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This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood
estimator of a convex hazard function. The maximisation is performed in two steps: First the support
reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of
minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-
concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum
of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both
artificial and real data, including lifetime data for Canadian males and females.

Keywords: shape constraint; least squares; maximum likelihood; support reduction algorithm; active set
method; optimisation; survival analysis

AMS Subject Classification: 62G05; 62G99; 62P05; 62-09; 62N02

1. Introduction

Suppose we observe X1, . . . , Xn i.i.d. with density f . The Xis are assumed to represent lifetime
data: failure of a material or machine, death, an earthquake, or infection by a disease. It is therefore
natural to assume that f is concentrated on [0, ∞). Of key interest to practitioners is the hazard
(or failure) rate h(t) given by the ratio f (t)/(1 − F(t)). Heuristically, h(t)dt is the probability
that, given survival until time t , the event will occur in the next dt amount of time.

In reliability theory and demography it is quite natural to assume that the hazard rate is bathtub
or U-shaped: that is, it is first decreasing and then increasing. (Throughout this paper we will say
positive in lieu of ‘non-negative’ and strictly positive in lieu of ‘positive’. A similar nomenclature
will be used for negative functions). Heuristically, bathtub-shaped hazards correspond to lifetime
distributions with high-initial hazard (or infant mortality), lower and often rather constant hazard
during the middle of life, and then increasing hazard of failure (or wear out) as aging proceeds.
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506 H.K. Jankowski and J.A. Wellner

We will say that a bathtub-shaped function h has an antimode at a if it is nonincreasing on [0, a]
and nondecreasing on [a, ∞]. In particular, the antimode need not be a unique minimum.

Nonparametric estimators of hazard rates have received considerable interest in the literature,
beginning with the work of Grenander [1] who considered the maximum likelihood estimator
(MLE) of an increasing hazard rate. Bray et al. [2] extended this to the case of a general U-
shaped rate function. It is well-known that these estimators result in a piecewise constant function
and converge (under certain natural assumptions) at a rate of n1/3 (cf. [3]). Here, we consider
the nonparametric MLE with the additional assumption of convexity. This is often a natural
assumption, and the resulting estimator is continuous (piecewise linear) and converges at the rate
of n2/5 (again under natural conditions).

Many other estimators of hazard functions (and solutions to the closely related problem of
estimating the intensity of a Poisson process) with and without shape restrictions have been con-
sidered in the literature; see [4] for a nice review up to 2002. In recent years the focus has shifted
to construction of ‘adaptive’ estimators over large scales of smoothness classes; see e.g. [5–7].
Virtually all of these other estimators require careful choice of penalty terms or tuning parameters,
and computation of the adaptive estimators typically involves methods of combinatorial optimi-
sation. Our estimators avoid the choices of tuning parameters or penalty terms by virtue of the
shape constraint of convexity, and are therefore considerably more straightforward to compute.

To find the MLE, ĥn, we need to maximise the likelihood

Lik(h) =
n∏

i=1

h(Xi) exp {−H(Xi)} =
n∏

i=1

h(X(i)) exp
{−H(X(i))

}
(1)

over the space of positive convex functions h. Here {X(i)}ni=1 denotes the order statistics and
H(t) = ∫ t

0 h(s)ds. However, for a convex function fixed on [0, X(n)), Lik(h) can be made arbitrar-
ily large by increasing the value of h(X(n)). We therefore find ĥn: [0, X(n)) �→ R+ by maximising
the modified likelihood

Lmod(h) =
n−1∏
i=1

h(X(i)) exp
{−H(X(i))

} × exp
{−H(X(n))

}
. (2)

over K, the space of nonnegative convex functions on [0, X(n)). The full MLE is then found by
additionally setting ĥn(x) = ∞ for all x ≥ X(n). Our goal is thus to find ĥn = argminh∈Kψ(h), for

ψ(h) =
∫ ∞

0

[∫ t

0
h(s)ds − log h(t)It �=X(n)

]
dFn(t),

where Fn is the empirical cumulative distribution function (cdf) of the data.
Let K(a) denote the subspace of K of convex positive functions with an antimode at a, and

consider the profile likelihood of a:

Likmod(a) = max
h∈K(a)

Likmod(h).

