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1. INTRODUCTION. Our starting point is the following well-known theorem from
probability: Let X1, . . . , Xn be independent random variables with finite second mo-
ments, and let Sn = ∑n

i=1 Xi . Then

Var(Sn) =
n∑

i=1

Var(Xi ). (1)

If we suppose that each Xi has mean zero, EXi = 0, then (1) becomes

ES2
n =

n∑
i=1

EX 2
i . (2)

This equality generalizes easily to vectors in a Hilbert space H with inner product
〈·, ·〉: If the Xi ’s are independent with values in H such that EXi = 0 and E‖Xi‖2 <

∞, then ‖Sn‖2 = 〈Sn, Sn〉 = ∑n
i, j=1〈Xi , X j 〉, and since E〈Xi , X j 〉 = 0 for i �= j by

independence,

E‖Sn‖2 =
n∑

i, j=1

E〈Xi , X j 〉 =
n∑

i=1

E‖Xi‖2. (3)

What happens if the Xi ’s take values in a (real) Banach space (B, ‖ · ‖)? In such
cases, in particular when the square of the norm ‖ · ‖ is not given by an inner product,
we are aiming at inequalities of the following type: Let X1, X2, . . . , Xn be indepen-
dent random vectors with values in (B, ‖ · ‖) with EXi = 0 and E‖Xi‖2 < ∞. With
Sn := ∑n

i=1 Xi we want to show that

E‖Sn‖2 ≤ K
n∑

i=1

E‖Xi‖2 (4)

for some constant K depending only on (B, ‖ · ‖).
For statistical applications, the case (B, ‖ · ‖) = �d

r := (Rd, ‖ · ‖r ) for some r ∈
[1, ∞] is of particular interest. Here the r -norm of a vector x ∈ R

d is defined as

‖x‖r :=

⎧⎪⎪⎨⎪⎪⎩
( d∑

j=1

|x j |r
)1/r

if 1 ≤ r < ∞,

max
1≤ j≤d

|x j | if r = ∞.

(5)

An obvious question is how the exponent r and the dimension d enter an inequality of
type (4). The influence of the dimension d is crucial, since current statistical research
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often involves small or moderate “sample size” n (the number of independent units),
say on the order of 102 or 104, while the number d of items measured for each inde-
pendent unit is large, say on the order of 106 or 107. The following two examples for
the random vectors Xi provide lower bounds for the constant K in (4):

Example 1.1 (A lower bound in �d
r ). Let b1, b2, . . . , bd denote the standard basis of

R
d , and let ε1, ε2, . . . , εd be independent Rademacher variables, i.e., random variables

taking the values +1 and −1 each with probability 1/2. Define Xi := εi bi for 1 ≤ i ≤
n := d. Then EXi = 0, ‖Xi‖2

r = 1, and ‖Sn‖2
r = d2/r = d2/r−1

∑n
i=1 ‖Xi‖2

r . Thus any
candidate for K in (4) has to satisfy K ≥ d2/r−1.

Example 1.2 (A lower bound in �d
∞). Let X1, X2, X3, . . . be independent random

vectors, each uniformly distributed on {−1, 1}d . Then EXi = 0 and ‖Xi‖∞ = 1. On
the other hand, according to the Central Limit Theorem, n−1/2Sn converges in distribu-
tion as n → ∞ to a random vector Z = (Z j )

d
j=1 with independent, standard Gaussian

components, Z j ∼ N (0, 1). Hence

sup
n≥1

E‖Sn‖2
∞∑n

i=1 E‖Xi‖2∞
= sup

n≥1
E‖n−1/2Sn‖2

∞ ≥ E‖Z‖2
∞ = E max

1≤ j≤d
Z2

j .

But it is well known that max1≤ j≤d |Z j | −
√

2 log d →p 0 as d → ∞. Thus candidates
K (d) for the constant in (4) have to satisfy

lim inf
d→∞

K (d)

2 log d
≥ 1.

At least three different methods have been developed to prove inequalities of the
form given by (4). The three approaches known to us are:

(a) deterministic inequalities for norms;
(b) probabilistic methods for Banach spaces;
(c) empirical process methods.

Approach (a) was used by Nemirovski [14] to show that in the space �d
r with d ≥ 2,

inequality (4) holds with K = C min(r, log(d)) for some universal (but unspecified)
constant C . In view of Example 1.2, this constant has the correct order of magnitude if
r = ∞. For statistical applications see Greenshtein and Ritov [7]. Approach (b) uses
special moment inequalities from probability theory on Banach spaces which involve
nonrandom vectors in B and Rademacher variables as introduced in Example 1.1.
Empirical process theory (approach (c)) in general deals with sums of independent
random elements in infinite-dimensional Banach spaces. By means of chaining ar-
guments, metric entropies, and approximation arguments, “maximal inequalities” for
such random sums are built from basic inequalities for sums of independent random
variables or finite-dimensional random vectors, in particular, “exponential inequali-
ties”; see, e.g., Dudley [4], van der Vaart and Wellner [26], Pollard [21], de la Pena
and Giné [3], or van de Geer [25].

Our main goal in this paper is to compare the inequalities resulting from these dif-
ferent approaches and to refine or improve the constants K obtainable by each method.
The remainder of this paper is organized as follows: In Section 2 we review several de-
terministic inequalities for norms and, in particular, key arguments of Nemirovski [14].
Our exposition includes explicit and improved constants. While finishing the present
paper we became aware of yet unpublished work of Nemirovski [15] and Juditsky and
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Nemirovski [12] who also improved some inequalities of [14]. Rio [22] uses similar
methods in a different context. In Section 3 we present inequalities of type (4) which
follow from type and cotype inequalities developed in probability theory on Banach
spaces. In addition, we provide and utilize a new type inequality for the normed space
�d

∞. To do so we utilize, among other tools, exponential inequalities of Hoeffding [9]
and Pinelis [17]. In Section 4 we follow approach (c) and treat �d

∞ by means of a
truncation argument and Bernstein’s exponential inequality. Finally, in Section 5 we
compare the inequalities resulting from these three approaches. In that section we re-
lax the assumption that EXi = 0 for a more thorough understanding of the differences
between the three approaches. Most proofs are deferred to Section 6.

2. NEMIROVSKI’S APPROACH: DETERMINISTIC INEQUALITIES FOR
NORMS. In this section we review and refine inequalities of type (4) based on deter-
ministic inequalities for norms. The considerations for (B, ‖ · ‖) = �d

r follow closely
the arguments of [14].

