Nonparametric Statistics and Related Topics
A K.Md.E. Saleh (Editor)
1992 Elsevier Science Publishers B.V. 313

BOOTSTRAP LIMIT THEOREMS: A PARTIAL SURVEY
Jon A. Wellner"?

! Department of Statistics GN-22, University of Washington, Seattle, Washington, 98195
2 Research partially supported by: National Science Foundation Grant DMS-8723011

Abstract:

Bootstrap resampling methods have earned an important place in the statistician’s
toolkit since their systematic introduction by Efron (1979). One useful and basic way of
validating a particular bootstrap method is by proving that it is consistent: conditionally on
the observed data the bootstrap distribution has the same asymptotic behavior as the (cen-
tered, standardized) sampling distribution of the original estimator either a.s. or in proba-
bility. Considerable progress has been made during the past few years in validating vari-
ous bootstrap methods via such consistency limit theorems, notably the elegant results of
Giné and Zinn (1990) for bootstrapping empirical processes. Here we review limit theory
for a variety of bootstrap methods including Efron’s bootstrap, the Bayesian bootstrap, and
various parametric or model - based bootstrap methods, with emphasis on results for gen-
eral bootstrap empirical processes. We also present several new results -- in particular a
limit theorem for sequential bootstrap sampling which yields joint in bootstrap sample size
limit distributions -- and briefly review some open problems.

1. Introduction

Bootstrap resampling methods have become an important tool in statistics since their
introduction by Efron (1979), (1982). The new Cumulative Index to IMS Scientific Jour-
nals 1960 - 1989 (Trumbo and Burdick (1990)) lists 57 articles on the bootstrap in IMS
publications alone, and this represents Just a small fraction of the research effort on the
bootstrap and variations thereon over the past 12 years.

One important variation on the bootstrap with which we will be concerned here is the
““Bayesian bootstrap”’ introduced by Rubin (1981).

Bickel and Freedman (1981) carried out an extensive asymptotic analysis of Efron’s
nonparametric bootstrap for iid real - valued data, and, in particular, showed that the
bootstrap empirical and quantile processes are asymptotically consistent; i.e. the asymp-
totic behavior of the original processes is a.s. replicated by the Efron’s nonparametric
bootstrap. Their consistency for empirical and quantile processes in one dimension have

first validation of the bootstrap for general empirical processes: he treated the empirical
process indexed by a Vapnik - Chervonenkis class of sets. Lo (1987) gave an asymptotic
Justification for Rubin’s Bayesian bootstrap in the classical one-dimensional setting. His
results in one dimension have been strengthened (in the much the same way that Csbrgo
and Mason (1989) strengthens Bickel and Freedman (1981)) by Einmahl and Mason
(1991) following preparatory work by Mason and Newton (1990).

Our object here is to give a brief survey of recent progress in validating various
bootstrap methods, including Efron’s nonparametric bootstrap, Rubin’s (1981) Bayesian
bootstrap and generalizations thereof, and parametric or model - based bootstrap methods,
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with emphasis on results for general bootstrap empirical processes: Instead of considering
real - valued random variables, we consider, as in the theory of general empirical
processes, sampling from a probability measure P on an arbitrary measurable space
(ALA).

We also include several new results: in section 2 we examine the joint behavior of
several different bootstrap methods; in section 4 we present a theorem concerning the
““joint in sample size’’ behavior of Efron’s bootstrap.

For a more comprehensive review of bootstrap methods, see €.g. Swanepoel (1990).

Now we introduce some notation and terminology from the theory of empirical
processes which we will use throughout the paper; see also Giné and Zinn (1984), (1986),
(1990).

Let (A,A,P) be a probability space, and let X,, --- Xp, -+ be iid
P . Suppose that F is a collection of real-valued measurable functions on A . Let

n
P, = 711— Y, 3y, = the empirical measure ,
5
and
X, = \n (P, — P) = the empirical process

considered as elements of [~(F) , the space of all bounded real valued functions on F.
Here

1 n
P,(f) = ;Zf(X,-) and P(f) = [fdP, f € F.
i=1
Note that P e I[=(F) if and onlyif [Pllp = fSupF P < oo
€
Two centered Gaussian processes in  [™(F) which arise in the following are:
Z = a P - Brownian motion process (Zp)

with

Cov@Z(f).Z@) = P(fg), f.8 € F;
and

X = a P - Brownian bridge process (Gp)
with

Cov(X(f).X(g)) = P(fe) - PUWP®), f.g € F.

Let pp and ep denote the natural Gaussian pseudometrics on F  corresponding to
X and Z respectively:for f,g € F

pA(f.g) = Varp(f X) — g(X)), e (f .8)
Note that since Z is P — Brownian motion, then
Z - Z()P isa P - Brownian bridge process Gp ,

and, on the other hand, if the P — Brownian bridge process X and a standard normal
random variable Z are independent, then

Ep(fX) — g(X))?.

il

X + ZP isa P - Brownian motion process Zp .

We say that F is Zp — pregaussian if Z can be chosen sothat Z € C(F,ep)
as. where C(F,ep) is the collection of ep = uniformly continuous functions in
[=(F). For short this will be written as F € PG(Zp). Similarly, F s




315

Gp — pregaussian if X can be chosen so that X € C(F,pp) as. where C(F,pp)
is the collection of pp — uniformly continuous functions in [*(F), and in this case we
writt F e PG(Gp).