A key result to our approach is that − log Likmod(a) is itself bathtub-shaped in a. In the optimi-
sation context, this property of ψ is also called quasi-convex [8]. This allows us to implement
a two-step optimisation method: We apply the support reduction (SR) algorithm to maximise
Lik(h) over K(a), and we maximise Likmod(a) with a bisection algorithm. We do not know of
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Journal of Nonparametric Statistics 507

any other algorithm for this problem. Section 2 gives the details of the algorithm for the MLE,
while Section 3 contains several examples.

If the true hazard function is convex, [9] show that the MLE is consistent, and that, under
the additional assumption of strict convexity, it exhibits an n2/5 local rate of convergence. This
rate is also known to be optimal in a minimax sense. However, if the true hazard function has a
second derivative equivalent to zero, we conjecture that the estimator will achieve a global rate
of convergence of n1/2. Using the algorithm we are able to provide evidence for this conjecture;
see Figure 3 and the associated discussion in Section 3.

The algorithms described here are available through the R package convexHaz, [10]. Currently
this contains only hazard estimation, but we hope to include right censoring and Poisson intensity
estimation in future versions, as the techniques described here may be extended to those settings as
well. Moreover, the package allows for the computation of a least-squares estimator of the hazard
rate. The least-squares estimator is omitted here for the sake of brevity, but further information
may be found in [9,11].

2. The algorithm

2.1. Support reduction: minimising ψ(h) over K(a)

The SR algorithm as developed in [12] is an extension of the vertex direction algorithm (cf.
[13]). Within optimisation theory, the SR algorithm can be classified as an active set method.
The algorithm is designed to handle nonparametric and semi-parametric M-estimation problems.
Nonparametric solutions are infinite-dimensional; however, often it is known that the result-
ing estimator uses only a small number of dimensions. In these cases the SR algorithm works
particularly well.

For a fixed antimode a, a positive convex function in K(a) may be decomposed as

h(t) = 1 · α +
∫ a

0
(τ − t)+dν(τ) +

∫ ∞

a

(t − η)+dμ(η), (3)

where ν and μ are positive measures, and α ≥ 0 is a constant (the positivity is what ensures
that h ∈ K(a)). In this representation, we call α, ν, and μ the mixing measure of h, and the
support of these measures becomes the support of h. The total measure of a function h is then
α + ν[0, a] + μ[a, X(n)]. Lemma A.1 shows that the support of ĥn is always finite for a fixed
sample size. In fact, in practice the number of support points is considerably smaller than n. Thus,
our decomposition will look like

h = α · e0 +
k∑

i=1

νi · e1,τi
+

m∑
j=1

μj · e2,ηj
, (4)

where e0(t) = 1, e1,τ (t) = (τ − t)+, and e2,η(t) = (t − η)+ denote the basis functions. We may
equivalently characterise h in terms of the support, supp = {1} × {τ1, . . . , τk} × {η1, . . . , ηm} and
mixing measure, mix = {α} × {ν1, . . . , νk} × {μ1, . . . , μm}.

We also note that the support points (or ‘bend’ points of the hazard function) will never fall
on an observation point. Indeed more is known. There will be at most one support point between
two successive observations points X(i) and X(i+1) for i ≤ n − 2, except possibly when the two
support points are τk and η1 (that is, the last ‘down’ bend and the first ‘up’ bend). In this case
there may be two support points between successive observation points. For a proof of this fact
see [9].
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508 H.K. Jankowski and J.A. Wellner

Recently, Dümbgen et al. [14] have implemented an active set approach to develop an algorithm
for the MLE of a log-concave density. In this case however, by using additional knowledge about
the likelihood, one may reduce the problem to a finite-dimensional one. A similar simplification
occurs in the estimation of a decreasing hazard, [1], although here a solution may be found
exactly and no approximating algorithm is required. The reason that the simplification occurs is
that the resulting estimator has jump points only at the observation points: the log-concave density
estimator is piecewise linear with bend points at the observation points, and the decreasing hazard
estimator has points of discontinuity only at the data points. In our situation, we know that our
estimator is piecewise linear, but we do not know the location of the bend points.

