to note for the present is that all the
Vapnik—Chervonenkis (VC) classes of sets (satisfying some additional measurability
condition) satisfy the integrability hypothesis of Pollard’s central limit Theorem 2(i), and
hence satisfy the cLT for every fixed P. Moreover, as Pollard (1982b) shows, so does the
collection of functions F:= {Fl.:CeC} for any square integrable function F and
VC-class C. Since many classes of sets are indeed VC-classes (for example, in A = R?, the
classes of: all closed balls, open rectangles, all half spaces, all polyhedra with at most m
faces, . . . are VC classes) these two observations alone yield a large variety of function
classes F which satisfy the cLT.

It is important also to note that the above two theorems are formulated for a single
fixed P, and the notation used reflects this: for example, we have written F € cL(P) to
emphasize that the result holds for P, but may not hold for another probability
distribution @ # P. Of course in statistics we are often thinking about whole collections of
P’s at once, and are trying to ‘decide’ which P in a given collection (or model) is the ‘best’
P for the given data, and we therefore want to consider limit theorems for many, or
perhaps all, probability distributions P on a given sample space A. Empirical process
theory has begun to address these issues in the past few years: statistical motivations have
led to the introduction of universal Glivenko—Cantelli classes and universal Donsker
classes of functions F: these are classes for which the sLin or cLT respectively holds for
every P on the sample space A; see e.g. Dudley (1978), (1987) for universal Donsker
classes and Dudley, Giné & Zinn (1991) for universal Glivenko—Cantelli classes.
Moreover, a statistician would also like to know that the limit theorems are also uniform
in P (i.e. that the large N(&) necessary to make the implicit error less than & does not
depend on which P is true), and further about the rate of (preferably uniform)
convergence to the limit. This has led to the introduction and study of P-uniform
Glivenko—Cantelli classes P-uniform Donsker classes of functions F for a given collection
P of probability distributions P on A; see e.g. Giné & Zinn (1991), Sheehy & Wellner
(1992) for P-uniform Donsker classes of functions F, and Dudley, Giné & Zinn (1991) for
P-uniform Glivenko—Cantelli classes of functions F.

We will briefly review some results concerning rates of convergence in Section II.2
below.

Statisticians are also interested in local alternatives both for the study of the power of
tests and the regularity of estimators. This raises this issue of central limit theorems for
local (or ‘contiguous’ alternatives); we will return to this issue in Section III.2.

11.2  Inequalities and Rates of Convergence
Often the key to understanding the behavior of some particular statistical method is an

inequality. Prime examples of this are the inequalities of Dvoretzky, Kiefer & Wolfowitz
(1956), and Kiefer (1961) for the 1-dimensional and d-dimensional empirical distribution
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functions respectively:

(d=1) Pr{Vn||F, - Fll.>A}<Ce ™ forall 1>0, n=1;
and, for every € >0 there is a C = C, so that

(d>1) Pr{Va||F, — Fll.> A} <Ce @ 9% forall 1>0, n=1.

Massart (1990) shows that C =2 in (d = 1) works. Alexander (1984) refines Kiefer’s d > 1
inequality to obtain

Pr{Vn|[F, — F|l.> A} <16A2"@*De"2" forall A=8, n=1,
and this has been further refined by Adler & Brown (1986) to
Py {\/?_1 IE, — Fllo> A} < CFAZ((E_”B_?J'?

for all A>0, n= some N,. But Alexander’s (1984) inequalities apply much more
generally: one of his special cases is: for any (measurable) Vapnik—Chervonenkis classes
of sets C

Py {Vn ||P, — Pllc> A} < 164"~ 1)

for all A=8, n=1, where v =V, is the Vapnik—Chervonenkis index of C. This was
improved by Massart (1986) to

P!‘;{\/E ”pn = P”C > ;L} = C(S, C)ll‘w+ce_2;¢2 (1’)

Alexander (1984) and Massart (1986) prove other exponential bounds like (1) and (17),
but with C replaced by some bounded class of functions F satisfying an ‘appropriate’
entropy condition.

Recently Giné & Zinn (1991) proved similar inequalities for arbitrary universal
bounded Donsker classes F (F is P-bounded Donsker if

Mp =sup E}, ||V (P, = P)|lx <= (2)

F is universal bounded Donsker if (2) holds for all P). Here is one of their inequalities
(which they derive via Gaussian process methods and Borell’s inequality (see Adler
(1990), page 43): if F is a (measurable) universal bounded Donsker class of functions with
O0=f=1forall feF, then

Pri {Vn ||P, — Pllg> A} <2 exp {—A*/27(2 + cM)}

forall A>0, n=1, and all P.

Other useful inequalities and limit theorems showing how P, differs from P in a ratio
sense, have been developed by Breiman, Friedman, Olshen & Stone (1984) in the course
of work on classification and partitioning regression methods, and refined and extended
by Pollard (1987) and Alexander (1987a). Here is one of Alexander’s (1987a) ratio type
limit theorems: If C is a Vapnik—Chervonenkis class of sets and a4,— 0 satisfies
n~'log(1/a,) =o(a,), then

sup {20
u

PP
If furthermore na, /loglogn— o, then the convergence in (3) is almost sure.