2. Limit Theorems for Nonparametric Bootstrapping
Let (A,A,P) be a probability space, and let X;.X5, --- beiid P.Let

n
P, = -}{Z 8y, = the empirical measure on A4 ,
i=1
and let
X, =Vn(P, - P) = the empirical process .
We consider P, and X, as processes indexed by functions f in a class
F c LyP).

For any given n > 1 and a given sequence of Xa§ ’s, Xi(w), Xo(@), --- denote
the empirical measure of the first n X;(@) sby P2 . Let

#*

X; s Xy
be a “‘bootstrap sample”” from P,” . Then the bootstrap empirical process X, is
X, = \n@®, - PP

I T
i=1

1

1 n
*/'T(*n'z M8y — PO
i=1

_ 1 & * ns
= ‘j;‘l( R )
i= -
where
My ~ Mult,i(n,(—l—, ’-:z_)) is independent of the X;’s .
n

Note that the components M,; of M, are marginally just Binomial(n ,1/n) random
variables, and hence they converge in distribution (xr’xarginaliy) to Poisson(1) random vari-
ables. Furthermore the components of M, are nearly uncorrelated since
Cov [M,; ,M,,'j] = — 1/n%. Thus the bootstrap empirical process X, can be thought of
as essentially equivalent to the process :

I n
Z* = E (Y - I)SX;-{(:))
n \/’;; 5 i
where Y, Yy, -+ areiid Poisson(1) random variables. Another way of arriving at the
process Z, is via ‘“‘Poissonization” of the bootstrap  sample  size: let
N, ~ Poisson(n) be independent of the X;’s and the X;’s. If
, 1 1 .
_];j = (11}'3 e vlnj) - Multﬂ(i"(;’ Tt >‘;)): J=12, -

are iid, then

. _ & 1 1
A_'!k = E_i_j - Mukn(k;{“> tt Q_}}’
j=1 n n
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and
_1‘1};: -~ (Yll e vYn)

where Yy, - -, Y, are iid Poisson(l). Thus the ‘‘Poissonized bootstrap empirical pro-
cess”” Z, defined by

+ = Lo s
z, = f’;g( v~ D)
d
I n
= F2 - Dy

i
L

Now note that we can rewrite = Z, as

e_ 12 >
z, _‘/71:;1 ¥ - Dy — P) + W@, — DP

Y, + \n(¥, - DP

where the (¥; — 1) ’s are iid real-valued, mean-zero “multipliers,” and the sequence
(SX‘ — P) satisfies the CLT in the Banach space [(F) . For ‘‘multiplier sums’” such as
in ¥, , Ledoux and Talagrand (1988) and Praestgaard (1990) have proved an interesting
“multiplier central limit theorem’” which we now state.

To prepare the way, we need just a little bit more notation and terminology: Let F
be F(x) = (supser If@)h’, x € A, be the envelope function of F. Here, if
h:A — R is an arbitrary function, then h denotes the least measurable function
dominating 4 ; see e.g. Dudley (1984) or (1985).

For our main results we also need a measurability assumption which insures that
X, llg~(s,p,) 1is completion measurable under P and Fubini’s theorem can be applied to
{12 YiSX'“F'(&p') where the Y; are iid real-valued mean zero rv’s independent of
the X;’s. In the terminology of Giné and Zinn (1984, 1986, 1990), we require F to be
nearly linearly deviation measurable for P ,or F € NLDM(P) for short, and that both
F2 "and F? be nearly linearly supremum measurable, or NLSM (P). When all of
these hold, we say F € M(P). Itis knownthat F € M(P) if F is countable, or if
the empirical processes X, are stochastically separable, or if F is image admissible
Suslin (see Giné and Zinn (1990), pages 853, 854).
Theorem 2.1. (Ledoux and Talagrand (1988); Praestgaard (1990)). Suppose that:

@ F e M(@P) and [|Pllg < .

() My, Mg, --- are iid with Emy=0, Var()=03 < e, and

N € Ly;;ie

f; VPrimI>0)dt < .

Then the following are equivalent:
A. F e CLT(P) and PF? < o
B. Fe PGP) and n 231 m; Gy — P) = 0yGp in [°(F) for
P —ae .

Ledoux and Talagrand (1988) prove theorem 2.1 in the case of a separable Banach
space B and with T; iid standard normal; they also indicated the extension to non-
Gaussian, symmetric multipliers 7 satisfying the L,; condition. Praestgaard (1990)
carried out the generalization to the nonseparable Banach space [“(F) and possibly
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asymmetric multipliers 7; as stated in theorem 2.1. Also see Ledoux and Talagrand
(1991), theorem 10.14, page 293. :

In view of theorem 2.1 and the preceding discussion, the following limit theorem for
the bootstrap empirical process seems very natural.
Theorem 2.2. (CLT for Efron’s bootstrap, Giné and Zinn (1990)). Suppose that:
F € MP), |IPllg < =, and that F has envelope function F. Then the following
statements are equivalent:

A. F e CLTP) and P(F? < .

B. Z; = Z" ~ Z as. P~ in I"(F).

C. X, = X'~ Gp as. P* in I~(F).

The equivalence of A and C is due to Giné and Zinn (1990) (without the addi-
tional hypothesis ||Plg < o), while the equivalence of A and B follows from
Praestgaard’s (1990) extension of the Ledoux - Talagrand theorem 2.1. Klaassen and
Wellner (1992) show that B and C are equivalent. Hence there is a direct link between
the multiplier CLT of Ledoux and Talagrand (1988) and the bootstrap CLT of Giné and
Zinn (1990).