The main idea behind the SR algorithm is as follows (for pseudocode see [12]). We wish to
minimise the criterion function ψ(h) over the space of h ∈ K(a). Given a current iterate ĥ with
finite support ŝupp and mixing measure m̂ix, we first find a new support point by finding the basis
function e∗ such that the directional derivative

∇ψ(̂h)[e] ≡ lim
ε→0

(
ψ(̂h + εe) − ψ(̂h)

)
ε

is smallest. The support corresponding to e∗ is added to ŝupp to yield ŝupp∗, and then ψ is
minimised over all h with support given by ŝupp∗ to give the new mixing measure, m̂ix

∗
. Note

that the minimisation here is finite dimensional and is therefore easy to implement. This is the
vertex direction part of the algorithm: the idea is to continually move in a direction that decreases
the criterion function the most. The SR algorithm adds an additional step (called the SR step),
which ensures that we remain in K(a), i.e. that the mixing measure is positive.

The idea behind the SR step is as follows. We have a previous estimate ĥ ∈ K(a) (with
ŝupp, m̂ix), and a current candidate ĥ∗ (with ŝupp∗, m̂ix

∗
) that lies outside of K(a). We find a

convex combination of ĥ and ĥ∗ on the boundary of K(a) by finding the largest λ, λ∗, such that
(1 − λ)̂h + λĥ∗ is in K(a), i.e. such that (1 − λ)m̂ix + λm̂ix

∗ ≥ 0. This is equivalent to removing
one of the support points of ĥ∗. One can easily show that a newly proposed support point will never
be removed here. Set ŝupp to the reduced support and calculate m̂ix = (1 − λ∗)m̂ix + λ∗m̂ix

∗
. ψ

is again minimised over all h with support given by ŝupp∗ = ŝupp to give the new mixing measure,
m̂ix

∗
. If m̂ix

∗
is not positive, then the procedure is iterated.

Since ψ(h) is convex as a function of h, ĥ is its minimiser over K(a) if and only if the directional
derivative at ĥ is positive in any direction. The possible directions may be described via the basis
functions e0, e1,τ for τ ∈ [0, a] and e2,η for η ∈ [a, T ]. Hence the SR algorithm is iterated until

∇ψ(̂h) = min

{
∇ψ(̂h)[e0], min

τ∈[0,a] ∇ψ(̂h)[e1,τ ], min
η∈[a,T ] ∇ψ(̂h)[e2,η]

}

is larger than −ε, for some predetermined accuracy ε > 0.

To perform the SR algorithm as described above, one needs to minimise ψ(h). However, even
for a function h with fixed support, the logarithm in ψ(h) causes the minimisation problem
to be a general convex optimisation problem with no exact solution. Our method for dealing
with this is to replace the general convex optimisation problem with a sequence of (simpler)
quadratic optimisation problems, for which exact solutions are easily available. To achieve this,
we minimise an approximate version of ψ instead of the true ψ . Suppose that the current iter-
ate ĥ in the algorithm is close to the true minimiser of ψ , then instead of minimising ψ , we
could equally well minimise the quadratic approximation to ψ . This inner minimisation is iter-
ated via a line search strategy, until the directional derivatives of the true ψ are sufficiently
large.
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Journal of Nonparametric Statistics 509

We define the approximate criterion function with respect to a fixed function, say g ∈ K(a),
using the approximation log(1 + x) ≈ x − x2/2. Then ψ(h) is equal to

ψ(g) +
∫ ∞

0

[
H(t) − log h(t)It �=X(n)

]
dFn(t) −

∫ ∞

0

[
G(t) − log g(t)It �=X(n)

]
dFn(t)

≈ ψ(g) +
∫ ∞

0
[H − G](t)dFn(t) −

∫
[0,X(n−1)]

(
(h − g)(t)

g(t)

)
dFn(t)

+ 1

2

∫
[0,X(n−1)]

(
(h − g)(t)

g(t)

)2

dFn(t).

As we minimise the approximation to ψ over h for a fixed g, we may remove all terms depending
only on g to obtain

ψmod(h|g) =
∫ ∞

0
H(t)dFn(t) − 2

∫
[0,X(n−1)]

h(t)

g(t)
dFn(t) + 1

2

∫
[0,X(n−1)]

(
h(t)

g(t)

)2

dFn(t).

Algorithm to find the profile MLE:

Step 0. Obtain an initial estimate, ĥ.

While ∇ψ(̂h) is less than −ε Repeat 1–3:

Step 1 (inner loop). Given a current estimate ĥ, find the next proposed ĥp by minimising
the linearised criterion function ψmod(h|̂h) using the SR algorithm.

To find the starting value for the SR algorithm, do the following:

A: Consider the support of ĥ, and find the function ĥ0 with the same support which
minimises the function ψmod(h|̂h).

