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ABSTRACT. The likelihood ratio statistic for testing pointwise hypotheses about the survival time

distribution in the current status model can be inverted to yield confidence intervals (CIs). One

advantage of this procedure is that CIs can be formed without estimating the unknown parameters

that figure in the asymptotic distribution of the maximum likelihood estimator (MLE) of the

distribution function. We discuss the likelihood ratio-based CIs for the distribution function and the

quantile function and compare these intervals to several different intervals based on the MLE. The

quantiles of the limiting distribution of the MLE are estimated using various methods including

parametric fitting, kernel smoothing and subsampling techniques. Comparisons are carried out

both for simulated data and on a data set involving time to immunization against rubella. The

comparisons indicate that the likelihood ratio-based intervals are preferable from several

perspectives.

Key words: asymptotic distribution, bootstrap, confidence interval, current status data, kernel

smoothing, quantile estimation, rubella data, subsampling

1. Introduction

In recent years there has been considerable research on the analysis of interval-censored data.

Interval censoring happens when the variable of interest is not observed directly but is only

known to lie in an interval (one-dimensional or multi-dimensional, as the case may be) in its

domain. Such data arise extensively in epidemiological studies and clinical trials, especially in

large-scale panel studies where the event of interest, which is typically an infection with a

disease or some other failure (like organ failure), is not observed exactly but is only known to

happen between two consecutive examination times. In particular, large-scale HIV/AIDS

studies typically yield various types of interval-censored data where interest centres on the

distribution of time to HIV infection, but the exact time of infection is only known to lie

between two consecutive follow–ups at the clinic. In this paper, we are interested in estimating

the failure time distribution in the most basic version of the interval-censoring model, known

as the current status model or case 1 interval censoring. Here, the individual is checked only at

a single point in time and the status of the individual ascertained: 1 if the infection/failure has

occurred by the time they are checked and 0 otherwise. We introduce a new likelihood ratio-

based method for interval estimation of the distribution of time to event in the current status

model and compare it with several existing methods.

We now formally introduce the current status model.

1.1 The current status censoring model

Let (X1, T1), (X2, T2), . . . ,(Xn, Tn) be n i.i.d. pairs of random variables. For each i, Xi is

distributed as F, Ti is distributed as G, and Xi is independent of Ti. The distributions F and G
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are continuous and concentrated on the positive half-line. More concretely, we can think of n

individuals with Xi being the failure/survival time and Ti the ��observation time�� for the ith

individual, respectively. For the ith individual we observe the vector (Di, Ti), where Di ¼
1fXi � Tig is the indicator of a failure before Ti. We are interested in estimating F, based on

the current status data, and more specifically, in estimating F(t0), the value of F at t0, a fixed

time-point. We are also interested in making inference on the quantiles of F; i.e. estimate

F� 1(h0) for some 0 < h0 < 1.

The current status model introduced above is in some sense a fundamental model and is a

natural starting point for a large number of censored data models used in practice. It is very

different from right-censored models in that one does not observe the actual failure time itself;

consequently, the estimation of the survival distribution F is harder in this situation. This is

reflected in a slower rate of convergence of the non-parametric maximum likelihood estimator

(NPMLE) for F (n1/3 as we will see shortly), as opposed to the usual
ffiffiffi
n

p
rate that one

encounters with right-censored models. The current status model easily generalizes to the case

k interval-censoring model, where an individual with survival time X is observed at k time-

points T0 � 0 < T1 < T2 < � � � < Tk < Tkþ1 � 1, with the k observation times being

random, and one observes in which interval, (Ti, Tiþ1], the individual fails. The problem is

then, as in the current status example, to estimate F, the distribution function of X. See e.g.