This “multiplier;’ perspective on Efron’s (1979) bootstrap makes it clear that multi-
pliers other than M,; may be of interest and importance. In fact, another interesting

choice of multipliers is as follows: let T, Ty, -+- be iid positive rv’s with
ET, = 1.For n = 1,2, -+ define

W, = Ti ] I, - 2.1

ni = Tl + . + Tn » 1= ’ ;n . ( 4 )

Then 0 < W, <1 and Y2, W, = 1. The general weighted bootstrap empirical
measure P,Y’ and general weighted bootstrap empirical process X,?' are defined by

w n
P, = 3 Wby
i=1

and

x/ =\n@l - P9
When the T;’s are exponential(1),

d

(Wni’ T sWM) = <Dnia e »DM) (2.2)

where D, = U,_y; - Upoyjeys 0 =1, -+ |n are the spacings of a sample of

n —1 uniform(0,1) random variables. Hence for this choice of the T;’s, PY 'is the
“‘Bayesian bootstrap’’ of Rubin (1981). It yields the posterior distribution of P under a
flat (noninformative, improper) prior for P .

To use the Ledoux and Talagrand theorem 1 to study XY, we note that it can be
expressed in terms of the iid 7T} ’s as

x¥ = 2 L5a - DG - P) 23)
T, ¥n 5

s Vn(== - HEPe - P

where the first term is exactly of the form dealt with by theorem 2.1, and the second term
is easy to handle by a Glivenko - Cantelli theorem for P, and the ordinary central limit
theorem. This motivates the following theorem of Praestgaard (1990):
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Theorem 2.3. (CLT for the general weighted bootstrap; Praestgaard (1990)). Suppose
that:
@ Fe MP) and [Pl < .
(i) T; are iid positive random variables with ET; = 1, Var(T}) = 0% < oo,
and Tl € L'Z.,l :

j: NPrT; > Ddt < .

Then the following are equivalent:
A. F e CLT(P) and P(FYH < o.
B. XY = 6Gp in [=(F) for P™~— ae. .

The upshot of theorems 2.2 and 2.3 is that there are many different ways of obtaining
a bootstrap empirical process which mimics the behavior of the empirical process X, for
large n: every choice of the iid sequence {T;} satisfying the hypotheses (ii) of
theorem 2.3 yields a different bootstrap. While theorems 2.2 and 2.3 tell us that these
different bootstrap methods are in a sense the same, it remains to describe how the various
methods differ, both asymptotically and for finite sample sizes.

In the classical case of A = R and F = {l_. : € R}, Lo (1987) stu-
died the large sample behavior of Rubin’s Bayesian bootstrap. To better understand the
differences between P, and PY, we now consider Lo’s construction of P, and
P,‘,’V in the classical case. Now our T;’s are iid exponential(1) random variables so that
(2.2) holds, and we write P,:‘ for P,'fv . In fact, we will use a sequence of uniform(0,1)
random variables and the spacings thereof to form both P, and PY = P,”.

To be specific, let X, --- ,X, beiid F = P(—e,] (this F is the usual
distribution function, not the envelope function for an indexing class of functions; here
the envelope function is simply the  constant function 1), let
F, = n'3% 1. %), andlet X,y < --- < X,, denote the order statistics
corresponding to X, - - - ,X, . Let &, - ,&, -~ beiid Uniform(0,1) ran-
dom variables, let G,(t) = n 'Y lon@&) , wiite G,(st] = G,(t) = G,(s) for
0<s <t <1,andlet ,

0 =&, < Epn S~ S gn:n < E.m:ml-l =1

be the ordered &’s. Then Dy = &upy — &popymr, §=1, - ,n , are the spac-
ings of the first n—1 uniform random variables ;. Let F, be the distribution func-
tion which puts mass D,; at X,;(@), i =1, -~ ,n . Thus

Id n
F* 1) = ¥ Dy 8, (==t = X &ntii 1x,(0), Xur()(E) - Q49

i=1 i=1

Furthermore, since ,
i-1 i, . 1 1
(G, (—, =), i=1, -~ ,n) ~ Mult,(n,(—, =+, =),
n o n n n

we can construct Efron’s nonparametric bootstrap empirical distribution function as

F* " i i-1 i
n(t) = P”(——oc,[} = Z‘Gn(m’“"lsx'm-(m)(”wst}
i=1 non
L
H 5
= 2 () it o) - 25
i=1
Then
. .
X} = W E@) - FA0) = 3V G, - ) 1t @) X)) »
=1
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n (F;'(t) - F.21t))

n _ i i
Y. Vn (G, 1(;‘:'1") - ;) 1, (@) Xosaten(@) »

i=1

X'

[H]

I

and
X, + X,
= R EICD - ) WEED - D et
= S0+ VD ¢ W - L)) 1 @ 26
where

U =%@G, -0, V,=Vn@G1-1.
Now we know from Bahadur and Kiefer that

Himsu M = ...L a.s. : (27)
A b, logn 2 o ’

see theorem 15.1.2, page 586, Shorack*and Wellner (1986). Hence it is not surprising that

Efron’s bootstrap empirical process X, and Rubin’s Bayesian bootstrap empirical process

are related in the same way:

Theorem 2.4. SConncction/diffcrcnce between F, and F, ** when A = R). Sup-
F, and F,' are as constructed in (2.3) and (2.4). Then, with

pose that

b, = V2loglogn ,
oYX+ X
limsup ———————

n -3 \b, logn

n34SUp_ o cp <o N1 + FJN@) — 2F20)!

2.8)

limsup

n - oo b, logn
- L a.s
" S.