While ĥ0 /∈ K(a) Repeat B:

B: Perform an SR step to obtain a new ĥ0, with a reduced support.

Step 2. Find λ∗ in [0, 1] which minimises ψ
(
(1 − λ)̂h + λĥp

)
.

Step 3. The new ĥ is set to (1 − λ∗)̂h + λ∗ĥp.

Several computational issues arise in the implementation.

2.1.1. Gridded implementation

In practice, it is not possible to find the exact location of the minimum of the directional derivatives,
as the gradient of the criterion function is far from smooth. Therefore, a natural approach is to
minimise the gradient over a pre-specified, and sufficiently dense grid. This is not ideal, as there
is no way to guarantee the behavior of the gradient outside of the grid.

In our implementation, we split [0, X(n)] into M intervals (resulting in M + 1 grid points), and
only check for the minimum at these locations. Naturally, the larger M is, the more accurate our
answer. However, increasing M also increases computing time.

2.1.2. A gridless alternative

Increasing the gridded implementation from M =100 to M = 1000, say, typically does not have a
drastic effect on the location of the support points. We therefore propose the following alternative
to allow the algorithm to naturally fine-tune their location.
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510 H.K. Jankowski and J.A. Wellner

Suppose that the grid used in the algorithm is such that G = {θ1, . . . , θb}, and suppose also that
the SR algorithm proposed the new support point θi ∈ G. We then augment the grid to

G ∪
{

θi−1 + θi

2
,
θi + θi+1

2

}
.

This has no effect on the next step of the SR algorithm, but will impose a finer grid when the exit
criterion ∇ϕ(̂h) ≤ −ε is next checked.

Naturally, there are many other ways in which one could augment the grid at this time. We
found that the proposed method was the most efficient, giving the best results without sacrificing
the speed of the algorithm. The efficacy of the gridded vs. gridless modifications is studied in
Figure 2.

2.1.3. Nearly singular matrices

In the inner loop we need to minimise a quadratic function in finitely many variables. Unfortu-
nately, the system of equations is sometimes computationally singular. This most often happens
just after a new support point has been added. If this occurs, we handle the problem by deleting a
point of the support closest to the newly proposed support point. We find that this ad hoc solution
works reasonably well in practice.

2.2. The bisection algorithm

The algorithm of the previous section finds the MLE of ψ(h) over K(a) for fixed antimode a, and
we now need to optimise over the possible values of a to find the overall MLE. The next result
allows us to speed up the search for the optimal antimode by use of a bisection algorithm.

Proposition 2.1 Let a0 ∈ [0, T ] be such that the minimiser of ψ(h) over h in K+ has an antimode
at a0. Suppose that a0 < a1 < a2, then

min
h∈K+

ψ(h) ≡ min
h∈K+(a0)

ψ(h) ≤ min
h∈K+(a1)

ψ(h) ≤ min
h∈K+(a2)

ψ(h).

The inequalities also hold if a0 > a1 > a2. That is, ψ̃(a) = minh∈K+(a) ψ(h) is bathtub-shaped
in a.

Fix an accuracy parameter ε > 0. For a vector x = {xi}ki=1, let {x(1), . . . , x(k)} denote the ordered
elements of x (in increasing order) and let �x = ∑k

i=1(x(i) − x(1))
2.

Bisection algorithm:

Step 0. Let a = {ai}5
i=1 = X(n) ∗ {0, 0.25, 0.5, 0.75, 1}, and find ψ̃ = {ψ̃(ai)}5

i=1.

While �ψ̃ is greater than ε Repeat 1-2:

Step 1. Write ψ̃ as {ψ̃i}5
i=1. If ψ̃(1) = ψ̃i for i = 2, 3, 4, set ã1 = ai−1, ã3 = ai and ã5 =

ai+1. If ψ̃(1) = ψ̃1, set ã1 = a1, ã3 = a2 and ã5 = a3. If ψ̃(1) = ψ̃5, set ã1 = a3, ã3 =
a4 and ã5 = a5. Fill in the remaining elements of ã: set ã2 = (ã1 + ã3)/2 and ã4 =
(ã3 + ã5)/2.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
e
l
l
n
e
r
,
 
J
o
n
 
A
.
]
 
A
t
:
 
1
5
:
1
7
 
2
2
 
M
a
y
 
2
0
0
9



Journal of Nonparametric Statistics 511

Step 2. Let a = ã. Find ψ̃ = {ψ̃(ai)}5
i=1. Note that three of the five entries have already

been calculated.
Step 3. argmin ψ̃(a) is given by the ai , which minimises the current ψ̃.