The best results concerning rates of convergence of empirical processes to their
Gaussian limit processes are apparently those of Massart (1986), (1989). Massart (1986)

—1|:CEC, P(C)Ba,,}—n,(). ?3)
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gives rates of convergence for Pollard’s (1982b) cLt under additional hypotheses on the
envelope function F and the entropy N(e, F), while Massart (1989) focuses on the case
A = R* and imposes additional hypotheses on the entropy with bracketing N{}(¢, F, P) of
the class F. Dudley & Philipp (1983) give rates of convergence for more general
situations.

III Consequences for Statistics
HI.1 Estimation

Empirical process methods and techniques have been applied to a wide range of
estimation problems. The following rough groupings will help to organize the discussion:

A. Models for censoring, truncation, biased sampling.
B. Regression and density function estimation.
C. Minimum distance estimation.

Here is a brief review of progress in these areas involving empirical process techniques or
methods.

A Models. The problem of nonparametric estimation of a survival distribution subject
to random right censorship provides a striking example of the application of empirical
process methods. The Kaplan—-Meier estimator was first derived in 1958, and its
asymptotic normality (as a process) was established by Breslow & Crowley (1974) using
empirical process tools and methods. The use of martingale methods by Gill (1983)
simplified and extended the Breslow & Crowley results, but it is now widely recognized
that the martingale methods do not extend to many closely related, but more complicated
problems (for example, bivariate censored data) whereas the original proof of Breslow &
Crowley (1974), which is now seen as an application of empirical process theory combined
with the general ‘delta method’ (see e.g. Gill (1989)), does apply. We will return to this
theme and the delta method in Section I11.4.

Important progress on double censoring has recently been made by Chang (1990); he
proves weak convergence of the nonparametric maximum likelihood estimator of
Turnbull (1974) for doubly censored data.

For work on nonparametric estimation of a distribution function subject to left
truncation, and left truncation together with right censoring, see Woodroofe (1985),
Wang, Jewell & Tsai (1986), Keiding & Gill (1990), and Lai & Ying (1991). (Woodroofe
(1985) gets a real data number of 1 in view of Lynden-Bell (1971).) Some of this
development hinges more on martingale theory than empirical process theory per se;
however, in just slight extensions of these problems the martingale theory breaks down,
and empirical process theory again yields the most convenient tool.

Nonparametric maximum likelihood estimates for quite general biased samplmg models
was considered by Vardi (1985). He gave conditions for the existence of nonparametric
maximum likelihood estimates of a general measure P in an s-sample biased sampling
model. The limit theory for Vardi’s estimators was established by Gill, Vardi & Wellner
(1988).

There are many interesting and practically important truncation and censoring
problems for higher dimensional data which have just begun to receive attention; see e.g.
Dabrowska (1988), (1989) and Gill (1990) for bivariate censoring problems.

B Regression and density function estimation. Empirical process methods have received
considerable use in several recent studies of regression methods in high dimensions. In a
study of projection pursuit regression, Diaconis & Freedman (1984) use the original
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Vapnik—Chervonenkis (1971) inequality to obtain an interesting consistency-Glivenko—
Cantelli theorem for half-spaces even for increasing dimension d: their result says that the
Kolmogorov distance from empirical to true for half-spaces converges a.s. to zero if
d/n—0 as n—> . Huber (1985) uses an exponential inequality of Alexander (1984) to
establish a consistency result for projection pursuit regression methods.

Breiman, Friedman, Olshen & Stone (1984) establish and use ratio-type inequalities as
discussed briefly in Section II.2 to prove consistency results for their tree-structured
regression methods. Pollard (1987) obtained refined inequalities for ratios and used them
to prove consistency results for kernel type density and regression function estimators
uniform in the bandwidth parameter; and Nolan & Marron (1989) used Pollard’s (1987)
inequalities to establish consistency results for automatic and adaptive bandwidth density
estimators. In some closely related work, Yukich (1989) studies smoothed or ‘perturbed’
empirical processes quite generally: here the focus is on the smooth empirical measure
itself, rather than on its density.

Van de Geer (1990) uses empirical process inequalities and techniques to establish rates

of convergence of nonparametric least squares and least absolute deviations regression
estimators. The entropy functions for various function classes, together with good
exponential bounds, play a key role in her work.
C Minimum distance estimators. Minimum distance estimators and tests have a long
history in connection with empirical distributions and measures: see e.g. Bolthausen
(1977) for a study of estimators based on L,[0, 1]-distance for real-valued data, and
Pollard (1980) for a study of related tests. Beran & Millar (1987) introduce and study
‘stochastic’ minimum distance estimators (and tests). Pakes & Pollard (1989) study
‘simulated optimization estimators’ and establish large sample theory for these procedures
using empirical process methods. In both Beran & Millar (1987) and in Pakes & Pollard
(1989) some extra randomness is introduced in order to make calculations possible and
simple in an otherwise complicated situation—and the analysis aims to take explicit
account of the extra randomness introduced.