2.1. Some Inequalities for R
d and the Norms ‖ · ‖r. Throughout this subsection let

B = R
d , equipped with one of the norms ‖ · ‖r defined in (5). For x ∈ R

d we think of
x as a column vector and write x
 for the corresponding row vector. Thus xx
 is a
d × d matrix with entries xi x j for i, j ∈ {1, . . . , d}.

A first solution. Recall that for any x ∈ R
d ,

‖x‖r ≤ ‖x‖q ≤ d1/q−1/r‖x‖r for 1 ≤ q < r ≤ ∞. (6)

Moreover, as mentioned before,

E‖Sn‖2
2 =

n∑
i=1

E‖Xi‖2
2.

Thus for 1 ≤ q < 2,

E‖Sn‖2
q ≤ (d1/q−1/2)2

E‖Sn‖2
2 = d2/q−1

n∑
i=1

E‖Xi‖2
2 ≤ d2/q−1

n∑
i=1

E‖Xi‖2
q ,

whereas for 2 < r ≤ ∞,

E‖Sn‖2
r ≤ E‖Sn‖2

2 =
n∑

i=1

E‖Xi‖2
2 ≤ d1−2/r

n∑
i=1

E‖Xi‖2
r .

Thus we may conclude that (4) holds with

K = K̃ (d, r) :=
{

d2/r−1 if 1 ≤ r ≤ 2,

d1−2/r if 2 ≤ r ≤ ∞.

Example 1.1 shows that this constant K̃ (d, r) is indeed optimal for 1 ≤ r ≤ 2.

A refinement for r > 2. In what follows we shall replace K̃ (d, r) = d1−2/r with
substantially smaller constants. The main ingredient is the following result:
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Lemma 2.1. For arbitrary fixed r ∈ [2, ∞) and x ∈ R
d \ {0} let

h(x) := 2‖x‖2−r
r

(|xi |r−2xi

)d

i=1

while h(0) := 0. Then for arbitrary x, y ∈ R
d ,

‖x‖2
r + h(x)
y ≤ ‖x + y‖2

r ≤ ‖x‖2
r + h(x)
y + (r − 1)‖y‖2

r .

[16] and [14] stated Lemma 2.1 with the factor r − 1 on the right side replaced with
Cr for some (absolute) constant C > 1. Lemma 2.1, which is a special case of the
more general Lemma 2.4 in the next subsection, may be applied to the partial sums
S0 := 0 and Sk := ∑k

i=1 Xi , 1 ≤ k ≤ n, to show that for 2 ≤ r < ∞,

E‖Sk‖2
r ≤ E

(‖Sk−1‖2
r + h(Sk−1)


 Xk + (r − 1)‖Xk‖2
r

)
= E‖Sk−1‖2

r + Eh(Sk−1)


EXk + (r − 1)E‖Xk‖2

r

= E‖Sk−1‖2
r + (r − 1)E‖Xk‖2

r ,

and inductively we obtain a second candidate for K in (4):

E‖Sn‖2
r ≤ (r − 1)

n∑
i=1

E‖Xi‖2
r for 2 ≤ r < ∞.

Finally, we apply (6) again: For 2 ≤ q ≤ r ≤ ∞ with q < ∞,

E‖Sn‖2
r ≤ E‖Sn‖2

q ≤ (q − 1)

n∑
i=1

E‖Xi‖2
q ≤ (q − 1)d2/q−2/r

n∑
i=1

E‖Xi‖2
r .

This inequality entails our first (q = 2) and second (q = r < ∞) preliminary result,
and we arrive at the following refinement:

Theorem 2.2. For arbitrary r ∈ [2, ∞],

E‖Sn‖2
r ≤ KNem(d, r)

n∑
i=1

E‖Xi‖2
r

with

KNem(d, r) := inf
q∈[2,r ]∩R

(q − 1)d2/q−2/r .

This constant KNem(d, r) satisfies the (in)equalities

KNem(d, r)

⎧⎨⎩= d1−2/r if d ≤ 7
≤ r − 1
≤ 2e log d − e if d ≥ 3,

and

KNem(d, ∞) ≥ 2e log d − 3e.
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Corollary 2.3. In the case (B, ‖ · ‖) = �d
∞ with d ≥ 3, inequality (4) holds with con-

stant K = 2e log d − e. If the Xi ’s are also identically distributed, then

E‖n−1/2Sn‖2
∞ ≤ (2e log d − e)E‖X1‖2

∞.

Note that

lim
d→∞

KNem(d, ∞)

2 log d
= lim

d→∞
2e log d − e

2 log d
= e.

Thus Example 1.2 entails that for large dimension d, the constants KNem(d, ∞) and
2e log d − e are optimal up to a factor close to e

.= 2.7183.

2.2. Arbitrary Lr-spaces. Lemma 2.1 is a special case of a more general inequality:
Let (T , �, μ) be a σ -finite measure space, and for 1 ≤ r < ∞ let Lr (μ) be the set of
all measurable functions f : T → R with finite norm

‖ f ‖r :=
(∫

| f |r dμ
)1/r

,

where two such functions are viewed as equivalent if they coincide almost everywhere
with respect to μ. In what follows we investigate the functional

f �→ V ( f ) := ‖ f ‖2
r

on Lr (μ). Note that (Rd, ‖ · ‖r ) corresponds to (Lr (μ), ‖ · ‖r ) if we take T =
{1, 2, . . . , d} equipped with counting measure μ.

Note that V (·) is convex; thus for fixed f, g ∈ Lr (μ), the function

v(t) := V ( f + tg) = ‖ f + tg‖2
r , t ∈ R

is convex with derivative

v′(t) = v1−r/2(t)
∫

2| f + tg|r−2( f + tg)g dμ.

By convexity of v, the directional derivative DV ( f, g) := v′(0) satisfies

DV ( f, g) ≤ v(1) − v(0) = V ( f + g) − V ( f ).

This proves the lower bound in the following lemma. We will prove the upper bound
in Section 6 by computation of v′′ and application of Hölder’s inequality.

Lemma 2.4. Let r ≥ 2. Then for arbitrary f, g ∈ Lr (μ),

DV ( f, g) =
∫

h( f )g dμ with h( f ) := 2‖ f ‖2−r
r | f |r−2 f ∈ Lq(μ),

where q := r/(r − 1). Moreover,

V ( f ) + DV ( f, g) ≤ V ( f + g) ≤ V ( f ) + DV ( f, g) + (r − 1)V (g).
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Remark 2.5. The upper bound for V ( f + g) is sharp in the following sense: Suppose
that μ(T ) < ∞, and let f, go : T → R be measurable such that | f | ≡ |go| ≡ 1 and∫

f go dμ = 0. Then our proof of Lemma 2.4 reveals that

V ( f + tgo) − V ( f ) − DV ( f, tgo)

V (tgo)
→ r − 1 as t → 0.