Groeneboom & Wellner (1992) and Groeneboom (1996). The case k interval-censoring model

can be generalized further to mixed case interval censoring, where k itself is a random variable,

to allow greater flexibility in modelling (see e.g. Schick & Yu, 2000). The case k or mixed case

interval-censoring models generalize naturally to counting process models where we have a

counting process N(t) associated with each individual and only counts at the observation times

are recorded. Based on these, one seeks to estimate E(N(t)) � K(t), the mean function of the

counting process. Such models are important when one deals with recurrent events – for

example, a series of attacks or seizures as a patient is being monitored over time. For more

discussion on these issues, see e.g. Wellner & Zhang (2000).

While this paper will deal exclusively with (different estimation procedures for) the case 1

interval-censoring model, there is strong evidence to suggest that similar approaches can be

taken with the more general censoring models considered above.

The rest of this paper is organized as follows. Section 2 describes several different proce-

dures for the construction of pointwise confidence intervals (CIs) for F or F� 1. A natural way

of constructing such intervals is to use the asymptotic distribution of the NPMLE of F or F� 1;

this requires estimating the quantiles of the limit distribution, which can be done in several

different ways (using resampling techniques, smoothing or parametric fits). A new method for

construction of confidence sets that proceeds via inversion of the likelihood ratio test for

testing pointwise hypotheses about F or F� 1 is introduced. A major advantage of the likeli-

hood ratio method is the fact that the asymptotic distribution of the likelihood ratio statistic

(LRS) is free of nuisance parameters; consequently, the computation of asymptotic critical

values does not require estimation of nuisance parameters in the underlying model. Section 3

discusses the issues involved with these procedures and assesses the relative merits of these

methods through simulation studies. Our simulations indicate several advantages of the

likelihood ratio method over their MLE-based counterparts. In section 4, the different

methods are applied to a data set involving time to immunization by rubella in a population of

Austrian males. The appendix contains proofs of some of the results in the previous sections.

We end this section with some notation. For positive constants a and b and a two-sided

Brownian motion W(h), we denote the process aW(h) þ bh2, where h varies over the reals, by

Xa,b(h). We denote the slope (right derivative) of the greatest convex minorant (GCM) of Xa,b

by ga,b. Thus, g1,1 is the slope process of the GCM of the process W(h) þ h2 on the line. We
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denote by g01;1, the slope (right derivative) process obtained by differentiating the constrained

one-sided GCMs of the process W(h) þ h2, so that the constrained GCM to the left of 0 has

slope not exceeding zero and the constrained GCM to the right of 0 has slope not falling below

0. We denote by Z, the almost surely unique minimizer of the process X1,1(h) on the line. For

details see Banerjee & Wellner (2001) or Banerjee (2000).

2. Estimation procedures for F and F� 1

We denote the distribution of (D, T) under (F, G) by PF,G. The log-likelihood based on n i.i.d.

observations f(D1, T1), (D2, T2), . . . ,(Dn, Tn)g is then given by

log LnðF Þ ¼
Xn
i¼1

ðDi log F ðTiÞ þ ð1� DiÞ logð1� F ðTiÞÞÞ

¼ nPnðD log F ðT Þ þ ð1� DÞ logð1� F ðT ÞÞÞ ð1Þ

where Pn is the empirical measure of the observations fðDi; TiÞni¼1g. The methods in this paper

are based on maximization of the likelihood function (both without and under constraints on

F) and are described below. To ensure that the procedures used in this paper are correct, we

need to assume that both F and G are continuously differentiable in a neighbourhood of t0, the

point of interest, with positive derivatives f and g.

2.1. Pointwise confidence sets for the distribution function

The MLE-based method. This is based on the asymptotic distribution of the MLE of F(t0) in

the case 1 interval-censoring model. The MLE of F(t0) is Fn(t0) where Fn is the NPMLE of F

based on the current status data. From Groeneboom & Wellner (1992, theorem 5.1, p. 89), it

follows that

n1=3ðFnðt0Þ � F ðt0ÞÞ !d
4f ðt0ÞF ðt0Þð1� F ðt0ÞÞ

gðt0Þ

� �1=3

Z � CZ

where C ¼ C(F, f, g, t0). A 95% CI for F(t0) is then given by

½Fnðt0Þ � n�1=3Q̂:975; Fnðt0Þ � n�1=3Q̂:975�;

where Q̂:975 is a consistent estimator of Q.975, the 97.5th percentile of the limiting random

variable CZ. But Q.975 is simply C � .99818 where .99818 is the 97.5th percentile of Z; see