1.2 Testing

Considerable recent progress has been made in the construction of tests based on
empirical measures and processes (and the related confidence sets obtained by inversion
of the tests). Although empirical process methods are frequently useful for studying other
test statistics, in this review I will focus on ‘omnibus tests;” i.e. tests which are consistent
against all alternatives for the particular problem under consideration.

Many of these recent developments are largely due to progress in the study and
understanding of ‘the bootstrap’ (i.e. on reliance on limit theory for bootstrap resampling
methods), and hence this section overlaps significantly with Section IIL.5 below on
bootstrapping for empirical measures and processes. The key difficulty—to which the
bootstrap methods give a solution— is that Kolmogorov-type statistics, which are
‘distribution free’ in one dimension under continuity hypotheses, fail to be distribution
free in d=2 dimensions; see e.g. Bickel (1969) or Romano (1988), page 700, for
discussions. Our review here will be organized by way of the following categories:

A. Classical goodness of fit and minimum distance tests.
B. Permutation tests.
C. Power under local alternatives.

The theorem established in subsection C for local alternatives is the one new result
contained in this review.
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A  Classical goodness of fit and minimum distance tests. Two of the first papers to
apply modern empirical process theory to testing are those of Pollard (1979), (1980).
Pollard (1979) showed how Dudley’s (1978) results could be used to allow for data
dependent cells in the limit theory of chi-square goodness of fit tests (of course chi-square
tests are not generally consistent against all alternatives so I have already violated my
stated selection criteria; but this is a nice application of empirical process theory). Pollard
(1980) used empirical process theory to study minimum distance tests of fit for parametric
families, and to extend Bolthausen’s (1977) results for minimum distance estimates. Pyke
(1984) and Pyke & Wilbour (1988) have studied one-sample Kolmogorov statistics for
testing a simple null hypothesis. Their statistics are based on translates of a fixed set such
as a ball or square, and, since such a class of sets is a determining class as shown by Pyke
(1984), are consistent against all alternatives. Pyke & Wilbour (1988) give a very
interesting Monte-Carlo study of the power of such tests. It would be of some interest to
have available sufficient theory in order to theoretically compute (or at least approximate)
the power of their tests; Theorem II1.2.1 below is a step in that direction.

In a major advance for tests based on empirical measures for directional data (data
from probability distributions on a connected Riemannian manifold, e.g. the sphere S7,
hemisphere H”, or torus T”) Giné (1975) proposed classes of invariant tests of uniformity
based on Sobolev norm distances from the empirical measure to the hypothesized uniform
measure. Giné’s proposed tests included many known test statistics as well as a variety of
new test statistics consistent against all alternatives. These statistics are based on what
might now be called “elliptical Donsker classes” F of functions.

B Permutation and bootstrap tests. There is a long history of the use of permutation
tests in connection with empirical measures for problems with two or more samples and
for tests of independence. Bickel (1969) used the then existing empirical process theory of
Dudley (1966) to establish consistency of a two-sample test based on the Kolmogorov
static

D, (0) = sup [IP,,(C) = Q.(O)l

where O is the class of lower left orthants. (It is of interest to note that Dudley (1969),
page 41, also notes the possibility of using the permutation principle together with
empirical measures in two-sample problems, but he is apparently suggesting a test based
on either the Prohorov metric or the dual-bounded Lipschitz metric.) This was recently
generalized to k =2 samples and any Vapnik-Chervonenkis class of sets C (replacing the
orthants () by Romano (1989) (proposition 3.4, page 153). Romano (1988), (1989) also
considers bootstrap implementations of these tests and a variety of other testing
problems, e.g. independence.

Beran & Millar (1987), (1989) study ‘stochastic’ minimum distance tests based on
empirical measures indexed by Vapnik—Chervonenkis classes of sets; their analysis
includes consideration of the extra randomness in the proposed procedure due to the
‘stochastic norming’ and the bootstrap implementation.

Wellner (1979) extended Giné’s (1975) goodness of fit tests to two-sample testing
problems using the permutation ideas of Bickel (1969). Jupp & Spurr (1983), (1985) have
used this circle of methods and ideas to obtain tests of symmetry and independence for
directional data. In all of these problems, the family of test statistics considered includes
members which are consistent against all alternatives.

Further development of permutational limit theory for general empirical processes and
tests based thereon is contained in the U.W. Ph.D. dissertation of Praestgaard (1991).

C Local alternatives and power. In this section we give a Donsker theorem for the
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empirical process under ‘local alternatives’ to a fixed probability distribution F,. The
theorem has many corollaries concerning the (local asymptotic) power of tests. Consider a
sequence {FP,} of measures on (A,A). For each n=1,2,... we suppose that
X1, - - -, X, are row independent, iid P,, (A-valued) random variables. We assume that
the resulting triangular array is defined on a common probability space

(Q, 2, Prj=(A &, P X--- = (4" A", POy << #([D, 1], B 1) (1)

where A denotes Lebesgue measure. We define the empirical measure P, of the # random
variables in the n-th row of the array by

1 n
P. == éx,, )
i
and the empirical process by
X=Xy = Vn (P, — B.): ®)

We will assume that the sequence {P,} satisfies
| Vat@r )~ @ry - tmearyty—0 @

for some h € LY(P,) := {h € L,(R,): Py(h) = 0}.