Remark 2.6. If r = 2, Lemma 2.4 is well known and easily verified. Here the upper
bound for V ( f + g) is even an equality, i.e.,

V ( f + g) = V ( f ) + DV ( f, g) + V (g).

Remark 2.7. Lemma 2.4 improves on an inequality of [16]. After writing this paper
we realized Lemma 2.4 is also proved by Pinelis [18]; see his (2.2) and Proposition
2.1, page 1680.

Lemma 2.4 leads directly to the following result:

Corollary 2.8. In the case B = Lr (μ) for r ≥ 2, inequality (4) is satisfied with K =
r − 1.

2.3. A Connection to Geometrical Functional Analysis. For any Banach space
(B, ‖ · ‖) and Hilbert space (H, 〈·, ·〉, ‖ · ‖), their Banach-Mazur distance D(B, H) is
defined to be the infimum of

‖T ‖ · ‖T −1‖
over all linear isomorphisms T : B → H, where ‖T ‖ and ‖T −1‖ denote the usual
operator norms

‖T ‖ := sup
{‖T x‖ : x ∈ B, ‖x‖ ≤ 1

}
,

‖T −1‖ := sup
{‖T −1 y‖ : y ∈ H, ‖y‖ ≤ 1

}
.

(If no such bijection exists, one defines D(B, H) := ∞.) Given such a bijection T ,

E‖Sn‖2 ≤ ‖T −1‖2
E‖T Sn‖2

= ‖T −1‖2
n∑

i=1

E‖T Xi‖2

≤ ‖T −1‖2‖T ‖2
n∑

i=1

E‖Xi‖2.

This leads to the following observation:

Corollary 2.9. For any Banach space (B, ‖ · ‖) and any Hilbert space (H, 〈, ·, ·, 〉,
‖ · ‖) with finite Banach-Mazur distance D(B, H), inequality (4) is satisfied with K =
D(B, H)2.

A famous result from geometrical functional analysis is John’s theorem (see [24],
[11]) for finite-dimensional normed spaces. It entails that D(B, �

dim(B)

2 ) ≤ √
dim(B).

This entails the following fact:
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Corollary 2.10. For any normed space (B, ‖ · ‖) with finite dimension, inequality (4)

is satisfied with K = dim(B).

Note that Example 1.1 with r = 1 provides an example where the constant K =
dim(B) is optimal.

3. THE PROBABILISTIC APPROACH: TYPE AND
COTYPE INEQUALITIES.

3.1. Rademacher Type and Cotype Inequalities. Let {εi } denote a sequence of in-
dependent Rademacher random variables. Let 1 ≤ p < ∞. A Banach space B with
norm ‖ · ‖ is said to be of (Rademacher) type p if there is a constant Tp such that for
all finite sequences {xi } in B,

E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥p

≤ T p
p

n∑
i=1

‖xi‖p.

Similarly, for 1 ≤ q < ∞, B is of (Rademacher) cotype q if there is a constant Cq such
that for all finite sequences {xi } in B,

E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥q

≥ C−q
q

n∑
i=1

‖xi‖q .

Ledoux and Talagrand [13, p. 247] note that type and cotype properties appear as dual
notions: if a Banach space B is of type p, its dual space B

′ is of cotype q = p/(p − 1).
One of the basic results concerning Banach spaces with type p and cotype q is the

following proposition:

Proposition 3.1. [13, Proposition 9.11, p. 248]. If B is of type p ≥ 1 with constant
Tp, then

E‖Sn‖p ≤ (2Tp)
p

n∑
i=1

E‖Xi‖p.

If B is of cotype q ≥ 1 with constant Cq , then

E‖Sn‖q ≥ (2Cq)
−q

n∑
i=1

E‖Xi‖q .

As shown in [13, p. 27], the Banach space Lr (μ) with 1 ≤ r < ∞ (cf. Section 2.2)
is of type min(r, 2). Similarly, Lr (μ) is cotype max(r, 2). If r ≥ 2 = p, explicit values
for the constant Tp in Proposition 3.1 can be obtained from the optimal constants in
Khintchine’s inequalities due to Haagerup [8].

Lemma 3.2. For 2 ≤ r < ∞, the space Lr (μ) is of type 2 with constant T2 = Br ,
where

Br := 21/2

(
�((r + 1)/2)√

π

)1/r

.
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Corollary 3.3. For B = Lr (μ), 2 ≤ r < ∞, inequality (4) is satisfied with K = 4B2
r .

Note that B2 = 1 and

Br√
r

→ 1√
e

as r → ∞.

Thus for large values of r , the conclusion of Corollary 3.3 is weaker than that of
Corollary 2.8.

3.2. The Space �d
∞. The preceding results apply only to r < ∞, so the special space

�d
∞ requires different arguments. First we deduce a new type inequality based on

Hoeffding’s [9] exponential inequality: if ε1, ε2, . . . , εn are independent Rademacher
random variables, a1, a2, . . . , an are real numbers, and v2 := ∑n

i=1 a2
i , then the tail

probabilities of the random variable
∣∣∑n

i=1 aiεi

∣∣ may be bounded as follows:

P

(∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣ ≥ z

)
≤ 2 exp

(
− z2

2v2

)
, z ≥ 0. (7)

At the heart of these tail bounds is the following exponential moment bound:

E exp

(
t

n∑
i=1

aiεi

)
≤ exp(t2v2/2), t ∈ R. (8)

From the latter bound we shall deduce the following type inequality in Section 6:

Lemma 3.4. The space �d
∞ is of type 2 with constant

√
2 log(2d).

Using this upper bound together with Proposition 3.1 yields another Nemirovski-
type inequality:

Corollary 3.5. For (B, ‖ · ‖) = �d
∞, inequality (4) is satisfied with K = KType2(d, ∞)

= 8 log(2d).