Corollary 2.1. If F,; and F,  are constructed as in (2.3) and (2.4), then
X,.X,) = WEF),~UF)) in [(RYy P~ —as. where I/ is a standard
Brownian _ bridge , ~process. Hence the  ‘‘average  bootstrap  estimator’
F% = (F, + F,)2 saisfies \n F®* — F,®) = 0 as.

The point is that depending on the way in which several different bootstrap methods are
constructed jointly, we may or may not be able to combine them to obtain yet another
bootstrap estimator: F/¢ " above fails miserably at the goal of mimicking the behavior of
Vn (F, — F); yet if we had chosen the weights independently (i.e. based on two
independent sequences of uniform(0,1) rv’s), then the resulting ‘‘average bootstrap empiri-
cal df”” works just fine. We will return to this point below.

Proof of theorem 2.4. Set d, = n**1\[b, Togn . The right side of (2.6) may be writ-
tenas I, + II, + IlI, where

I, @)

i

n i P
T Waio) + Vo G @) K@@ » @)

i=1
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1) = 3 W5 = Uy (=) 10 i ® ®
i=1 n n-1
and
n o1 1
M) = % (Wi (== = )} @ Xeulen®) - ©
i n-1 n

Now 4, [l < d, n:’;zrx"(n ~ 1) = o(1). Furthermore,
dn Hlnu S dnﬂl]ua—l + yn-—ln 3’ (d)

where the limsup of the right side is exactly 142 by the Bahadur - Kiefer theorem @7,
and finally,
1

d, Wl < 4, {mu,_,(';;:-{) + W, - U4} ©
- logn 1
o {O(‘ﬁ{loglogn) * 0(\5{)} as.
= o(l) as.

by known properties of the oscillation modulus of I/, and elementary considerations; see
Shorack and Wellner (1986), remark 14.2.2, page 545, with ¢, = (Iogn)“1 . This shows
that the limsup in (2.8) is no larger than 1/~2.

To prove the reverse inequality, note that

— i iy 1
dn“xn + xn " 2 dnlsx‘p?;‘_l IUn(n) + yn«l(n_I )' dn 0(\&-)

> W, (—— i
dy | Jax  Wp(o=p) + M=) ®
” 0(————1—0-&2—) by arguing as in (e) .
Vn loglogn
But by known properties of the oscillation moduli of U, and ¥,,
d, oy (/n) = o(1) and d, oy (1/n) = o(1) as., and hence

limsup d, max fU,,_I(-—:i*) + y"‘l(n_:f)l ®

i
n -0 14 n
1

= }:nlfli? d, IWn—i + Vil = '\}—5 a.s.

as in (2.7). Combining (f) and (g) shows that the limsup in (2.8) is > 7}—:-2_ . 0

These results lead to a number of open problems:

Open question 2.1. If we define the Bayesian bootstrap empirical measure by
P, =3 Dby and P, = 3 G,((-1)n ,iln]8y ) based on one
sequence &y, &,, o of iid Uniform(0,1) rv’s, then what is the joint limiting
behavior of (X, ,X,,") in I™(F) x I”(F) ?

Open question 2.2. For what sequence of exchangeable random weights {W,;} satisfy-
in%v >t W, =1 (but not necessarily of the form (2.1)) does it hold that
X

n => 0Gp in [I7(F) for P"~ae. ® forsome o > 07

For the classical real - valued case A =[0,1] and F = {Ipn: 1011},
Mason and Newton (1990) have solved open question 2.2 for exchangeable weights
(Wa) satisfying W, 20, S Wy =1, n¥h Wy — Un)* =, ¢, and
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n max; W} =, 0. This has been generalized to weighted empirical and quantile
processes in one dimension by Einmahl and Mason (1990). However, the problem
remains open for general empirical processes.

Now we formulate a result related to open question 2.1 for two different general
weighted bootstraps. Again, the key point is that the joint behavior of two different
bootstrap methods is highly dependent on the way in which we carry out the joint con-
struction: of course this can be chosen by the statistician! The two weighted bootstraps
which we will consider here will be constructed in a very particular way from one

sequence of uniform(0,1) random variables §;,§&,, --- as follows: Let F,, Fy be
two df’s on R* both with mean 1 and with both F,,F, e L,; . Define
T T8 = FEPEFFE), §= 1,2, - @9)

Then the (7;,T;®) pairs are iid with marginal df's F, and F, and the joint distri-
bution of each pair is the well-known Hoeffding-Fréchet joint df  H" with maximal
correlation p among all joint distributions with marginal df's Fy, F,; see for example
Whitt (1976). Now we construct weights (WP, W&, i = 1, ---",n from the first

n (TN, TP) pairs as in (2.1):
. o B .
wP =Ty TS, j=1,2, i=1, - ,n. (2.10)
i*=1

Finally, define the two general weighted bootstrap empirical measures by
* n ; .
P = W%, j=1,2. @11)
i=1

The following theorem gives the joint distribution of the two general weighted bootstrap
empirical processes

X, = \nPy - P®), j=1,2. .12)
Theorem 2.5. (Joint CLT for two particular weighted bootstrap empirical measures).

Suppose that:
@ F e MP) and ||Pllp < .

G @, 1%, =1,2, -+ are iid pairs of positive random variables con-
structed _ as in (2.9) with ETV) = 1 and
Var(T) = 6} < e, j=1,2,i=1,2, -+, and T € L, for
i=1,2.