The following theorem (first proved by Sheehy & Wellner (1988)) asserts that the
property F € cL1(F,) is preserved for a sequence of local alternatives satisfying (4) under
just the slight additional integrability condition (iii).

THeOREM 1. Suppose that:
(i) {P,} is a sequence (in P) satisfying (4) for some h € LY(P,).
(ii) F is a Py-Donsker class.
Then, with 8, € C,(F, pp) defined by 8,(f) = | fh dP, = Py(hf),

Cl: XC:=Vn (P, — P))=> X, + 6, under P,.
If, moreover,

(ili) F has envelope function F satisfying lim sup P,(F?) < =, then:

C2: A, :=Vn (P, — P) satisfies ||A, — 8,]lg—> 0 as n—> .
C3: Fear({P,},=0): XX~ G5,

An easy corollary of our theorem for ‘local alternatives’ {P,} to F, is the behavior of
the (local asymptotic) power of the F-Kolmogorov statistic for testing Hy: P = P, versus
H,: P # P,. Among other corollaries emphasized by Sheehy & Wellner (1988) is the local
regularity of P, as an estimator of P in {7(F).

CoroLLARY. Suppose that hypotheses (i) and (ii) of Theorem 1 hold, and for a fixed
number 0 < o <1 that ¢, (P,) satisfies

Pr (| Gplle = co(Fo)) = a.
Then, with D, (F):= ||P, — Py||g, under the null hypothesis H,,
Pr, (Vo Da(F) = ¢o(Po)) = Pr (|| Gr,lle = ca(P) = &, (5)
and, under the sequence of local alternatives {P,}

Pt} (Vn D,(F) = c.(Py)) = Pr (IGp, + Sulle = co(B)). (6)
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Remark 1. A first result in the direction of Theorem 1 and the corollary for general
empirical processes is due to Pollard (1980), Section 6, who considered the case when F is
the collection of indicators of some class of sets C. Note that our Theorem 1 and the
corollary have a slightly different spirit than Pollard’s however: our theorem is more in
line with the spirit of Le Cam’s third lemma (see e.g. Hijek & Sidak (1967), pages
202-210, or Shorack & Wellner (1986), pages 156, 157, and 165) which asserts that
convergence under local alternatives for real valued statistics is always true if the statistics
converge jointly in law under the null hypothesis. We use contiguity theory to deduce C3
from C1 via C2, whereas Pollard (1980) reverts to a condition involving an entropy
calculated under P, to prove C3, and then obtains a result like C1 from C2 and C3.

Remark 2. It is interesting to note that the conclusion C1 always holds for a Donsker
class F under local alternatives {P,} satisfying (4). The additional integrability hypothesis
(iii) is only used to replace F, by P, in the centering and thereby to argue that C1 implies
C3 by way of C2.

Proof of Theorem 1. First we prove that (i) and (ii) imply C1. The following argument
relies on an extension of Le Cam’s third lemma to the Hoffmann—Jgrgensen weak
convergence theory established in Van der Vaart and Wellner (1990).

First note that (4) implies that {Pr, } is contiguous to {Pr, } by Le Cam’s first lemma:
(4) implies that A, :=log [T}, (p./po)(X,) satisfies

(@) Ao (57 2 h00) = 18,0 = 0 (1),

and hence that A,—, N(—0°/2, ¢%) under P, with o* = Py(h?).

Now consider (X, A,) for n=1,2, ... as elements of the product space /*(F) X R
equipped with the metric d given by d((x, r), (¥, 5)) := [|[x — y||e v arctan |r —s|. Since
Fectt(P), X0=>Xo~Gp, in {*(F) under P, and {X]} is tight under P,. Since
A, >A~N(—d%/2, 6®), under P,, it follows from Lemma 1.5 of Van der Vaart &
Wellner (1990) that {(, A,)} is jointly tight under P,. Now for feF we have
OCUf), An) > Nolu, £) under B, with u=(0, —0?/2) and Z=(o;) given by o, =
Varg (f), 0= Po(h®) = Varp (h), and 0y, = 05 = Po(fh) = Covp, (f, h) (recall that
Py(h)=0), and similarly for all the finite dimensional laws. Thus it follows that under F,
we have (X2, A,) = (X, Xo(h) — Py(h?)) := (X, A). By Le Cam’s third lemma (for the
Hoffmann—Jgrgensen weak convergence theory; see Van der Vaart & Wellner (1990),
lemma 1.6), it follows that X, = (some Borel measurable Z) under P, and

P(Z € B) = E1,(X)e™.