2.2.1. Estimating the antimode

In [9], we show that if the true hazard function has a unique antimode at ã, then the antimode of
the MLE will converge to ã as the sample size tends to infinity. In fact, we conjecture that the rate
of this convergence is n1/5. However, our algorithms are not yet optimised to find the estimator
of the antimode.

2.2.2. Gridded implementation

Proposition 2.1 shows that the theoretical value of ψ̃(a) is bathtub-shaped in a, and this is a key
observation in the application of the bisection algorithm. In practice however, we use the gridded
implementation to approximate the true ψ̃(a). Fortunately, we have found that this approximation
does not invalidate the bathtub shape, and the same is true of the gridless implementation (see
Figure 2).

2.2.3. Convergence

A key question in any algorithm is that of convergence. Using Lemma A.1 with Theorem 1 in
[12] and Theorem 7.2.3 in [15], one can check conditions for the constrained minimisation step.
However, these results would apply only to a theoretical implementation (and not our gridded, or
even gridless modifications). Second, we address the bisection step. As ψ̃(a) is not convex, this
is not guaranteed to converge to the overall minimum. One alternative is to do a gridded search
over a ∈ [0, X(n)], but this is much less efficient, and equally not guaranteed to find the minimum.
However, we have run the algorithm hundreds of times on both simulated and real data sets, and
have only observed nonconvergence in a small number of cases. For these cases, the reason that
the algorithm failed lies in the problem of nearly singular matrices described above. We emphasise
that the number of these cases was small, and convergence could always be achieved if the size
of the grid M was not chosen to be too large.

3. Examples and simulations

3.1. A simulated example

To illustrate our proposed estimators, consider the distribution with density given by

f (t) = 1 + 2b

2A
√

b2 + (1 + 2b)t/A
, on 0 ≤ t ≤ A.

This distribution was proposed in [16] as a relatively simple model with bathtub-shaped hazards,
which also has an adequate ability to model lifetime behavior. For simplicity, we will call this
the HS distribution after the authors. The distribution has convex hazards for all values of b in
the parameter space, b > −1/2. In Figure 1, we present an example of the MLE for a simulation
from this distribution with a sample size of 100. Notice that the estimator blows up at zero, and
also by definition at X(n). This behavior is typical of shape-constrained nonparametric estimators,
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512 H.K. Jankowski and J.A. Wellner

Figure 1. Estimation of the HS hazard with b = 0, A = 1 for a sample size of 100: the plot on the left shows the true
hazard function (bold), the estimated convex hazard (black) and the estimated bathtub-shaped hazard (grey step-function),
the actual observations are shown along the x-axis; the plot on the right shows the true cumulative hazard (bold), the
empirical hazard function Hn (grey), and the estimated cumulative hazard found by integrating the convex MLE (black).

see for example Remark 4.5 in [9]. We also compare our convex estimators to the bathtub-shaped
MLE without the convex restriction [2]. This estimator is also infinite beyond X(n), and is known
to be inconsistent at zero. Both the U-shaped and convex MLE appear to be following a similar
trend. Figure 3 also compares the cumulative hazards: of the true distribution, of the estimated
convex MLE, and of the data, Hn. Note that the estimated function follows the empirical one
quite closely.

In Figure 2 we examine the gridless vs. gridded implementations for the HS distribution with
b = 0, A = 1. First, we examine the ‘bisection diagnostics’ for different implementations for the
same data as in Figure 3. The first plot of Figure 3 shows the values of the negative of the profile
log-likelihood, − log{maxh∈K(a) Likmod(h)}, as a function of the antimode a for the values of
the antimode checked by the bisection algorithm. Note that the bathtub shape of the negative
of the logarithm of the profile likelihood is preserved by the different implementations. Also,
the gridless implementation with gridsize M = 100 had a similar running time to that of the
gridded implementation with M = 2000, but achieved greater accuracy. In the remaining plots
we examine more closely the accuracy vs. running time of both implementations. The R package
convexHaz was used to assess the efficacy of the methods for 25 samples of size 100 from the
HS distribution with b = 0, A = 1. In each of the 25 samples, a convex MLE with antimode