Groeneboom & Wellner (2001), where quantiles of Z are computed. As C involves the

unknown parameters F(t0), g(t0), and f(t0), we estimate C by

bCn ¼
4f̂nðt0ÞFnðt0Þð1� Fnðt0ÞÞ

ĝnðt0Þ

 !1=3

;

where f̂n and ĝn are estimates of f and g. An asymptotic 95% CI is then given by

Fnðt0Þ � n�1=3bCn � :99818; Fnðt0Þ þ n�1=3bCn � :99818
h i

:

In this paper estimates of f and g are obtained by kernel smoothing with bandwidths chosen

using cross-validation techniques (to be elaborated later). Parametric estimation of f and g are

considered in the context of the rubella data analysis.
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Parametric estimation of the nuisance parameters. Another possible option might be to

estimate f(t0) and g(t0) based on parametric models for f and g. This approach was used

by Keiding et al. (1996) with Weibull models for both f and g. For more details see

section 4.

Subsampling-based methods. The subsampling technique followed here is from Politis et al.

(1999) and is part of a general theory for obtaining confidence regions. The basic idea is to

approximate the sampling distribution of a statistic, based on the values of the statistic

computed over smaller subsets of the data. In the context of interval-censored data, we

have i.i.d. observations U1, U2, . . . ,Un from the model (with Ui � (Di, Ti)) and Fnðt0Þ � ĥn
is based on this i.i.d. sample. We also know that n1/3(Fn(t0) � F(t0)) has a limit

distribution J. To obtain large sample confidence regions for h0 � F(t0), we consider

Y1, Y2, . . . ,YNn
, where the Yi’s are the Nn � n

b

� �
subsets of fU1, U2, . . . ,Ung of size b listed

in any order. Let ĥn;b;i be the value of the NPMLE of F at t0 computed at data set Yi.

Now define

Ln;bðxÞ ¼ Nn
�1
XNn

i¼1

1fb1=3ðĥn;b;i � ĥnÞ � xg:

Let cn,b(b) ¼ inffx : Ln,b(x) � bg. Now let b ! 1 as n ! 1, but in such a way that b/n ! 0.

It then follows from theorem 2.2.1 of Politis et al. (1999), and the fact that J is continuous, that

for any 0 < b < 1,

PF ;G n1=3ðĥn � h0Þ � cn;bðbÞ
� �

! b:

It follows easily that for any 0 < a < 0.5,

PF ;G ðcn;bða=2Þ < n1=3ðĥn � h0Þ � cn;bð1� a=2Þ
� �

! 1� a:

Thus an asymptotic level 1� a confidence set for h0 is given by

ĥn � n�1=3cn;b 1� a
2

� �
; ĥn � n�1=3cn;b

a
2

� �h i
:

This approach can be slightly modified to yield symmetric subsampling-based intervals. Instead

of considering the limiting distribution of n1=3ðĥn � h0Þ, one considers the limiting distribution

of n1=3 j ĥn � h0 j, say ~J . Let

~Ln;bðxÞ ¼ Nn
�1
XNn

i¼1

1fb1=3 j ĥn;b;i � ĥn j � xg

and ~cn;bðbÞ ¼ inffx : ~Ln;bðxÞ � bg. As before, if b ! 1 as n ! 1, but in such a way that

b/n ! 0,

PF ;G n1=3 j ĥn � h0 j � ~cn;bðbÞ
� �

! b;

whence it follows that an approximate level 1� a confidence interval for h is

½ĥn � n�1=3~cn;bð1� aÞ; ĥn þ n�1=3~cn;bð1� aÞ�. Note that this is symmetric about ĥn. Sym-

metric subsampling intervals often have nicer properties than their more general

counterparts in finite samples. In fact, simulation studies showed this to be the case in

the current status model; hence in this paper we have used symmetric subsampling

intervals.
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As Nn ¼ n
b

� �
can be large, ~Ln;b can be difficult to compute. But one can estimate ~Ln;b via

sampling. Choose fI1, I2, . . . ,ISg randomly with or without replacement from f1, 2, . . . ,Nng,
approximate ~Ln;bðxÞ by