By standard calculations with the finite-dimensional laws, this implies X¢=>X, + 8, under
P, where 8, is as defined in C1, and this proves C1.

Now we prove C2. This goes along the lines of Lemma 5.21 of Van der Vaart (1988);
we give the details for completeness. Define u,, p,, po, S, and s, by w,:=P, + B,
p.i=dP,ldu.; s, :=\p,, po:=dPydpu,, and so:=Vp,. Then for feF and {P,)}
satisfying (4),

A = 841 = [ £V (50 = 50) = $hs0) 5.+ 30) it

®) +4 [ s, = suysu du
= A1) + B(f)
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where
© api<(2[rar +2 [an)
A V8 6= 50—t )
< {2P.(F?) + 2Ry(F?)}*
- { f [Vn (dPL— dP}) — 1k dP?)}Z}%
(d) —0 uniformlyin feF as n—,

by hypotheses (i) and (iii). Furthermore,

©) BN |[  fhstsn—so)

f1=ntt

t U hsof (5, —50) du,
Ifl=nt
1

= {rﬁ J h*dP, f (5, — 50)* du,,}
+ { P L o) (P (F?) + Po(F))}
(0 —0+0=0 uniformlyin feF as n—x

since Py(h*) < and by hypotheses (i) and (iii). Combining (b)—(f) yields C2.
By writing X" =3’ — Va (P, — B,), Cl and C2 together yield C3. O

IIl.3 Pattern Recognition; Clustering ; Classification

This subsection overlaps substantially with the regression and density function
estimation material in Section II.1. Statistical problems in pattern recognition and
classification clearly motivated the key work of Vapnik & Chervonenkis (1971), and this
is reflected in the books by Vapnik & Chervonenkis (1974) and Vapnik (1982). We have
already briefly mentioned the work on Classification and Regression Trees by Breiman,
Friedman, Olshen & Stone (1984), in connection with the inequalities and ratio type limit
theorems of Alexander (1987a) and Pollard (1987). Most of the applications of empirical
process theory to date in this general area concern consistency results. A notable and
striking exception to this (which proves the rule!) is the asymptotic distribution theory
obtained by Pollard (1982a) of the cluster centers of MacQueen’s (1967) k-means
clustering method.

Sheehy (1988) established consistency of a clustering method based on Kullback—
Leibler distances.

Empirical process theory and Vapnik—Chervonenkis classes have also begun to appear
in the study of ‘neural networks’; see e.g. Baum (1988), Blumer, Ehrenfeucht, Haussler
& Warmuth (1989), Barron (1989), and White (1990). The neural nets methods deserve
to be compared more closely with alternative methods from statistics such as projection
pursuit regression as mentioned in Section III.1 (Diaconis & Freedman (1984), Huber
(1985)).

Considerable scope remains for the application of empirical process methods in this
interesting area of statistics, and we cannot really do this large field justice here.
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IIf. 4 The Delta Method

The ‘delta-method’ is a time-honored tool in large sample theory in statistics with many
uses, with many of the classical applications being connected with variance stabilizing
transformations: for example, if X;, ..., X, are i.i.d. Bernoulli(p), then Vr (5, — p) :=
Van (X, —p)—.N(@O, p(1—p)) by the DeMoivre—Laplace central limit theorem, and,
with ¢(x) := 2 arcsin (Vx) it follows by the elementary version of the delta method that

Vn (¢(B.) = 9(2)) =4 $(P)N(O, p(1 - p)) = N(0, 1),

(It seems to be less well-known that the same is true with ¢ replaced by ¢(x):=
arcsin (2x — 1); of course the range of ¢ is quite different than the range of ¢.)

The delta-method—in connection with empirical processes—is currently enjoying a
revival, due in large part to the recent paper by Gill (1989), which builds on the earlier
work of Reeds (1976). The importance of these developments is that they permit fairly
direct and straightforward treatments of the asymptotic theory of non-linear functionals ¢
of the empirical measure P, in a clean and intuitive way. We now give a simple
generalization of Gill’s (1989) theorem 1.

Suppose that P < [*(F) is a subset of all the probability measures M on (A, A), and that
P is large enough to contain all the empirical measures P,,. Consider ¢ : P— B where B is
a Banach space. Then ¢ is Hadamard differentiable or compactly differentiable at P € P if
there is a continuous linear function ¢ :/*(F)— B such that, for any sequence of numbers
g,— 0 and any sequence {A,} c !”(F) with {P +¢,A,} =P and ||A, — A||g— 0 for some
A e I"(F)

¢'(P ot En&n) S ¢(P)

8”
Furthermore, ¢ is Fréchet differentiable at P € P = I"(F) if
‘p(Pn) N ¢(P) Il q}(Pn e P) =0(”PH _P”F)

for any sequence {F,} c P. Here is a simple example of a function ¢ defined on pairs of
probability distributions (or, in this case, df’s) which is compactly differentiable with
respect to the familiar supremum or uniform norm, but which is nor Fréchet differentiable
with respect to this norm.