Then
X1 X05) = X7.X5) in I°(F) x I=(F) (2.13)

for P™ — ae. ® where (X{",X3") is jointly Gaussian, X;* ~ o;Gp, j=1,2
andfor f,g € F,

Cov X (F).X3' (@) = p"010,(P(fg) -~ P(FIP@)) . .14
Corollary 2.2. Suppose that the hypotheses of theorem 2.5 hold. For any A e [0,1]
set Py = AP, + (1-MP,, ,and define X,3 = Vn (P,; - P2). Then

X5 = 6,Gp in [”(F) for P*- ze. o (2.15)

where
of = Mol + M1 -Wp’oy0, + (1-W)%2 2 0. (2.16)

Since the number o, is known to us as constructors of the two weighted
bootstraps, whenever it is positive we can combine the two weighted bootstraps to obtain
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yet another valid bootstrap based on P, with a straightforward interpretation.

Proof of theorem 2.5. By theorem 2.3, the processes X, converge weakly to
o; Gp, j=1,2,and hence they are marginally tight. Since marginal tightness implies
joint tightness (see, for example, van der Vaart and Wellner (1990) for a version of this
result _in the Hoffmann - Jgrgensen weak convergence theory), the joint sequence
(X,; . X,2): n=1,2, -} is tight. To complete the proof it suffices to, verify that
the finite - dimensional joint laws all converge to those of the process (X X, ) as
claiged. But this follows easily from the identity (2.3) and the Cramer - Wold device.

Proof of corollary 2.2. Note that by theorem 2.5
X3 = X+ (1-MX,5 = AX; o+ (1-MX3 ~ oG . O

3. Limit Theorems for Model - Based Bootstrap Empirical Processes

Let (A,A) be a measurable space, and let P = {Pg: 6 € O} be a model,
parametric, semiparametric, or nonparametric. We do not insist that © be finite -
dimensional. For example, in a parametric extreme case, P could be the family of all
normal (Gaussian) distributions on (A,A) = (R?,B%). Or, to give a nonparametric
example with only a smoothness restriction, P could be the family of all distributions on
A.R) = (R ,B?) with a density with respect to Lebesgue measure which is uni-
formly continuous.

Let X,,X,, -+ ,X,, - Dbeiid with distribution Py € P. We assume that
there exists an estimator 6, = 6,(X;, --- ,X,) of 8. Then Efron’s parametric (or
model - based) bootstrap proceeds by sampling from P,” = Pg () ® suppose that
xh, - ,X#  are independent and identically distributed with distribution P, on
(A,A), and let

n
P} = n'Y, 8y = the parametric bootstrap empirical measure , (3.1
5
and
xt, = \n@®} - P, (32)

the parametric bootstrap empirical process. The key difference between this parametric
bootstrap procedure and the nonparametric bootstrap discusged earlier in this section is that
we are now sampling from the model - based estimator P, = Py of P rather than

from the nonparametric estimator P, .
It often holds that

n@, -0 =7 as n — oo, (3.3)
and, if 8 — Py is differentiable in an appropriate sense,

Vi(Ps - Pg = Pt a5 n o e (34)
x\f}&ere j':'e is a derivative map. The parametric bootstrap would proceed by forming
8% = 8,(x%, -+ ,X%). We then want to show that for almost all sample
sequences X;,X,, "

n@f -8,y = vt ~ Y (3.5

and
Vn (Pgr — Pg) = Po¥# ~ PoY as n = oo, (3.6)




323

The following result is g nseful first step toward proving (3.5) or (3.6), especially if
8, = 6P,) so that :u = e(}ﬁ);}) - This type of theorem for ““model - based’” or
“‘parametric’’ bootstrap empirical processes was also suggested by Giné and Zinn (1991).

Theorem 3.1. (Convergence of the **parametric bootstrap™ empirical process). Suppose
that F is p— measurable with envelope function F  and that:

@ Fe CLT,(P) .
W) 1Py, = Pollg = 1B, - Pele —,. 0.
(i) F is p-— uniformly square integrable,
Then, for P> almost al sample sequences X 1. Xy, v -,
X, = yapt - Ps) = X§ - Gp, in I~F) 3.7

A8 n = oo,
Proof. First note that (i) and (iii) imply that F e AEC,(P,p) and F.,pp) s
totally bounded uniformly in P € P by Sheehy and Wellner (1991), theorem 2.2.
Hence, in particular, F e AECu({PR},p) and (F Pp,) s totally bounded. Further-
more, (iii) implies that for p*= ae. o the envelope F is (P2} - uniformly square
integrable. Thus, for P> — ae. o, the hypotheses of Sheehy and Wellner (1991)
theorem 3.1 are satisfied by F  for the sequence {P,°} = {Pé.@}. Then the concly-

sion follows from theorem 3.1 with Py = Py,

To give an example where this result is immediately useful, consider the non-
parametric example mentioned briefly above:

Example 3.1, (Bootstrapping from a *““smoothed empirical measure’’; or, the ‘‘smoothed
bootstrap*’). Suppose that
P =[P on (R4 B4 ): p = -3% exists and is uniformly continuous } .