Figure 2. Gridded vs. gridless implementations: bisection diagnostics for the convex MLE of Figure 1 (left), and a
comparison of the accuracy of 25 samples of size 100 from the HS distribution with b = 0, A = 1 (middle – stan-
dardised results for the negative log-likelihood, right – simulation times). The three configurations had (A) M =100,
GRIDLESS = FALSE, (B) M = 100, GRIDLESS = TRUE, and (C) M = 1000, GRIDLESS = FALSE; M denotes the
grid size, and if GRIDLESS = TRUE, the gridless implementation was used.
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Figure 3. Support size as a function of sample size for the convex MLE: the figure shows the number of support points
obtained for each sample size n when observations were drawn from either a Weibull distribution with cubic hazard
(black) or an exponential distribution (grey). Each boxplot results from 10 different samples. For the Weibull distribution,
we also show the line no. touchpoints = Cn1/5, where the constant C was determined from the data.

at zero was fit to the data, using the function srMLE from the R package convexHaz. For a
data set x, the functions implemented were (A) M = 100, GRIDLESS = FALSE, (B) M = 100,
GRIDLESS = TRUE, and (C) M = 1000, GRIDLESS = FALSE. Standardised results for the
negative log-likelihood for each data set across the three settings appear in the middle, and the
boxplots of the running times in the right plot. We can see that 23 out of the 25 times the gridless
M = 100 implementation has comparable results at a shorter running time than that of the gridded
implementation with M = 1000. Using the gridless implementation does not always guarantee a
faster and more accurate result for the MLE algorithm: The method does increase the accuracy
of the step that uses the SR algorithm to minimise ψmod, but has varying results with the overall
algorithm.

3.2. Support size vs. sample size

The size of the support of the MLE ĥn is in general considerably smaller than n. (For h with
decomposition as in Equation (4), the size of the support is k + m + 1α �=0 << n.) In fact, the
behavior varies depending on the shape of the true hazard function.

Theorem 2.7 of [9] shows that the MLE converges locally at a rate of n2/5. The result also
gives information on the asymptotic number of support points of the estimators. That is, for a
fixed location x0, in a neighborhood of size n−1/5 the number of support points is constant. This
also implies that the total number of support points should grow as Cn1/5. However, this holds
only if the second derivative is strictly positive. We conjecture that for hazards with h′′

0(x) ≡ 0,
the rate of convergence will be n1/2, and that this rate of convergence will be global. If this
conjecture holds, then the growth of support points in sample size should be different for, say,
the exponential distribution than for the Weibull distribution with cubic hazard. This is exactly
what we see in Figure 3, where we plot the number of support points vs. sample size in the
MLE for simulations from the Weibull distribution vs. the exponential distribution. Although the
algorithm finds an approximation to the MLE, and hence the number of support points is also
approximate, the simulation shows a clear difference in the asymptotic behavior between the two
hazard rates.
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3.3. Two examples

Next we consider the number of operating hours between successive failures of air conditioning
equipment in 13 aircrafts. A total of 213 times were recorded. This data set was studied in [17]
and again in [18]. We are interested in the overall hazard rate of the intervals between successive
failures.

The analysis of [17] is summarised as follows. First an exponential fit to the data was considered.
Although the null hypothesis of exponential times was not rejected by the Kolmogorov–Smirnov
test, the data appeared to exhibit a decreasing hazard rate. Specifically, the empirical survival
function lies first below, then above the fitted exponential one, indicating a lack of fit. Also,
the intervals do not show a trend toward either longer or shorter intervals with increased use of
the unit. On closer inspection, it appears that the exponential is a good-fit to the data, but that
each airplane is following a different failure rate. This would correspond to the pooled intervals
exhibiting a decreasing failure rate [17, Theorem 2]. The null hypothesis of a constant hazard
rate (corresponding to the same exponential distribution for all 13 airplanes), was then tested
against the alternative hypothesis of decreasing failure rate (corresponding to different exponential
distributions for the different airplanes) via a test statistic because of [19]. The resulting test was
significant, with a p-value of 0.007, and hence lead to the conclusion that the pooled distribution
has a decreasing hazard rate.

Cox and Lewis [18] consider fitting time-dependent Poisson processes to the data, and ultimately
settle on a mixture of homogeneous processes, in agreement with Proschan [17].