—¢(A) as n—o in B. (1

Example 1. For distribution functions F, G on R, let define ¢ by ¢(F, G)= [ FdG =
P(X<Y) where X ~F, Y ~G are independent. Let ||F — E,|| := sup, |F(x) — F(x)| :=
|F — F|lg where F:={1._..,:t € R}. Then ¢(F, G) is Hadamard differentiable at every
pair of df’s (F, G) with derivative ¢ given by

#e. )= | @dG - | par )

See Gill (1989), lemma 3 for a proof of this. But ¢ is nor Fréchet differentiable with
respect to ||-||-. If ¢ were Fréchet-differentiable, it would have to be true that

¢(E, G,) = ¢(F, G) = ¢(E, = F, G, = G) = o(|E, = Fll. v IG, = Gll.)  (3)

for every sequence of pairs of df’s {(F,, G,)} with ||E, — F|l.—0 and ||G, — G||.— 0. We
now exhibit a sequence {(F,, G,)} for which (3) fails.
By straightforward algebra using (2),

8(F, G)—9(F, G) = $(E.~F, G,-G)= [ -G, -G). @
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! at

Consider the df’s F, and G, corresponding to the measures which put masses n~
0,...,(n—1)/nand 1/n, . .., 1 respectively:
n—1 n
F;l =n_'l E 6k.-’n) a[ld Gn = n_l 6!0"?1'
k=0 k=1
Both of these sequences of df's converge uniformly to the uniform (0, 1) df F(x):=x :=
G(x), and furthermore ||F, — F||. = ||G, — G||l.= 1/n. Now

L

(5~ Fix)= 21 (g _x)l[(k—l)m.km)(x),

k=

(E,~ F)(1)=0, and
(G, — G)x) = (F, - F)(x) "%ﬁé (

with (G, — G)(1) = 0. Thus, separating G, — G into its discrete and continuous parts,

J(F,, — F)d(G, — G) zél (F,— F)3—1+n J:m (%ht){—dr}
By o L
nn nn 2\n

1 1
==l
Fo(||F, — Fllo. v |G, — Gll|=) = 0(1/n).

Hence (3) fails and ¢ is not Fréchet-differentiable. [This example was suggested to me by
R. M. Dudley in Seattle in February, 1990.]

Dudley (1990b) has found ‘bigger’ norms for which this ¢ is almost Fréchet
differentiable. As far as I know however, ¢(F, G)= [ FdG has not yet been shown to be
Fréchet differentiable with respect to any norm compatible with the empirical measures
P,, and Q, (or df’s F, and G,). Here we choose to focus on compact differentiability and
refinements thereof.

A particular refinement of Hadamard differentiability which is very useful is as follows:
since the limiting P-Brownian bridge process Gp of the empirical process X, is in C,,(F, pp)
with probability one for any Fe CLT(P), we say that ¢ is Hadamard differentiable
tangentially to C,(F, pp) at P € P if there is a continuous linear function ¢ :C,(F, pp)— B
so that (1) holds for any sequence {A,} such that ||A, — Ay|lg— 0 with Ag e C,(F, pp).
Then a nice version of the delta-method for nonlinear functions ¢ of P, is given by the
following theorem:

k=
n

= -’C) 1[(k—1)fn,k.-’n)(x)

THEOREM. Suppose that:
(i) ¢ is Hadamard differentiable tangentially to C,(F, pp) at P € P.
(ii) FecLt(P): Vn (P, — P)=>X, (where X, takes values in C(F, pp) by definition of
F € cL1(P)). '

Then
Vi (@(P,) — ¢(P)) = $(Xo). (5)
Proof. Define g,,:P cI*(F)— B by
8n(x) = Vn (¢(P +n*x) — ¢(P))1p(P +n"*x).
Then, by (i), for {A,} in I”(F) with ||A, — Aollz— 0 and A, € C.(F, pp),
8n(8,) = B(Ag) == g(Ay).
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Thus by the extended continuous mapping theorem in the Hoffmann-Jergensen weak
convergence theory (see Van der Vaart & Wellner (1990), proposition 1.5.A), £,(X,)=>
g() = ¢(X,), and hence (5) holds. O

The immediate corollary for the classical Mann—Whitney form of the Wilcoxon statistic
given in Example 1 is:

CoroLLARY 1. If Xy, ..., X, are itd F and independent of Yy, . . ., Y,, which are iid G,
and Ay :=m/N:=m/[(m+n)— A (0, 1), then

\/%{j k. dG,,—deG} = %{tﬁ(iﬁm G,) = ¢(F, G);

~ V=7 [U(F) 4G - V2 [ W(G) aF

~ N(0, 05(F, G))
where U and V are two independent Brownian bridge processes and
o5(F, G) = (1 —A) Var (G(X)) + A Var (F(Y)).

This is, of course, well-known, and can be proved in a variety of other ways (by
treating ¢(F,,, G,) as a two-sample U-statistic, or as a rank statistic, or by a direct
analysis), but the proof via the differentiable functional approach seems instructive and
useful.