Refinements. Let T2(�
d
∞) be the optimal type-2 constant for the space �d

∞. So far we
know that T2(�

d
∞) ≤ √

2 log(2d). Moreover, by a modification of Example 1.2 one can
show that

T2(�
d
∞) ≥ cd :=

√
E max

1≤ j≤d
Z2

j . (9)

The constants cd can be expressed or bounded in terms of the distribution function �

of N (0, 1), i.e., �(z) = ∫ z
−∞ φ(x) dx with φ(x) = exp(−x2/2)/

√
2π . Namely, with

W := max1≤ j≤d |Z j |,

c2
d = E(W 2) = E

∫ ∞

0
2t1[t≤W ] dt =

∫ ∞

0
2tP(W ≥ t) dt,

and for any t > 0,

P(W ≥ t)

{
= 1 − P(W < t) = 1 − P(|Z1| < t)d = 1 − (2�(t) − 1)d ,

≤ dP(|Z1| ≥ t) = 2d(1 − �(t)).
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These considerations and various bounds for � will allow us to derive explicit bounds
for cd .

On the other hand, Hoeffding’s inequality (7) has been refined by Pinelis [17, 20]
as follows:

P

(∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣ ≥ z

)
≤ 2K (1 − �(z/v)), z > 0, (10)

where K satisfies 3.18 ≤ K ≤ 3.22. This will be the main ingredient for refined upper
bounds for T2(�

d
∞). The next lemma summarizes our findings:

Lemma 3.6. The constants cd and T2(�
d
∞) satisfy the following inequalities:

√
2 log d + h1(d) ≤ cd ≤

⎧⎪⎪⎨⎪⎪⎩
T2(�

d
∞) ≤ √

2 log d + h2(d), d ≥ 1√
2 log d, d ≥ 3√
2 log d + h3(d), d ≥ 1

(11)

where h2(d) ≤ 3, h2(d) becomes negative for d > 4.13795 × 1010, h3(d) becomes
negative for d ≥ 14, and h j (d) ∼ − log log d as d → ∞ for j = 1, 2, 3.

In particular, one could replace KType2(d, ∞) in Corollary 3.5 with 8 log d +
4h2(d).

4. THE EMPIRICAL PROCESS APPROACH: TRUNCATION AND BERN-
STEIN’S INEQUALITY. An alternative to Hoeffding’s exponential tail inequality
(7) is a classical exponential bound due to Bernstein (see, e.g., [2]): Let Y1, Y2, . . . , Yn

be independent random variables with mean zero such that |Yi | ≤ κ . Then for
v2 = ∑n

i=1 Var(Yi ),

P

(∣∣∣ n∑
i=1

Yi

∣∣∣ ≥ x

)
≤ 2 exp

(
− x2

2(v2 + κx/3)

)
, x > 0. (12)

We will not use this inequality itself but rather an exponential moment inequality un-
derlying its proof:

Lemma 4.1. For L > 0 define

e(L) := exp(1/L) − 1 − 1/L .

Let Y be a random variable with mean zero and variance σ 2 such that |Y | ≤ κ . Then
for any L > 0,

E exp
( Y

κL

)
≤ 1 + σ 2e(L)

κ2
≤ exp

(σ 2e(L)

κ2

)
.

With the latter exponential moment bound we can prove a moment inequality for
random vectors in R

d with bounded components:
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Lemma 4.2. Suppose that Xi = (Xi, j)
d
j=1 satisfies ‖Xi‖∞ ≤ κ , and let � be an upper

bound for max1≤ j≤d
∑n

i=1 Var(Xi, j ). Then for any L > 0,√
E‖Sn‖2∞ ≤ κL log(2d) + �L e(L)

κ
.

Now we return to our general random vectors Xi ∈ R
d with mean zero and

E‖Xi‖2
∞ < ∞. They are split into two random vectors via truncation: Xi = X (a)

i +
X (b)

i with

X (a)

i := 1[‖Xi ‖∞≤κo] Xi and X (b)

i := 1[‖Xi ‖∞>κo] Xi

for some constant κo > 0 to be specified later. Then we write Sn = An + Bn with the
centered random sums

An :=
n∑

i=1

(
X (a)

i − EX (a)

i

)
and Bn :=

n∑
i=1

(
X (b)

i − EX (b)

i

)
.

The sum An involves centered random vectors in [−2κo, 2κo]d and will be treated by
means of Lemma 4.2, while Bn will be bounded with elementary methods. Choosing
the threshold κ and the parameter L carefully yields the following theorem.

Theorem 4.3. In the case (B, ‖ · ‖) = �d
∞ for some d ≥ 1, inequality (4) holds with

K = KTrBern(d, ∞) := (
1 + 3.46

√
log(2d)

)2
.

If each of the random vectors Xi is symmetrically distributed around 0, one may even
set

K = K (symm)

TrBern (d, ∞) = (
1 + 2.9

√
log(2d)

)2
.

5. COMPARISONS. In this section we compare the three approaches just described
for the space �d

∞. As to the random vectors Xi , we broaden our point of view and
consider three different cases:

General case: The random vectors Xi are independent with E‖Xi‖2
∞ < ∞ for all i .

Centered case: In addition, EXi = 0 for all i .
Symmetric case: In addition, Xi is symmetrically distributed around 0 for all i .

In view of the general case, we reformulate inequality (4) as follows:

E‖Sn − ESn‖2
∞ ≤ K

n∑
i=1

E‖Xi‖2
∞. (13)

One reason for this extension is that in some applications, particularly in connection
with empirical processes, it is easier and more natural to work with uncentered sum-
mands Xi . Let us discuss briefly the consequences of this extension in the three frame-
works:
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Nemirovski’s approach. Between the centered and symmetric cases there is no dif-
ference. If (4) holds in the centered case for some K , then in the general case

E‖Sn − ESn‖2
∞ ≤ K

n∑
i=1

E‖Xi − EXi‖2
∞ ≤ 4K

n∑
i=1

E‖Xi‖2
∞.

The latter inequality follows from the general fact that

E‖Y − EY‖2 ≤ E
(
(‖Y‖ + ‖EY‖)2

) ≤ 2E‖Y‖2 + 2‖EY‖2 ≤ 4E‖Y‖2.

This looks rather crude at first glance, but in the case of the maximum norm and high
dimension d, the factor 4 cannot be reduced. For let Y ∈ R

d have independent compo-
nents Y1, . . . , Yd ∈ {−1, 1} with P(Y j = 1) = 1 − P(Y j = −1) = p ∈ [1/2, 1). Then
‖Y‖∞ ≡ 1, while EY = (2p − 1)d

j=1 and

‖Y − EY‖∞ =
{

2(1 − p) if Y1 = · · · = Yd = 1,

2p otherwise.

Hence

E‖Y − EY‖2
∞

E‖Y‖2∞
= 4

(
(1 − p)2 pd + p2(1 − pd)

)
.

If we set p = 1 − d−1/2 for d ≥ 4, then this ratio converges to 4 as d → ∞.