L̂n;bðxÞ � S�1
XS
i¼1

1fb1=3 j ĥn;b;Ii � ĥn j � xg;

and compute the ~cn;bðbÞs based on L̂n;b to get confidence regions. If S ! 1 with n, then the

confidence regions obtained thus are still asymptotically level 1� a.

The likelihood ratio-based method. The LRS for testing the hypothesis F(t0) ¼ h0 is given by

2 logðknÞ ¼ 2ðlog LnðFnÞ � logLnðF0nÞÞ;

where Fn is the unconstrained MLE and F0n is the constrained MLE under the null hypothesis.

It is shown in Banerjee & Wellner (2001, theorem 2.6) that under the above assumptions on F

and G,

2 logðknÞ !d

Z
ðg1;1ðzÞÞ2 � ðg01;1ðzÞÞ

2
n o

; dz � D:

Confidence sets of level 1� a with 0 < a < 1 are obtained by inverting the acceptance region

of the likelihood ratio test of size a; more precisely if 2 log kn(h) is the LRS evaluated under

the null hypothesis H0 : F(t0) ¼ h, then the set of all hs for which 2 log kn(h) is not greater

than da where da is the (1� a)th percentile of D, gives a limiting level 1� a confidence set for h.
The following proposition guarantees that the confidence sets obtained via inversion of the

LRS as described above have asymptotically correct coverage probability.

Denote the confidence set of (approximate) level 1� a based on a sample of size n from the

interval-censoring problem by Cn,a. Thus Cn,a ¼ fh : 2 log kn(h) � dag. Denote the true dis-

tribution function of the event time by F0 and let h0 ¼ F0(t0).

Proposition 1

Suppose that F0 and G have continuously differentiable densities f and g in a neighbourhood of t0
with f(t0), g(t0) > 0. Then

PF0 ;Gðh0 2 Cn;aÞ ! P ðD � daÞ ¼ 1� a:

Proof. This follows on noting that

PF0 ;Gðh0 2 Cn;aÞ ¼ PF0 ;Gð2 log knðh0Þ � daÞ ! PðD � daÞ ¼ 1� a;

by appealing directly to theorem 2.6 of Banerjee & Wellner (2001).

That the sets Cn,a are closed bounded intervals under mild conditions is guaranteed by

theorem 3.9.1 of Banerjee (2000).

2.2. Pointwise estimation of quantiles

Given a (one-dimensional) distribution function H, we can construct H� 1, the �inverse distri-
bution function� by setting H� 1(p) ¼ inffx : H(x) � pg. It is easy to show that H� 1 is well-

defined and that H(H� 1(p)� ) � p � H(H� 1(p)). If H is continuous, then H(H� 1(p)� ) ¼
p ¼ H(H� 1(p)). We call H� 1(p), the pth quantile of the distribution function H. Statisticians
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often refer to a pth quantile rather than the pth quantile, defining any number x satisfying

H(x� ) � p � H(x) to be a pth quantile. We however prefer to have a well-defined notion of the

quantile, largely for the purpose of avoiding ambiguity in what follows.