Other interesting applications of the delta method have recently been given by: Griibel
(1988) (who studies the asymptotic theory of the length of the shorth); Pons & Turckheim
(1989) (who study bivariate hazard estimators and tests of independence based thereon),
and Gill & Johansen (1990) (who prove Hadamard differentiability of the ‘product
integral’). Gill, Van der Laan, & Wellner (1992) give applications to several problems
connected with estimation of bivariate distributions. Arcones & Giné (1990) study the
delta method in connection with M-estimation and related methods of Pollard (1985).
Van der Vaart (1991b) shows that Hadamard differentiable functions preserve asymptotic
efficiency properties of estimators. '

IIL.5 Bootstrapping empirical measures

As mentioned in Section III.2 on testing, the bootstrap methods introduced by Efron
(1979), (1982) have opened up many possibilities for inference that were previously
intractable or unapproachable by other methods. Efron’s basic idea of sampling from the
empirical measure [P, is intuitively appealing and relatively easy to explain to non-
statisticians. To discuss recent progress in this area we need some further notation and

terminology.

To discuss bootstrapping, we need to include the ‘omega’ in our notation. Thus we
write P7 for the empirical measure PP, for the fixed data X (w), Xy(®@), ..., X, (@), .. ..
If X7, X%, ...,X? is a ‘bootstrap sample’ from PY, then P} :=n"'L{ 64 is the

bootstrap empirical measure and X = Vn (P — PY) is the bootstrap empirical process. It
is important to note that since P, is discrete, sampling from [P, with replacement just
yields a multinomial distribution; and hence if M, ~Mult,(n;(1/n, ..., 1/n)) is inde-

pendent of X, ..., X, then we can think of the bootstrap empirical process X* as

1 1
S = (_ O — :;*):— M, — 1)0x (w)
e '\/H n% M,, (")xr(‘) P Vﬁzl( ni ) Xilw)
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The first limit theorems justifying the bootstrap for empirical distribution functions in the
case A =R were established by Bickel & Freedman (1981). Gaenssler (1986) extended
their results for Efron’s bootstrap to the empirical process indexed by Vapnik—
Chervonenkis classes of sets. Meanwhile, Rubin (1981) proposed a ‘Bayesian bootstrap’
in which the weights or multipliers M,;/n are replaced by D,;, i=1, ..., n where {D,;}
are the spacings from n —1 independent Uniform(0, 1) random variables. Lo (1987)
established asymptotic theory for Rubin’s Bayesian bootstrap. Both of these bootstrap
methods are special cases of a general exchangeably weighted bootstrap based on an
exchangeable random vector W, = (W,,, . .. , W,,,) with X7 W, =1, W,;=0. Then we call

n
w0

[FDH i 24 H'/;1.‘(5)(,-[0;)
F=1

I

the general exchangeable bootstrap empirical measure and
3 i) 1 - 3
XY :=Vn (PY - P2) =T zl (nW,; — 1)8x,ur)

is the general exchangeable bootstrap empirical process.

Inspired by a ‘multiplier central limit theorem’ of Ledoux & Talagrand (1988)
(apparently J. Zinn was also involved in the proof thereof), Giné & Zinn (1990) proved
the following elegant characterization of the consistency of Efron’s bootstrap:

TueoreM. (Giné & Zinn, 1990). Suppose that F € M(P) (a measurability condition).
1. Then the following are equivalent:
A. FecLt(P) and P(F?) <.
B. X{=>X§ ~ G, for P*-a.e. w.
II. Moreover, the following are also equivalent:
C. FecLt(P).
D. X =>X§ ~ G, in P*-probability.

For a precise formulation of D, see Giné & Zinn (1990). The multiplier cLt of Ledoux
and Talagrand asserts something very much akin to the equivalence of A and B in part I,
but with the vector of multipliers M,; — 1 replaced by a vector of iid random variables
Y:, Y,, . . . satisfying the L, ; condition

JwVP(|K| >t) dtf <oo.

Giné and Zinn prove their theorem by symmetrization and Poissonization to get
domination of the (i.e. Efron’s) bootstrap empirical process by a process with iid
symmetrized Poisson multipliers which easily satisfy the L, condition. For a variant of
their approach which avoids symmetrization, see Klaassen & Wellner (1991).

Praestgaard (1990) treats exchangeable weights of the form W, = Y;/¥1 Y, for nonnega-
tive iid Y;’s (note that standard exponential ¥’s correspond to the Rubin’s Bayesian
bootstrap by way of standard equivalences in law for uniform spacings and exponentials
divided by their sums) by fairly direct use of the Ledoux & Talagrand (1988) multiplier
cLT. In his U.W. Ph.D. dissertation, Praestgaard (1991) treats the general exchangeable
weighted bootstrap empirical process X)) and obtains an analogue of the Giné and Zinn
theorem for Efron’s bootstrap under an appropriate L, condition on the W,’s; see
Praestgaard & Wellner (1992). Praestgaard’s (1991) theorem contains all the known limit
theorems for bootstrapping general empirical processes (of which I am aware) and gives
asymptotic justification of many new exchangeable bootstraps as well.
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Beran & Millar (1986), (1987), (1989) give several applications of bootstrap methods to
testing, estimation, and the construction of confidence sets. Their joint work with Le Cam
(Beran, Le Cam & Millar (1987)) takes explicit account of the extra randomness
introduced in the implementation of bootstrap methods. As mentioned in Section II1.2,
Romano (1988), (1989) studies implementations of nonparametric tests based on both
bootstrap and permutation ideas. Pons & Turkheim (1989) apply bootstrap methods to
problems of estimating a bivariate hazard function in the presence of right censoring.