The approach via Rademacher type-2 inequalities. The first part of Proposition 3.1,
involving the Rademacher type constant Tp, remains valid if we drop the assumption
that EXi = 0 and replace Sn with Sn − ESn . Thus there is no difference between the
general and centered cases. In the symmetric case, however, the factor 2p in Propo-
sition 3.1 becomes superfluous. Thus, if (4) holds with a certain constant K in the
general and centered cases, we may replace K with K/4 in the symmetric case.

The approach via truncation and Bernstein’s inequality. Our proof for the cen-
tered case does not utilize that EXi = 0, so again there is no difference between the
centered and general cases. However, in the symmetric case, the truncated random
vectors 1{‖Xi‖∞ ≤ κ}Xi and 1{‖Xi‖∞ > κ}Xi are centered, too, which leads to the
substantially smaller constant K in Theorem 4.3.

Summaries and comparisons. Table 1 summarizes the constants K = K (d, ∞) we
have found so far by the three different methods and for the three different cases.
Table 2 contains the corresponding limits

K ∗ := lim
d→∞

K (d, ∞)

log d
.

Interestingly, there is no global winner among the three methods. But for the centered
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Table 1. The different constants K (d,∞).

General case Centered case Symmetric case

Nemirovski 8e log d − 4e 2e log d − e 2e log d − e

Type-2 inequalities 8 log(2d) 8 log(2d) 2 log(2d)

8 log d + 4h2(d) 8 log d + 4h2(d) 2 log d + h2(d)

Truncation/Bernstein
(
1 + 3.46

√
log(2d)

)2 (
1 + 3.46

√
log(2d)

)2 (
1 + 2.9

√
log(2d)

)2
Table 2. The different limits K ∗.

General case Centered case Symmetric case

Nemirovski 8e
.= 21.7463 2e

.= 5.4366 2e
.= 5.4366

Type-2 inequalities 8.0 8.0 2.0

Truncation/Bernstein 3.462 = 11.9716 3.462 = 11.9716 2.92 = 8.41

case, Nemirovski’s approach yields asymptotically the smallest constants. In particu-
lar,

lim
d→∞

KTrBern(d, ∞)

KNem(d, ∞)
= 3.462

2e
.= 2.20205,

lim
d→∞

KType2(d, ∞)

KNem(d, ∞)
= 4

e
.= 1.47152,

lim
d→∞

KTrBern(d, ∞)

KType2(d, ∞)
= 3.462

8
.= 1.49645.

The conclusion at this point seems to be that Nemirovski’s approach and the type 2
inequalities yield better constants than Bernstein’s inequality and truncation. Figure 1
shows the constants K (d, ∞) for the centered case over a certain range of dimen-
sions d.

0 200 400 600 800 1000

20

40

60

80

100

120

Figure 1. Comparison of K (d,∞) obtained via the three proof methods: Medium dashing (bottom) = Ne-
mirovski; Small and tiny dashing (middle) = type 2 inequalities; Large dashing (top) = truncation and Bern-
stein inequality.
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6. PROOFS.

6.1. Proofs for Section 2.

Proof of (6). In the case r = ∞, the asserted inequalities read

‖x‖∞ ≤ ‖x‖q ≤ d1/q‖x‖∞ for 1 ≤ q < ∞
and are rather obvious. For 1 ≤ q < r < ∞, (6) is an easy consequence of Hölder’s
inequality.

Proof of Lemma 2.4. In the case r = 2, V ( f + g) is equal to V ( f ) + DV ( f, g) +
V (g). If r ≥ 2 and ‖ f ‖r = 0, both DV ( f, g) and

∫
h( f )g dμ are equal to zero, and

the asserted inequalities reduce to the trivial statement that V (g) ≤ (r − 1)V (g). Thus
let us restrict our attention to the case r > 2 and ‖ f ‖r > 0.

Note first that the mapping

R � t �→ ht := | f + tg|r

is pointwise twice continuously differentiable with derivatives

ḣt = r | f + tg|r−1sign( f + tg)g = r | f + tg|r−2( f + tg)g,

ḧt = r(r − 1)| f + tg|r−2g2.

By means of the inequality |x + y|b ≤ 2b−1
(|x |b + |y|b) for real numbers x , y and b ≥

1, a consequence of Jensen’s inequality, we can conclude that for any bound to > 0,

max
|t |≤to

|ḣt | ≤ r2r−2
(| f |r−1|g| + tr−1

o |g|r),
max
|t |≤to

|ḧt | ≤ r(r − 1)2r−3
(| f |r−2|g|2 + tr−2

o |g|r).
The latter two envelope functions belong to L1(μ). This follows from Hölder’s in-
equality which we rephrase for our purposes in the form∫

| f |(1−λ)r |g|λr dμ ≤ ‖ f ‖(1−λ)r
r ‖g‖λr

r for 0 ≤ λ ≤ 1. (14)

Hence we may conclude via dominated convergence that

t �→ ṽ(t) := ‖ f + tg‖r
r

is twice continuously differentiable with derivatives

ṽ′(t) = r
∫

| f + tg|r−2( f + tg)g dμ,

ṽ′′(t) = r(r − 1)

∫
| f + tg|r−2g2 dμ.

This entails that

t �→ v(t) := V ( f + tg) = ṽ(t)2/r
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is continuously differentiable with derivative

v′(t) = (2/r)ṽ(t)2/r−1ṽ′(t) = ṽ2/r−1(t)
∫

h( f + tg)g dμ.

For t = 0 this entails the asserted expression for DV ( f, g). Moreover, v(t) is twice
continuously differentiable on the set {t ∈ R : ‖ f + tg‖r > 0} which equals either R

or R \ {to} for some to �= 0. On this set the second derivative equals

v′′(t) = (2/r)ṽ(t)2/r−1ṽ′′(t) + (2/r)(2/r − 1)ṽ(t)2/r−2ṽ′(t)2

= 2(r − 1)

∫ | f + tg|r−2

‖ f + tg‖r−2
r

g2 dμ − 2(r − 2)

(∫ | f + tg|r−2( f + tg)

‖ f + tg‖r−1
r

g dμ

)2

≤ 2(r − 1)

∫ ∣∣∣∣ f + tg

‖ f + tg‖r

∣∣∣∣r−2

|g|2 dμ

≤ 2(r − 1)‖g‖2
r = 2(r − 1)V (g)

by virtue of Hölder’s inequality (14) with λ = 2/r . Consequently, by using

v′(t) − v′(0) =
∫ t

0
v′′(s) ds ≤ 2(r − 1)V (g)t,

we find that

V ( f + g) − V ( f ) − DV ( f, g)

= v(1) − v(0) − v′(0) =
∫ 1

0
(v′(t) − v′(0)) dt

≤ 2(r − 1)V (g)

∫ 1

0
t dt = (r − 1)V (g).