An important problem, in the context of interval-censored data, is to estimate the quantiles

of the distribution function of the survival time. With the rubella data set (dealt with in

section 4), for example, we might be interested in estimating the age by which 50% of indi-

viduals in the male population are immunized against the disease. With F, as before, denoting

the distribution of time to immunization, this amounts to estimating F� 1(h0) with h0 ¼ 0.5. In

this section we present results on quantile estimation in the interval-censoring problem; more

specifically we deduce the asymptotic distribution of the quantile estimates based on the MLE

of F, and also deduce the asymptotic distribution of the LRS for testing a null hypothesis of

the form F� 1(h0) ¼ t0 for a fixed h0. We then use these results to obtain confidence sets for the

quantiles of F and as before, compare various methods, by which this can be done.

Asymptotic distribution of the MLE of F� 1. We next obtain the asymptotic distribution of the

estimate of t0 ¼ F� 1(h0) based on the MLE Fn, of F, which is given by F�1
n ðh0Þ.

Lemma 1

If F and G are continuously differentiable in a neighbourhood of t0 ¼ F�1(h0), with positive

densities f(t0) and g(t0), we have, for k 2 R, x 2 R,

P n1=3 F�1
n ðh0 þ kn�1=3Þ � F �1ðh0Þ

� �
� x

n o
! P

4h0ð1� h0Þ
gðt0Þf ðt0Þ2

 !1=3

Z � x� k
f ðt0Þ

0@ 1A:

The above lemma is proved in the appendix. On setting k ¼ 0 in this lemma, we have the

following theorem, which gives us the asymptotic distribution of the MLE of the quantiles of

the survival distribution function.

Theorem 1

Consider the current status model. Let F and G be continuously differentiable in a neighbourhood

of t0 ¼ F�1(h0), with positive densities f(t0) and g(t0). Then

n1=3ðF�1
n ðh0Þ � F �1ðh0ÞÞ !d

4h0ð1� h0Þ
gðt0Þf ðt0Þ2

 !1=3

Z ¼ 1

f ðt0Þ
4f ðt0Þh0ð1� h0Þ

gðt0Þ

� �1=3

Z:

The above result can be used to get an asymptotic 95% CI for F� 1(h0); note however that the
constants involved in the limit distribution need to be estimated, as before. An approximate

asymptotic confidence interval is given by:

F�1
n ðh0Þ � bDnn�1=3qZ;:975; F�1

n ðh0Þ þ bDnn�1=3qZ;:975
h i

;

where qZ,.975 is the 97.5th percentile of Z and

bDn ¼
1

f̂nðF�1
n ðh0ÞÞ

4h0ð1� h0Þf̂nðF�1
n ðh0ÞÞ

ĝnðF�1
n ðh0ÞÞ

 !
:
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Likelihood ratio estimation of quantiles of F. The next theorem deals with the limiting

behaviour of the LRS for testing pointwise hypotheses about quantiles of the survival time

distribution.

Theorem 2

Let 0 < h0 < 1 be fixed. Consider testing the null hypothesis H0 : F
�1(h0) ¼ t0 based on cur-

rent status data. Denote the LRS for testing H0 by 2 logð~knÞ. Suppose that both F0 and G (the

true distributions of the event time and the observation time) are continuously differentiable with

positive derivatives f0 and g at t0. Then under the null hypothesis,

2 logð~knÞ !d

Z
ðg1;1ðzÞÞ2 � ðg01;1ðzÞÞ

2
n o

dz � D: ð2Þ

For a proof of this theorem, see the appendix.

A confidence region for t0 can now be obtained by inverting the acceptance region of the

likelihood ratio test. This is done in the following way. The LRS is computed under a family of

null hypotheses F� 1(h0) ¼ t as t varies over the line; the 95% confidence region for F� 1(h0) is
the set of all values of t for which the null hypothesis is not rejected. As argued in the proof,

the LRS for testing F� 1(h0) ¼ t is identical to the LRS for testing F(t) ¼ h0. Furthermore, it is

not difficult to see that the LRS as a function of t is piecewise constant; for each i, values of

t 2 [T(i), T(iþ1)) yield the same value of the LRS. Hence the exact 95% confidence region for

F� 1(h0) can be computed exactly with only finitely many computations (of order at most n;

this can be reduced through an intelligent search).