Figure 4 shows our fit of the nonparametric convex MLE. The MLE has an antimode at the
375 h mark, which appears to be in contradiction to the results of [19]. We investigated this further
using resampling methods, and found that there is no sufficient evidence against the hypothesis
of decreasing failure rate. Therefore, our ultimate estimator is the nonparametric convex and
decreasing MLE to the data, also shown in Figure 4. We note that this estimator maximises the
full likelihood (Equation (1)), and not the modified likelihood (Equation (2)). The tail of the
survival functions explains why it is difficult to tell the difference between a decreasing curve,
and a convex curve; this may be partially explained by how close the cdfs for both fits are (see
the right plot in Figure 4), along with the fact that the difference appears in a region with very
few observations.

Finally, we apply our estimators to a lifetime data set: the Canadian mortality table for the
years 2000–2002 [20]. To generate our results, we took a random sample of size n = 1000 from
the distribution given by the life tables. We also use a simplified version of the standard actuarial

Figure 4. Maximum likelihood estimators for air conditioning data of [14]: all three plots show the convex fit (solid
line), convex decreasing fit (dashed line) and exponential fit (dotted line). The rightmost plot shows the hazard functions,
with the data plotted on the x-axis. The two left plots show the cumulative hazard and the survival function respectively;
Here, the empirical functions are also added in grey. Note that differences in the nonparametric estimators appear at
roughly the 300 h mark: only 12 of the 213 observations are larger than 300, and 7 of 213 are larger than 400.
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Figure 5. Maximum likelihood estimator for Canadian lifetime data: the leftmost plot shows the fitted hazard rates for
males (black) and females (grey); fitted and empirical cumulative hazard rates and survival functions are shown in the
two plots to the right.

Figure 6. A comparison of the parametric model of [21] (denoted as [BLZ]) to the nonparametric convex MLE: we
show the [BLZ] fitted and empirical survival functions (left, and middle) as well as the convex MLE fitted and empirical
survival functions (right - this is a close-up of Figure 5). The [BLZ] model was fit directly to the life-table survival function,
whereas the convex MLE was fit to a sample of size 1000 from this distribution.

assumption of uniform deaths for fractional ages. That is, we assume that all deaths occurred
half-way through the year. The resulting MLE for both male and female lifetimes are given in
Figure 5; fitted cumulative hazards and survival functions are also shown. A parametric approach
for this data was considered in [21] (Figure 2(a)). Specifically, Bebbington et al. [21] fit a mixture
of flexible and reduced additive Weibull survival functions.A comparison of the survival functions
is provided in Figure 6.
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Appendix 1. Proofs

Lemma A.1 There exists a unique minimiser of the function ψ(h) over K(a) and over K. Moreover, in each case, the
minimiser has support of at most size n + 1, where n is the sample size. It follows that the minimiser has finite total measure.

This result tells us that both the MLE and constrained MLE are well-defined. The proof is omitted, as it is a slight
modification of the proof of Propositions 3.2 and 3.5 in [11]. The interested reader is directed to [13] for the details.

Proof of Proposition 2.1 Since K(a1) ⊂ K, the first inequality is clearly true. It remains to prove the second.
First, by arguing along the lines of the proof of Lemma 2.1 of [11], one may show that the function ĥn,a minimises

ψ(h) over K(a) if and only if it satisfies∫ ∞

0
Ĥn,a(t)dFn(t) = 1 − 1

n
. (A1)

∫ ∞

0

1

ĥn,a(t)
It �=X(n)

dFn(t) ≤
∫

[0,∞)

tdFn(t), (A2)

∫ x

0

x − t

ĥn,a(t)
It �=X(n)

dFn(t) ≤ x2

2
−

∫
[0,x]

(x − t)2

2
dFn(t) (A3)

for all x ∈ [0, a], with equality at all τ1, . . . , τk .∫ ∞

x

t − x

ĥn,a(t)
It �=X(n)

dFn(t) ≤
∫

[x,∞)

(t − x)2

2
dFn(t), (A4)

for all x ∈ [a, X(n)], with equality at all η1, . . . , ηm.
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Let hi = argminh∈K(ai )
ψ(h). A simple calculation shows that

0 ≥ ψ(h0) − ψ(h1)

≥
∫ ∞

0

{
H0(t) − H1(t) +

(
1 − h0(t)

h1(t)

)
It �=X(n)

}
dFn(t)

Using the decomposition (3) of h0 with mixing measures α0, μ0, and ν0, this last display may be rewritten as

α0

{∫ ∞

0

(
t − 1

h1(t)
It �=X(n)

)
dFn(t)