Proof of Theorem 2.2. The first part is an immediate consequence of the considera-
tions preceding the theorem. It remains to prove the (in)equalities and expansion for
KNem(d, r). Note that KNem(d, r) is the infimum of h(q)d−2/r over all real q ∈ [2, r ],
where h(q) := (q − 1)d2/q satisfies the equation

h′(q) = d2/q

q2

(
(q − log d)2 − (log d − 2) log d

)
.

Since 7 < e2 < 8, this shows that h is strictly increasing on [2, ∞) if d ≤ 7. Hence

KNem(d, r) = h(2)d−2/r = d1−2/r if d ≤ 7.

For d ≥ 8, one can easily show that log d −√
(log d − 2) log d < 2, so that h is strictly

decreasing on [2, rd] and strictly increasing on [rd , ∞), where

rd := log d +√
(log d − 2) log d

{
< 2 log d,

> 2 log d − 2.
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Thus for d ≥ 8,

KNem(d, r) =
{

h(r)d−2/r = r − 1 < 2 log d − 1 if r ≤ rd ,

h(rd)d−2/r ≤ h(2 log d) = 2e log d − e if r ≥ rd .

Moreover, one can verify numerically that KNem(d, r) ≤ d ≤ 2e log d − e for 3 ≤
d ≤ 7.

Finally, for d ≥ 8, the inequalities r ′
d := 2 log d − 2 < rd < r ′′

d := 2 log d yield

KNem(d, ∞) = h(rd) ≥ (r ′
d − 1)d2/r ′′

d = 2e log d − 3e,

and for 1 ≤ d ≤ 7, the inequality d = KNem(d, ∞) ≥ 2e log(d) − 3e is easily verified.

6.2. Proofs for Section 3.

Proof of Lemma 3.2. The following proof is standard; see, e.g., [1, p. 160], [13, p.
247]. Let x1, . . . , xn be fixed functions in Lr (μ). Then by [8], for any t ∈ T ,{

E

∣∣∣∣ n∑
i=1

εi xi (t)

∣∣∣∣r}1/r

≤ Br

( n∑
i=1

|xi (t)|2
)1/2

. (15)

To use inequality (15) for finding an upper bound for the type constant for Lr , rewrite
it as

E

∣∣∣∣ n∑
i=1

εi xi (t)

∣∣∣∣r ≤ Br
r

( n∑
i=1

|xi (t)|2
)r/2

.

It follows from Fubini’s theorem and the previous inequality that

E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥r

r

= E

∫ ∣∣∣∣ n∑
i=1

εi xi (t)

∣∣∣∣r dμ(t)

=
∫

E

∣∣∣∣ n∑
i=1

εi xi (t)

∣∣∣∣r dμ(t)

≤ Br
r

∫ ( n∑
i=1

|xi (t)|2
)r/2

dμ(t).

Using the triangle inequality (or Minkowski’s inequality), we obtain{
E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥r

r

}2/r

≤ B2
r

{∫ ( n∑
i=1

|xi (t)|2
)r/2

dμ(t)

}2/r

≤ B2
r

n∑
i=1

(∫
|xi (t)|r dμ(t)

)2/r

= B2
r

n∑
i=1

‖xi‖2
r .
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Furthermore, since g(v) = v2/r is a concave function of v ≥ 0, the last display implies
that

E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥2

r

≤
{

E

∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥r

r

}2/r

≤ B2
r

n∑
i=1

‖xi‖2
r .

Proof of Lemma 3.4. For 1 ≤ i ≤ n let xi = (xim)d
m=1 be an arbitrary fixed vector in

R
d , and set S := ∑n

i=1 εi xi . Further let Sm be the mth component of S with variance
v2

m := ∑n
i=1 x2

im , and define v2 := max1≤m≤d v2
m , which is not greater than

∑n
i=1 ‖xi‖2

∞.
It suffices to show that

E‖S‖2
∞ ≤ 2 log(2d)v2.

To this end note first that h : [0, ∞) → [1, ∞) with

h(t) := cosh(t1/2) =
∞∑

k=0

t k

(2k)!

is bijective, increasing, and convex. Hence its inverse function h−1 : [1, ∞) → [0, ∞)

is increasing and concave, and one easily verifies that

h−1(s) = (
log(s + (s2 − 1)1/2)

)2 ≤ (log(2s))2.

Thus it follows from Jensen’s inequality that for arbitrary t > 0,

E‖S‖2
∞ = t−2

Eh−1
(
cosh(‖t S‖∞)

) ≤ t−2h−1
(
E cosh(‖t S‖∞)

)
≤ t−2

(
log
(
2E cosh(‖t S‖∞)

))2
.

Moreover,

E cosh(‖t S‖∞) = E max
1≤m≤d

cosh(t Sm) ≤
d∑

m=1

E cosh(t Sm) ≤ d exp(t2v2/2),

according to (8), whence

E‖S‖2
∞ ≤ t−2 log

(
2d exp(t2v2/2)

)2 = (
log(2d)/t + tv2/2

)2
.

Now the assertion follows if we set t = √
2 log(2d)/v2.

Proof of (9). We may replace the random sequence {Xi } in Example 1.2 with the ran-
dom sequence {εi Xi }, where {εi } is a Rademacher sequence independent of {Xi }.
Thereafter we condition on {Xi }, i.e., we view it as a deterministic sequence such
that n−1

∑n
i=1 Xi X


i converges to the identity matrix Id as n → ∞, by the strong law
of large numbers. Now Lindeberg’s version of the multivariate Central Limit Theorem
shows that

sup
n≥1

E
∥∥∑n

i=1 εi Xi

∥∥2

∞∑n
i=1 ‖Xi‖2∞

≥ sup
n≥1

E

∥∥∥∥n−1/2
n∑

i=1

εi Xi

∥∥∥∥2

∞
≥ c2

d .
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Inequalities for Φ. The subsequent results will rely on (10) and several inequalities
for 1 − �(z). The first of these is:

1 − �(z) ≤ z−1φ(z), z > 0, (16)

which is known as Mills’ ratio; see [6] and [19] for related results. The proof of this
upper bound is easy: since φ′(z) = −zφ(z) it follows that

1 − �(z) =
∫ ∞

z
φ(t) dt ≤

∫ ∞

z

t

z
φ(t) dt = −1

z

∫ ∞

z
φ′(t) dt = φ(z)

z
. (17)

A very useful pair of upper and lower bounds for 1 − �(z) is as follows:

2

z + √
z2 + 4

φ(z) ≤ 1 − �(z) ≤ 4

3z + √
z2 + 8

φ(z), z > −1; (18)

the inequality on the left is due to Komatsu (see, e.g., [10, p. 17]), while the inequality
on the right is an improvement of an earlier result of Komatsu due to Szarek and
Werner [23].