3. Comparisons through simulation studies

In this section we compare and contrast the different methods for the construction of con-

fidence sets described above. We first discuss and illustrate the construction of confidence

intervals for F at a fixed point of interest, and then, more briefly, describe the construction of

confidence intervals for the quantiles of F.

3.1. Confidence sets for F(t0)

MLE-based methods. The major drawback of the MLE-based intervals for estimation of F or

F� 1 is the need to estimate the densities f and g. We first focus on non-parametric estimation

of g.
As an i.i.d. sample from G is available, this can be used to construct the empirical distri-

bution function Gn. This has n support points and kernel smoothing techniques can be applied

directly. For the computations in this paper, we estimate g using a standard normal kernel and

bandwidth determined using both likelihood and least squares-based cross-validation tech-

niques. Least squares-based cross-validation is based on minimizing the integrated squared

error loss function
R
ðĝhðxÞ � gðxÞÞ2 dx as a function of h where ĝhðxÞ is the kernel density

estimator of g(x) using bandwidth h. The squared error loss is estimated using leave-one-out

cross-validation and results in the following criterion:

LSCVðhÞ ¼
Z

ĝhðxÞ2 dx� 2

n� 1

Xn
i¼1

ĝhðTiÞ �
Kð0Þ
nh

� �
where K is the kernel (see Loader, 1999). For the standard normal kernel the integral on the

right side of the above display has a closed form expression in terms of h and T1, T2, . . . ,Tn.
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The optimal h for a given sample T1, T2, . . . ,Tn is obtained by minimizing LSCV(h) over a fine

grid.

The likelihood-based cross-validation technique used in the paper is essentially a variant

of the original cross-validation technique proposed by Habbema et al. (1974) and Duin

(1976). The sample T1, T2, . . . ,Tn is divided randomly into roughly two equal parts; call

these D1 and D2. Let ĝh;Di denote the estimate of g using bandwidth h and data Di (for

i ¼ 1, 2). Define

LCVðhÞ ¼ PTi2D1
ĝh;D2

ðTiÞ �PTi2D2
ĝh;D1

ðTiÞ:

The optimal bandwidth is chosen by maximizing the above criterion as a function of h.

The trickier problem is to estimate the density f at t0; as we never observe the actual

failure times (the Xi’s) the empirical distribution function for F is not available. A kernel

smoothing approach using Fn, the MLE of F based on the interval-censored data, is the

easiest approach. This problem was also raised in Keiding (1991) and the following dis-

cussion by Groeneboom (1991). However, as the number of support points for Fn is only

Op(n
1/3) (resulting in fewer jumps and larger jump sizes compared with the empirical

distribution function that one could construct had the Xi’s been known), direct kernel

smoothing with naive bandwidth choices may not recover all the information lost in the

discrete NPMLE of F. Groeneboom (1991) suggested that a bandwidth of order n� 1/7

(corresponding to the optimal bandwidth for estimating the derivative of a density with a

third derivative) would be appropriate in this context, and went on to suggest a bootstrap

method with vanishing bootstrap sample size for carrying out the bandwidth selection.

Considerations analogous to those of Groeneboom & Jongbloed (2003) might suggest

further refinements of these methods. Braun et al. (2005) have recently suggested a kernel

density method for interval-censored data where they extend the usual approach by

computing the conditional expectation of the kernel weight corresponding to the ith ob-

servation conditional on Ii, where Ii is the interval in which the event is known to occur.