Suppose C is a measurable Vapnik - Chervonenkis class of subsets of RY . Then
F=1{l:Ce Cl e cr, = CLT,(M) < CLT,(P), so (i) holds. Suppose
that P, " is defined for ¢ € A by

F,(0) = [1c00p, ()
where

. _ 1 y —x

Pu(x) = _b;;jk( 5 )AP.0)
where £ :RY 5 R is a uniform}y continuous density function. It follows that
P, € P and,if b, = 0 and nby — oo, then

[0 - poslar -, o

see Devroye (1983), theorem 1. When F is all indicators of a subclass of Borel sets C
the supremum in (il) is bounded by the total variation distance between P, and P,
which, in turn, is well-known to equal haif the L 1 — distance between the respective den-
sities (see e.g. the statement of Scheffé’s theorem in Billingsley (1968), page 224y).
Hence

WP, = Pl < I, - Pl = /0@ = sl ,, o,

so (i} holds. Since [(iii) holds mivially (with F = 1), theorem 4.5 shows that “‘the
bootstrap  from P,  works: e for P=  almost aj sample  sequences
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X, Xq, 0 Xin = X - Gp in I”(F).

For more general classes F, the results of Yukich (1989) could be used to verify
hypothesis (ii) of theorem 4.5.

Silverman and Young (1987) have studied several smoothed bootstrap methods, and
give criteria for determining when a(Pg ) will give a better estimator of o(P) than
op,) for functionals o :P — R ; see also Hall, DiCiccio, and Romano (1989) for
further work in this direction.

Example 3.2. (Bootstrapping from a monotone density).  Suppose that
P=(P on R*: P has nonincreasing Lebesgue density f }. Corresponding to
P e P, the distribution function is Fix) = PX <x) for x € R*.Since f is
monotone decreasing, F is concave. Grenander (1956) showed that if ) CTIEERI.

are iid P € P, then the least concave majorant F, of the empirical df F, is the
maximum likelihood estimator of F . It is known that F, is consistent:

\E, — Fll = sup F,(x) — F)l =g 03
X

see e.g. Barlow et al. (1972) and Marshall (1970), who shows that
WF, - Fll < IF, - Fli . Kiefer and Wolfowitz (1976) show that if F is twice
differentiable and -((FZ) = Supgeser f @OVinfy oy o FHO) < and
B(F) = infyr et = fOlif*¢t) > 0 where T = inf(t : F(t) = 1}, then

\n(F, - F) = UF) in I°(F) > DOT]; (3.8)

it is clear from Wang (1986) that (3.8) continues to hold if the conditions of Kiefer and
Wolfowitz (1976) are relaxed to “uniform convexity”” in the sense of assumption A of
Wang (1976), page 1116. Furthermore, Prakasa Rao (1969) and Groeneboom (1985)
show that if f,(t) is the derivative of F, at t (which exists at all ¢ except for a
subset of the observations), then, for ¢ such that —f'(¢t) > 0,

WBF, () = F@) =4 (- -;—f(t)f'(t))mZZ 39)

where Z _is distributed as the location of the maximum of the process
(w@) - t2:te R};here W isatwo- sided standard Brownian motion starting
from 0.

The question is which Gf any) of these results can be bootstrapped successfully?

We first apply theorem 3.1 to bootstrap  sampling  from ﬁ,, . Let
F = {lgg:1t € [0,71}. The collection of sets used to define F is trivially a
Vapnik - Chervonenkis class of sets, and hence is easily shown to be a M - uniform
Donsker collection; see e.g. Giné and Zinn (1991) or Sheehy and Wellner (1990), theorem
24, Thus F € CLT,(M) < CLT, (P) . It follows from theorem 3.1 that

xt, = n@F - F) = UF) as P=. (3.10)
Of course this can also be proved directly gy arguing as in Shorack (1982); see Shorack
and Wellner (1986), section 23.1: If gf ef, -+ are iid uniform(0,1) with qn_lPirigal

df L}, then we can represent the bootstrap sample by X} = F, "GN,
i=1, --- ,n . Hence

A d ~ i
R (Ff - E® = UXFE) = U*(F) as. P”.

But another interesting question is: if Ff is the least concave majorant of F, R
does

@B - ES = UF) as P77 (3.11)
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(Note that the conditions of ’gfcr and Wolfowitz (1976) fail.) Or, to go further still, if
Ja(t) is the derivative of F? at ¢ where f’() < 0, does it hold that

nBEI) - £ =, 27 f 1Bz pe - a0 (3.12)
We list these as open questions:
Open question 3.1. Does (3.11) hold?

Open question 3.2. Does (3.12) hold?

Theorem 3.1 clearly has applications to a wide variety of model - based bootstrap
methods: for example, semiparametric models such as the Cox model, but we forego
these applications here.

4. A “joint in sample size”’ bootstrap limit theorem

One interesting feature of Efron’s bootstrap is that it allows the possibility of estima-
tion of the sampling distribution of some statistic T, based on a sample size &k
different than the sample size » actually observed: simply draw a bootstrap sample of
size k! This was observed by Bickel and Freedman (1981). In fact, we can easily esti-
mate the sampling distribution of T, for several different sample sizes

0 <ky< - <k simultaneously by simply drawing bootstrap samples of these
same sizes. If we do this in the natural way by successively sampling

X1, X5, -, Xg, - iid Pe, (4.1)
then it is possible to establish the Joint limiting behavior of our estimators

P (T, € A), --- BT e A)Y)

for different sample sizes.