In an extension of Bickel & Freedman (1981), Gill (1989) has developed bootstrap
methods in connection with the delta method. His results have been further extended to
general empirical processes by Sheehy & Wellner (1988), Pons & Turkheim (1989), and
Arcones & Giné (1990).

Olshen, Biden, Wyatt & Sutherland (1989) give a nontrivial application of bootstrap
methods to “gait analysis.” (As mentioned in the introduction, this paper is an excellent
example of a paper with a real data number of 0!) This application motivated and was
made possible as a result of the development of new Vapnik—Chervonenkis classes of sets
by Stengle & Yukich (1989).

We should also mention the important work on refined bootstrap limit theory for
one-dimensional empirical and quantile processes by Csorgé & Mason (1989) who show
how their methods yield useful asymptotic theory for bootstrapping many other ‘empirical
functions’ including mean residual life, total time on test, and the Lorenz curve and its
inverse. They also give an interesting re-analysis of the von Bortkiewitz yearly deaths by
horsekicks data (and hence their paper also receives a real data number of 0!).

1.6 Miscellaneous

There have been a number of recent developments in which empirical process methods
or extensions thereof are used to treat slightly nonstandard problems arising in
applications. I will list only a few of these here, with the selection governed primarily by
my estimate of potential for further development and applications. They will be grouped
under the loose heading of nonstandard asymptotics, U-statistics, and dimension
asymplotics. :

Perhaps the most recent work on nonstandard asymptotic theory with clear ties to
empirical process theory is that of Kim & Pollard (1990). They focus on problems with ‘a
sharp edge effect’ which leads to n'” normalizations to obtain limit distributions rather
than the usual (smooth case) normalizations of n?. By systematic use of empirical process
methods, they redevelop known results for the shorth estimator of location and the
Grenander estimator of a monotone density studied by Groeneboom (1985), and go on to
obtain new results concerning mode estimation in higher dimensions and least median of
squares estimates in econometrics. It would be interesting to see their methods applied to
the interval censoring models studied by Groeneboom (1991)—which involve n'” and
(n log n)"® normalizations. For an important alternative way of distinguishing standard
ni-situations from nonstandard situations, see Van der Vaart (1991a).

Some further developments using similar tools are due to Nolan: Nolan (1989a) applies
empirical process tools to multivariate trimming; Nolan (1989b) studies analogs of the
shorth on the spheres $7; and Nolan (1989¢) examines a particular multivariate analog of
the median: the point of ‘greatest depth’ with respect to the empirical measure.

Work on the asymptotic theory of U-statistics and U-statistics processes has proceeded
rapidly, with attendant applications: see for example Nolan & Pollard (1987), (1988), and
Arcones & Giné (1991). The latter give an interesting application to Liu’s (1990)
‘simplicial depth process’.
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Problems involving increasing dimension of the underlying sample space or increasing
numbers of parameters with sample size have been arising more frequently in statistics in
recent years: see e.g. Diaconis & Freedman (1984) for an example of the former, and
Portnoy (1988), Sauermann (1989), and the references contained therein for the latter. As
mentioned in Section III.1, Diaconis & Freedman (1984) made good use of one of the
Vapnik—Chervonenkis (1971) inequality to obtain consistency results. Several of the
suggestions of Pyke (1991) concerning exchangeable models seem closely related. The
literature concerned with increasing dimensionality of the parameter space has not yet
interacted substantially with empirical process theory, but with a few exceptions: see e.g.
Donoho & Liu (1991) (who make good use of ‘chaining arguments’), Birgé (1983), and
Le Cam (1973). I predict that a great unification and simplification of these problems will
result from the application of empirical process ideas and methods in the next few years.
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Résumé

Nous résumons les applications récentes de la théorie des processus empiriques, en particulier les processus
empiriques indexés par des ensembles et des fonctions. Nous commende la théorie des processus empiriques.
Ensuite, nous décrivons les applications de cette théorie 4 I'estimation (données censurées et tronquées,
échantillonage biasé, régression et estimation de la densité, méthodes de distance minimale), aux test
d’hypothéses (tests classiques d'ajustement, tests de distance minimale, tests de permutations et tests
bootstrap, alternatives locales et puissance), reconnaissance des formes, classification, analyse discrimminante,
bootstrap des mesures empiriques, et la méthode delta. Nous présentons un nouveau théoréme sur le
comportement asymptotique des processus empiriques sous des alternatives locales.
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