The estimator is shown to be the solution to a fixed-point equation which is then com-

puted using iterative techniques. For bandwidth selection, cross-validation-based ideas are

used. However, the computational intensity of this method led us to resort to direct kernel

smoothing of the NPMLE. Now, least squares-type cross-validation does not work in this

context, as there is no clear way of writing down the asymptotic mean-squared error of a

kernel estimator with bandwidth h. On the other hand, likelihood-based cross-validation

can still be employed. For this paper we follow (a version of) the method described in Pan

(2000). The data fDi; Tigni¼1 are randomly divided into two roughly equal subsets; let D1

denote the set of indices corresponding to the first subset and D2, the set of indices

corresponding to the second. Let f̂h;Dið�Þ denote the density estimator based on the subset

based on Di using bandwidth h, i.e.

f̂h;DiðxÞ ¼
1

h

Z
K

x� t
h

� �
dF̂DiðtÞ;

where F̂Di is the NPMLE of F based on the set Di. Then the estimate of F based on Di is

obtained by integrating f̂h;Di and is denoted by F̂h;Di . Define LCVcens(h) as:

LCVcensðhÞ ¼ Pi2D1
F̂h;D2

ðTiÞDið1� F̂h;D2
ðTiÞÞ1�Di �Pi2D2

F̂h;D1
ðTiÞDið1� F̂h;D1

ðTiÞÞ1�Di :

As for the uncensored case, the optimal bandwidth is chosen by maximizing the above

criterion as a function of h. Although likelihood-based cross-validation has been criticized

for not being efficient enough in a complete data setting (see e.g. Wand & Jones, 1995), it

appears that among many of its competitors it is the most reliable in small sample settings
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from an extensive simulation study by Grund & Polzehl (1996). Pan (2000) compares the

performance of the above kernel estimator to that of the logspline estimator (where the

log-density is modelled as a spline) of Kooperberg & Stone (1992) and concludes that the

performances of the two estimators are reasonably comparable. For our simulations, we

used a standard normal kernel as before.

Subsampling-based methods. Subsampling methods provide an alternative way of estimating

the quantiles of the limit distribution of the NPMLE. With subsampling-based methods, a

critical issue is the choice of the block size b. This problem is analogous to the choice of the

bandwidth in smoothing problems. Unfortunately, the asymptotic requirements that b ! 1
and b/n ! 0 as n ! 1 give little guidance when faced with a finite sample. Instead, in

practice one can use a calibration algorithm as in Delgado et al. (2001). We present a brief

discussion.

Consider the current status model. For a finite sample size n, a subsampling-based CI for

F(t0) (with asymptotic coverage level 1� a) will typically not exhibit level exactly equal to

1� a; the actual level will depend upon the underlying distributions F and G, the sample size

n, the point t0 and finally the chosen block size b. Indeed, one can think of the actual level k as

a function h of (PF,G, n, t0, b); here PF,G is the distribution of the current status data vector

(D, T). The idea now is to adjust the �input� b in order to obtain an actual level close to the

nominal one. For fixed PF,G, n, t0, the optimal block size ~b would be the one that minimizes

jh(PF,G, t0, n, b) � (1� a)j; note that jh(PF,G, t0, n, b) � (1� a)j ¼ 0 may not always have a

solution. Analytically h will be extremely complicated to express, but if F and G are known,

we can simulate h(Æ) by generating n i.i.d. observations from the current status model and

constructing subsampling-based confidence sets for F(t0) for a number of different block sizes

b. This process is repeated many times (say K) and h(PF,G, t0, n, b) is estimated as the pro-

portion of subsampling-based CIs using block size b that contain F(t0). One then selects ~b as

that b for which ĥðF ; G; t0; n; bÞ is closest to 1� a. However, in reality, F and G are unknown,

so the above recipe does not work. However we can replace PF,G by a consistent estimator P̂n;
a sensible choice that is always available is the empirical distribution function of the data

fDi; Tigni¼1. We describe the exact algorithm below:

Algorithm for choosing block size.

(a) Fix a selection of reasonable block sizes between limits blow and bup.

(b) Generate K pseudo sequences ðD?
k ; T

?
k Þ

K
k¼1 which are i.i.d. P̂n; with P̂n equal to the empirical

distribution function this amounts to drawing K bootstrap samples from the actual data

set.

(c) For each pseudo data set, construct a subsampling-based CI (with asymptotic coverage

1� a) for ĥn � Fnðt0Þ for each block size b. Let Ik,b be equal to 1, if ĥn lies in the kth

interval based on block size b and 0 otherwise.