To set the stage for our ““joint in bootstrap sample size’’ limit theorem, for each
n=1,2 --. let

L=1Ms=qy, ), j=1,2, . (4.2)
bciidMultinomialn(l;(%, ,i—)).Thusfor k=1,2,--.
* *(n) _ k ) . 1 . 1
My = M, =¥ 1 ~ Mulzznomzaln(k,(;l—, . ,-,;-)) . 4.3)
=
and
* I id * 1 k 7
Pe = 7 X Midy = T & (& Li ) @4
1= J= i=

represents the empirical measure of a sample of size k from P2,
Let the bootstrap empirical process X, & for sample size & be defined by

X, = k@ - PY (4.5)
1 2 * k
=T 5:,; My ~ ‘;2')5}(,{0))

I

=501t - L5y, -y,
& 5 n’ e
and define the sequential bootstrap empirical process K; on [0,I]xF by

Kt f) = ‘\/%&X;gm}@}
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My - Ehg @) - P,

o

n

- LT 5 - @) - P 6)

i=1

Note thatfor 0 < s <t < 1l and f,g € F,
Cov 265 K0 1X) = L PAGE) — PRPE))

|
M=

=

oy
i
—

s, s ANeY(P(Ufg) - Pf Pg} @n

= Cov(K* (s f). K (1.8))

where K* isa P — Kiefer process Kp on [0,1] xF = F. This leads naturally to
the following theorem, phrased in the spirit of the Giné and Zinn theorem 3.2,

Theorem 4.1. Suppose that F e M(P). Then the following are equivalent:

A. F e CLT®) and P(F?H < e.

B. X! = X"~ Gp as. P° in I"(F).

C. K = K' - Kpas. P™ in I"(F).

As an ignmediate corollary, we obtain the joint behavior of the bootstrap empirical
processes X, (n) and X ) for sample sizes ki =[ns] and ky=[nf].

Corollary 4.1.  Suppose that Fe M(P), Fe CLT(P), P(FZ) < oo, and let
0 <s <t < o. Then

Xy 5]+ Xom ) = (\/ T,%TK:‘S")*\/ E%K;(”'))
_.1_ *ro . _1_. ¥ = s it

where Gg, G} are two P — Brownian bridge processes on F with

Cov(GE, Gp) = \/-f-{Pcfg) - PfPg}.

As a second corollary we obtain the limiting behavior of the sequential bootstrap process
corresponding to any one fixed function f € Ly(P) bytaking F = {f}:

Corollary 4.2. Suppose that f & Ly(P) . Then
d
K;(-.f) = K(.f) = 6;fB as. P> in [=([0,1) o D[0,1].

where 0‘} = Varp(f(X)) and B is standard Brownian motion.
Sketch of the proof of theorem 4.1. A is equivalent to B by the Giné and Zinn
theorem 2.2, and C implies B wivially (by noting that K,(1,") = X, ). Hence it
remains only to show that B implies C. "

, Suppose that B holds. It follows from (4.6) that, for each fixed n and fixed @,
K, is just the partial sum process corresponding to the iid [”(F) — valued random ele-
ments

i 1 .
Ty = X Ui = 8 — Py T = 1,2, 0. (a)

j=1
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Thus we are in the domain of theorem 1.1, page 511, Dudley and Philipp (1983). The key
conditions (1.4) - (1.7) of their theorem 1.1 hold with X; = Ty, J 21, and with
Yj = Y,,j » J 21, iid Gaussian with covariance

Cov[YnI(f)’YnI(g)] = Cov{Tnl(f)sTnl(g)} (b)
= P (fg) - PAIPO)

for f,g € F. The condition (1.5) follows from a.s. asymptotic equicontinuity of the
bootstrap empirical process X, which is guaranteed by B; see Giné and Zinn (1990),
equation (2.16), page 857. Thus we conclude that

nPmax|| ¥ (T, ~ Yl = 0 ©
<n jsk

in probability and in Ly, for p<2 as. P> 1t follows easily that, by defining the
Gaussian processes L, b

L¢f)

Yy
L [m]Y(f) te[0l], f eF

i s € 1, € N
W’l'lnj

J:

[l

we have

dp Ky L) = swp  ERKD - EA@H - 0 @
h € BL\(F)

as. P. Furthermore the Gaussian processes L, have covariances
. A [nt
Colls ) e = PR (o) _ pogypagy

for s,¢ e [0,1]] and [, g € F, where the right side converges P* as. to
(s Aty{P(fg) - PfPg) = CoviK™(s.,f).K (.g)] . Hence it follows from Fernique
(1985), corollary 2.2 (much as in the proof of E implies F of theorem 1.1 of Sheehy and
Wellner (1990)) that

dp -y K*) =  sup IER()) - ERK") - 0 ®
h e BL\(F)
as. P . Combining (d) and (f) completes the proof. [
Comparing theorem 4.1 with the results of section 2 leads to the following problem:
Open question 4.1. What is the appropriate analogue of theorem 4.1 for the general
weighted bootstrap (as in theorem 2.3)?

Acknowledgments: For the results on parametric bootstrap methods in section 3, I owe
thanks to both Anne Sheehy and E. Giné. The development in section 3 was suggested E.
Giné, and was originally a part of Sheehy and Wellner (1990).

References

Arcones, M. A. and Giné, E. (1990). On the bootstrap of M - estimators and other statist-
ical functionals Preprint, Department of Statistics, University of Connecticut, Storrs.

Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap.
Ann. Starist. 9, 1196 - 1217.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. .
Csbrgd, S. and Mason, D. (1990). Bootstrapping empirical functions. Ann. Statist. 17,
1447 - 1471,

Devroye, L. (1983). The equivalence of weak, strong and complete convergence in L,
for kernel density estimates. Ann. Starist. 11, 896 - 904.




328

Dudley, R. M. (1984). A course on empirical processes; Ecole d’Eté de Probabilités de
St. Flour. Lecture Notes in Math. 1097, 2 - 142, Springer Verlag, New York.