}
+

{
1 − 1

n
−

∫ ∞

0
H1(t)dFn(t)

}

+
∫ a0

0

{
x2

2
−

∫ x

0

(x − t)2

2
dFn(t) −

∫ x

0

x − t

h1(t)
It �=X(n)

dFn(t)

}
dν0(x)

+
∫ ∞

a0

{∫ ∞

x

(t − x)2

2
dFn(t) −

∫ ∞

x

t − x

h1(t)
It �=X(n)

dFn(t)

}
dμ0(x)

≥
∫ a1

a0

{∫ ∞

x

(t − x)2

2
dFn(t) −

∫ ∞

x

t − x

h1(t)
It �=X(n)

dFn(t)

}
dμ0(x),

where the last inequality follows from Equations (A1)–(A4). Now, if μ0 ≡ 0 on [a0, a1] then h0 has an antimode at a1,
and hence h0 and h1 must be equal. In this case, there is nothing to prove, and hence we assume that μ0 has positive mass
on [a0, a1]. It follows that there exists a y ∈ [a0, a1] such that

∫ ∞

y

{
(t − y)2

2
− t − y

h1(t)
It �=X(n)

}
dFn(t) ≤ 0.

Combining this with Equation (3) applied to h1 on [a0, a1], we obtain that

y2

2
−

∫ y

0

{
(y − t)2

2
+ y − t

h1(t)
It �=X(n)

}
dFn(t) +

∫ ∞

y

{
− (t − y)2

2
− y − t

h1(t)
It �=X(n)

}
dFn(t)

is positive, which implies that

∫ ∞

0

{
y2

2
− (t − y)2

2
+ t − y

h1(t)
It �=X(n)

}
dFn(t) ≥ 0

for y ∈ [a0, a1]. Next, write this expression as a function of y

f (y) =
∫ ∞

0

{
y2

2
− (t − y)2

2
+ t − y

h1(t)
It �=X(n)

}
dFn(t)

=
∫ ∞

0

{
t

h1(t)
It �=X(n)

− t2

2

}
dFn(t) + y

∫ ∞

0

{
t − 1

h1(t)
It �=X(n)

}
dFn(t).

By Equation (A2) this is an increasing function in y. Therefore, it follows that f (y) ≥ 0 holds also for all y ≥ a1.
Now, for h1 ∫ ∞

x

{
(t − x)2

2
− t − x

h1(t)
It �=X(n)

}
dFn(t) ≥ 0

holds by Equation (A4) for all x ≥ a1. Which, as f (x) ≥ 0 for x ≥ a1 implies that

∫ ∞

0

{
x2

2
− (t − x)2

2
+ t − x

h1(t)
It �=X(n)

}
dFn(t) +

∫ ∞

x

{
(t − x)2

2
− t − x

h1(t)
It �=X(n)

}
dFn(t)
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is again greater than or equal to zero. This may in turn be rewritten as

x2

2
−

∫ x

0

(t − x)2

2
dFn(t) ≥

∫ x

0

x − t

h1(t)
It �=X(n)

dFn(t) for allx ≥ a1. (A5)

Finally, calculating as above, we obtain the desired inequality

ψ(h2) − ψ(h1) ≥
∫ ∞

0

{
H2(t) − H1(t) +

(
1 − h2(t)

h1(t)

)
It �=X(n)

}
dFn(t)

= α2

{∫ ∞

0

(
t − 1

h1(t)
It �=X(n)

)
dFn(t)

}
+

{
1 − 1

n
−

∫ ∞

0
H1(t)dFn(t)

}

+
∫ a2

0

{
x2

2
−

∫ x

0

(x − t)2

2
dFn(t) −

∫ x

0

x − t

h1(t)
It �=X(n)

dFn(t)

}
dν2(x)

+
∫ ∞

a2

{∫ ∞

x

(t − x)2

2
dFn(t) −

∫ ∞

x

t − x

h1(t)
It �=X(n)

dFn(t)

}
dμ2(x)

≥
∫ a2

a1

{∫ x

0

(t − x)2

2
dFn(t) −

∫ x

0

x − t

h1(t)
It �=X(n)

dFn(t)

}
dμ0(x) ≥ 0,

by Equations (A1)–(A4) and (A5). A similar argument proves the inequality minh∈K(a1) ψ(h) ≤ minh∈K(a2) ψ(h) for
a2 < a1 < a0. �
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