Proof of Lemma 3.6. To prove the upper bound for T2(�
d
∞), let (εi )i≥1 be a Rade-

macher sequence. With S and Sm as in the proof of Lemma 3.4, for any δ > 0 we
may write

E‖S‖2
∞ =

∫ ∞

0
2tP

(
sup

1≤m≤d
|Sm | > t

)
dt

≤ δ2 +
∫ ∞

δ

2tP

(
sup

1≤m≤d
|Sm| > t

)
dt

≤ δ2 +
d∑

m=1

∫ ∞

δ

2tP
(|Sm | > t

)
dt.

Now by (10) with v2 and v2
m as in the proof of Lemma 3.4, followed by Mills’ ratio

(16), ∫ ∞

δ

2tP(|Sm | > t) dt ≤
∫ ∞

δ

4Kvm√
2π t

te−t2/(2v2
m ) dt

= 4Kvm√
2π

∫ ∞

δ

e−t2/(2v2
m ) dt = 4Kv2

m

∫ ∞

δ

e−t2/(2v2
m )

√
2πvm

dt

= 4Kv2
m(1 − �(δ/vm)) ≤ 4Kv2(1 − �(δ/v)). (19)

Now instead of the Mills’ ratio bound (16) for the tail of the normal distribution, we
use the upper bound part of (18). This yields∫ ∞

δ

2tP(|Sm| > t) dt ≤ 4Kv2(1 − �(δ/v)) ≤ 4cv2

3δ/v +√
δ2/v2 + 8

e−δ2/(2v2),

where we have defined c := 4K/
√

2π = 12.88/
√

2π , and hence

E‖S‖2 ≤ δ2 + 4cdv2

3δ/v +√
δ2/v2 + 8

e−δ2/(2v2).
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Taking

δ2 = v22 log

(
cd/2√

2 log(cd/2)

)

gives

E‖S‖2 ≤ v2

⎧⎨⎩2 log d + 2 log(c/2) − log(2 log(dc/2))

+ 8
√

2 log(cd/2)

3
√

2 log
(

cd

2
√

2 log(cd/2)

)
+
√

2 log
(

cd

2
√

2 log(cd/2)

)
+ 8

⎫⎬⎭
=: v2

{
2 log d + h2(d)

}
where it is easily checked that h2(d) ≤ 3 for all d ≥ 1. Moreover h2(d) is negative for
d > 4.13795 × 1010. This completes the proof of the upper bound in (11).

To prove the lower bound for cd in (11), we use the lower bound of [13, Lemma
6.9, p. 157] (which is, in this form, due to Giné and Zinn [5]). This yields

c2
d ≥ λ

1 + λ
t2
o + 1

1 + λ
d
∫ ∞

to

4t (1 − �(t)) dt (20)

for any to > 0, where λ = 2d(1 − �(to)). By using Komatsu’s lower bound (18), we
find that ∫ ∞

to

t (1 − �(t)) dt ≥
∫ ∞

to

2t

t + √
t2 + 4

φ(t) dt

≥ 2to

to +√
t2
o + 4

∫ ∞

to

φ(t) dt

= 2

1 +√
1 + 4/t2

o

(1 − �(to)).

Using this lower bound in (20) yields

c2
d ≥ λ

1 + λ
t2
o + 1

1 + λ
d

8

1 +√
1 + 4/t2

o

(1 − �(to))

= 2d(1 − �(to))

1 + 2d(1 − �(to))

{
t2
o + 4

1 +√
1 + 4/t2

o

}

≥
4d

to+
√

t2
o +4

φ(to)

1 + 4d

to+
√

t2
o +4

φ(to)

{
t2
o + 4

1 +√
1 + 4/t2

o

}
. (21)

Now we let c ≡ √
2/π and δ > 0 and choose

t2
o = 2 log

(
cd

(2 log(cd))(1+δ)/2

)
.
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For this choice we see that to → ∞ as d → ∞,

4dφ(to) = 2d√
2π

· (2 log(cd))(1+δ)/2

cd
= 2(2 log(cd))(1+δ)/2,

and

4dφ(to)

to
= 2(2 log(cd))(1+δ)/2

{2 log(cd/(2 log(cd))(1+δ)/2)}1/2
→ ∞

as d → ∞, so the first term on the right-hand side of (21) converges to 1 as d → ∞,
and it can be rewritten as

Ad

{
t2
o + 4

1 +√
1 + 4/t2

o

}

= Ad

{
2 log

(
cd

(2 log(cd))(1+δ)/2

)
+ 4

1 +√
1 + 4/t2

o

}
∼ 1 · {2 log d + 2 log c − (1 + δ) log(2 log(cd)) + 2

}
.

To prove the upper bounds for cd , we will use the upper bound of [13, Lemma 6.9,
p. 157] (which is, in this form, due to Giné and Zinn [5]). For every to > 0

c2
d ≡ E max

1≤ j≤d
|Z j |2 ≤ t2

o + d
∫ ∞

to

2t P(|Z1| > t) dt

= t2
o + 4d

∫ ∞

to

t (1 − �(t)) dt

≤ t2
o + 4d

∫ ∞

to

φ(t) dt (by Mills’ ratio)

= t2
o + 4d(1 − �(to)).

Evaluating this bound at to =
√

2 log(d/
√

2π) and then using Mills’ ratio again yields

c2
d ≤ 2 log

(
d/

√
2π
)+ 4d

(
1 − �

(√
2 log

(
d/

√
2π
)))

≤ 2 log d − 2
1

2
log(2π) + 4d

φ

(√
2 log

(
d/

√
2π
))

√
2 log

(
d/

√
2π
)

= 2 log d − log(2π) + 2
√

2√
log
(
d/

√
2π
) (22)

≤ 2 log d,

where the last inequality holds if

2
√

2√
log
(
d/

√
2π
) ≤ log(2π),
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or equivalently if

log d ≥ 8

(log(2π))2
+ log(2π)

2
= 3.28735 . . . ,

and hence if d ≥ 27 > e3.28735... .= 26.77. The claimed inequality is easily verified
numerically for d = 3, . . . , 26. (It fails for d = 2.) As can be seen from (22), 2 log d −
log(2π) gives a reasonable approximation to E max1≤ j≤d Z2

j for large d. Using the
upper bound in (18) instead of the second application of Mills’ ratio and choosing
t2
o = 2 log(cd/

√
2 log(cd)) with c := √

2/π yields the third bound for cd in (11) with

h3(d) = − log(π) − log(log(cd))

+ 8

3
√

1 − log(2 log(cd))

2 log(cd)
+
√

1 − log(2 log(cd))

2 log(cd)
+ 4

log(cd)

.