Dudley, R. M. (1985). An extended Wichura theorem, definitions of Donsker class, and
weighted empirical distributions. Lecture Notes in Math. 1153, 141 - 178, Springer -
Verlag, New York.

Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space
valued random elements and empirical processes. Z. Wahrsch. verw. Geb. 62, 509-552.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7,1 -
16.

Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. CBMS-
NSF Regional Conference Series in Applied Mathematics 38, Society for Industrial and
Applied Mathematics, Philadelphia.

Einmahl, U. and Mason, D. M. (1990). Approximations to permutation and exchangeable
processes. Technical Report, University of Delaware.

Fernique, X. (1985). Sur la convergence etroite des mesures gaussiennes. Z. Wahrsch. v.
Geb. 68, 331 - 336.

Gaenssler, P. (1986). Bootstrapping empirical measures indexed by Vapnik - Cher-
vonenkis classes of sets. Proceedings IV Vilnius Conference (1985) Prob. Theory and
Math. Statist., 1, 467 - 481.

Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes. Ann. Proba-
bility 12, 929 - 989.

Giné, E. and Zinn, J. (1986). Lectures on the central limit theorem for empirical
processes. Lect. Notes in Math. 1221, 50 - 113, Springer, Berlin.

Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures. Ann. Probabil-
ity 18, 851 - 869. ;

Giné, E. and Zinn, J. (1991). Gaussian characterization of uniform Donsker classes of
functions. Ann. Probability, 19, 758 - 782.

Grenander, U. (1956). On the theory of mortality measurement, part II Skand. Akt. 39,
125 - 153.

Groeneboom, P. (1985). Estimating a monotone density Proceedings of the Conference
in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Wadsworth, Belmont, L. M. Le Cam
and R. A. Olshen, editors.

Hall, P., DiCiccio, T. J., and Romano, J. P. (1989). On smoothing and the bootstrap.
Ann. Statist. 17, 692 - 704.

Hoffmann—!gﬁrgensen, J. (1984). Stochastic Processes on Polish Spaces. Unpublished
manuscript.

Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and
convex distribution functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 73 - 85.
Klaassen, C. A. J. and Wellner, J. A. (1992). Kac empirical processes and the bootstrap.
To appear, Proceedings of the Eight International Conference on Probability in Banach
Spaces, Bowdoin College, July 1991, Birkhauser.

Ledoux, M. and Talagrand, M. (1986). Conditions d’integrabilite pour les multiplicateurs
dans le TLC Banachique. Ann. Probability 14, 916 - 921.

Ledoux, M. and Talagrand, M. (1988). Un critere sur les petites boules dan le theoreme
limite central. Probab. Th. Rel. Fields 77, 29 - 47.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-Verlag,
New York.




329

Lo, A. (1987). A large sample study of the Bayesian bootstrap Ann. Statist. 15, 360 -
375.

Marshall, A. W. (1970). Discussion of Barlow and van Zwet’s papers in M. L. Puri (Ed.)
Nonparametric Techniques in Statistical Inference, 175 - 176, Cambridge University Press,
Cambridge.

Mason, D. M. and Newton, M. A. (1990). A rank statistics approach to the consistency
of a general bootstrap. Ann. Statist., to appear.

Praestgaard, J. (1990). Bootstrap with general weights and multiplier central limit
theorems Technical Report 195, Department of Statistics, University of Washington, Sub-
mitted to Ann. Prob.

Prakasa Rao, B.L.S. (1969). Estimation of a unimodal density. Sankhya Ser. A 31, 23 -
36.

Romano, J. P. (1988). A bootstrap revival of some nonparametric distance tests. J.
Amer. Statist. Assoc. 83, 698 - 708.

Romano, J. P. (1989). Bootstrap and randomization tests of some nonparametric
hypotheses. Ann. Statist. 17, 141 - 159.

Rubin, D. (1981). The Bayesian bootstrap. Ann. Statist. 9, 130 - 134.

Sheehy, A. and Wellner, J. A. (1991). Uniform Donsker classes of functions Technical
Report 189, Department of Statistics, University of Washington. Submitted to Ann. Prob..

g},lorack, G. R. (1982). Bootstrapping robust regression Commun. Statist. All, 961 -
2.

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to

Statistics, Wiley, New York.

Silverman, B. and Young, G. A. (1987). The bootstrap: to smooth or not to smooth?

Biometrika 74, 469 - 479.

gwanepocl, JW.H. (1990). A review of bootstrap methods. . Afri. Sratist. J. 24,1 -
4,

Trumbo, B. E., and Burdick, R. K. (1990). Cumulative Index to IMS Scientific Journals
1960 - 1989. Institute of Mathematical Statistics, Hayward.

Vaart, A. W. van der and Wellner, J. A. (1990). Prohorov and continuous mappings
theorems in the Hofﬂnann«];irgenscn weak convergence theory with applications to convo-
lution and asymptotic minimax theorems Technical Report 157, Department of Statistics,
University of Washington, Seattle. Submitted to Theory of Probability and Related Fields.
Wang, J.-L. (1986). Asymptotically minimax estimators for distributions with increasing
failure rate. Ann. Starist. 14, 1113 - 1131.

Weng, C. (1989). On a second - order property of the Bayesian bootstrap mean. Ann.
Statist. 17,705 - 710.

Whitt, W. (1976). Bivariate distributions with given marginals. Ann. Statist. 4, 1280 -
1289.

Yukich, J. E. (1989). A note on limit theorems for perturbed empirical processes. Stoch.
Processes and Their Applications 33, 163 - 174.