6.3. Proofs for Section 4.

Proof of Lemma 4.1. It follows from EY = 0, the Taylor expansion of the exponential
function, and the inequality E|Y |m ≤ σ 2κm−2 for m ≥ 2 that

E exp

(
Y

κL

)
= 1 + E

{
exp

(
Y

κL

)
− 1 − Y

κL

}
≤ 1 +

∞∑
m=2

1

m!
E|Y |m
(κL)m

≤ 1 + σ 2

κ2

∞∑
m=2

1

m!
1

Lm
= 1 + σ 2e(L)

κ2
.

Proof of Lemma 4.2. Applying Lemma 4.1 to the j th components Xi, j of Xi and Sn, j

of Sn yields for all L > 0,

E exp

(±Sn, j

κL

)
=

n∏
i=1

E exp

(±Xi, j

κL

)
≤

n∏
i=1

exp

(
Var(Xi, j)e(L)

κ2

)
≤ exp

(
�e(L)

κ2

)
.

Hence

E cosh

(‖Sn‖∞
κL

)
= E max

1≤ j≤d
cosh

(
Sn, j

κL

)
≤

d∑
j=1

E cosh

(
Sn, j

κL

)
≤ d exp

(
�e(L)

κ2

)
.

As in the proof of Lemma 3.4 we conclude that

E‖Sn‖2
∞ ≤ (κL)2

(
log

(
2E cosh

(‖Sn‖∞
κL

)))2

≤ (κL)2

(
log(2d) + �e(L)

κ2

)2

=
(

κL log(2d) + �L e(L)

κ

)2

,

which is equivalent to the inequality stated in the lemma.
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Proof of Theorem 4.3. For fixed κo > 0 we split Sn into An + Bn as described before.
Let us bound the sum Bn first: For this term we have

‖Bn‖∞ ≤
n∑

i=1

{
1[‖Xi ‖∞>κo]‖Xi‖∞ + E(1[‖Xi ‖∞>κo]‖Xi‖∞)

}
=

n∑
i=1

{
1[‖Xi ‖∞>κo]‖Xi‖∞ − E(1[‖Xi ‖∞>κo]‖Xi‖∞)

}
+ 2

n∑
i=1

E(1[‖Xi ‖∞>κo]‖Xi‖∞)

=: Bn1 + Bn2.

Therefore, since EBn1 = 0,

E‖Bn‖2
∞ ≤ E(Bn1 + Bn2)

2 = EB2
n1 + B2

n2

=
n∑

i=1

Var
(
1[‖Xi ‖∞>κo]‖Xi‖∞

)+ 4

( n∑
i=1

E(‖Xi‖∞1[‖Xi ‖∞>κo])
)2

≤
n∑

i=1

E‖Xi‖2
∞ + 4

( n∑
i=1

E‖Xi‖2
∞

κo

)2

= � + 4
�2

κ2
o

,

where we define � := ∑n
i=1 E‖Xi‖2

∞.
The first sum, An , may be bounded by means of Lemma 4.2 with κ = 2κo, utilizing

the bound

Var(X (a)

i, j ) = Var
(
1[‖Xi ‖∞≤κo] Xi, j

) ≤ E
(
1[‖Xi ‖∞≤κo] X 2

i, j

) ≤ E‖Xi‖2
∞.

Thus

E‖An‖2
∞ ≤

(
2κo L log(2d) + �L e(L)

2κo

)2

.

Combining the bounds we find that√
E‖Sn‖2∞ ≤

√
E‖An‖2∞ +

√
E‖Bn‖2∞

≤ 2κo L log(2d) + �Le(L)

2κo
+ √

� + 2
�

κo

= ακo + β

κo
+ √

�,

where α := 2L log(2d) and β := �(L e(L) + 4)/2. This bound is minimized if κo =√
β/α with minimum value

2
√

αβ + √
� = (

1 + 2
√

L2e(L) + 4L
√

log(2d)
)√

�,

and for L = 0.407 the latter bound is not greater than(
1 + 3.46

√
log(2d)

)√
�.
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In the special case of symmetrically distributed random vectors Xi , our treatment of
the sum Bn does not change, but in the bound for E‖An‖2

∞ one may replace 2κo with
κo, because EX (a)

i = 0. Thus√
E‖Sn‖2∞ ≤ κo L log(2d) + �Le(L)

κo
+ √

� + 2
�

κo

= α′κo + β ′

κo
+ √

�
(
with α′ := L log(2d), β ′ := �(L e(L) + 2)

)
=
(

1 + 2
√

L2e(L) + 2L
√

log(2d)
)√

�
(
if κo = √

β ′/α′).
For L = 0.5 the latter bound is not greater than(

1 + 2.9
√

log(2d)
)√

�.
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1. A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables,
Wiley Series in Probability and Mathematical Statistics, John Wiley, New York, 1980.

2. G. Bennett, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc.
57 (1962) 33–45. doi:10.2307/2282438
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Pure Appl. Math. 3/2 (2002).
20. , Toward the best constant factor for the Rademacher-Gaussian tail comparison, ESAIM Probab.

Stat. 11 (2007) 412–426. doi:10.1051/ps:2007027
21. D. Pollard, Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in

Probability and Statistics, 2, Institute of Mathematical Statistics, Hayward, CA, 1990.
22. E. Rio, Moment inequalities for sums of dependent random variables under projective conditions, J.

Theoret. Probab. 22 (2009) 146–163. doi:10.1007/s10959-008-0155-9
23. S. J. Szarek and E. Werner, A nonsymmetric correlation inequality for Gaussian measure, J. Multivariate

Anal. 68 (1999) 193–211. doi:10.1006/jmva.1998.1784
24. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman

Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical,
Harlow, UK, 1989.

25. S. A. van de Geer, Applications of Empirical Process Theory, Cambridge Series in Statistical and Proba-
bilistic Mathematics, vol. 6, Cambridge University Press, Cambridge, 2000.

26. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications
to Statistics, Springer Series in Statistics, Springer-Verlag, New York, 1996.
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