(d) Compute ĥðbÞ ¼ K�1
PK

i¼1 Ik;b
(e) Find ~b that minimizes j ĥðbÞ � ð1� aÞ j and use this as the block size to compute sub-

sampling-based confidence intervals based on the original data.

Indeed, this is the algorithm that we use subsequently in analysing the rubella data set in

section 2.3 and the simulation studies to be presented below.
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Likelihood ratio-based method. The likelihood ratio-based method, like the subsampling

approach, enables us to find CIs for F(t0) without having to resort to nuisance parameter

estimation. This is because, under the null hypothesis, the LRS has a universal limit

distribution, that is free of the underlying parameters in the problem. Thus one needs to know

only the quantiles of the limit distribution D; estimates of these quantiles are tabulated in

Banerjee & Wellner (2001). To find a confidence set for h ¼ F(t0) one lets h vary on a fine grid

between 0 and 1 and for each value of h computes the LRS corresponding to the null

hypothesis F(t0) ¼ h. The hs in the confidence set are precisely those for which the null

hypothesis fails to be rejected. It may apparently seem that the MLE-based method 1 requires

less computation than the likelihood ratio method, as with the former one needs to compute

the unconstrained MLE and estimate the constant C, using bCn. However, estimating Ĉn

requires estimating f and g and unless decent parametric estimates are available, one needs to

resort to maximization of a cross-validation-based criterion over a grid and this is

computationally very intensive. The major advantage of the the likelihood-ratio based

method over the MLE-based method lies in superior reliability, as it avoids ad-hoc estimation

of nuisance parameters completely. Furthermore, the computation with the likelihood ratio

method is hardly overwhelming. This is where it enjoys a major advantage over the

subsampling-based method; the subsampling procedure also becomes computationally very

intense as the optimal block size needs to be determined using the bootstrap-based method

discussed above. This is analogous to the problem of determining the optimal bandwidth with

the kernel-based method.

Simulations. We now present simulation results from the current status model.

Simulation setting 1. We took F ¼ exp (1), G ¼ exp (1) and t0 ¼ log (2.0). Thus h0 ¼
F(t0) ¼ 0.5. We chose sample sizes n ¼ 50, 75, 100, 200, 500, 800, 1000. For each value of n,

we generated 1000 data sets from the current status model and for each data set, we com-

puted 95% CIs for h, using (i) the MLE-based method with non-parametric estimation of

f(t0) and g(t0), (ii) the likelihood ratio-based method, (iii) subsampling-based techniques, (iv)

parametric (Weibull-based) estimation of f(t0) and g(t0).
Thus estimates of f(t0) and g(t0) were obtained in (i) via kernel smoothing with optimal

bandwidth determined through likelihood-based cross-validation for both f and g (described

above), and in (iv) by fitting Weibull distributions to F and G using maximum likelihood

estimation, and using the resulting parameter MLEs to estimate f(t0) and g(t0). For the sub-

sampling-based confidence intervals, the optimal block size ~b was determined in accordance

with the bootstrap-based algorithm for selecting block-size, from the following selected block

sizes: n1/3, n1/2, n2/3, n3/4, n0.8, n0.9. The average length of the three types of confidence sets was

then computed over the 1000 data sets; the proportion of intervals that contained the true

parameter value was also recorded for each method.

Table 1 contains the above information. The average length of the confidence sets decreases

with increasing sample size (n) at rate n� 1/3.Note that the average length of 95%CIs obtained via

the likelihood ratio method (shown in column 2) is smaller than the average length of those

computed using the MLE-based method with f and g estimated as in (i) above, or the sub-

sampling-based method (columns 3 and 4). However, the shortest CIs are obtained using the

MLE-based method with f and g estimated parametrically as in (iv) above (column 5). A look at

the estimated coverage probabilities of these four kinds of intervals (columns 6, 7, 8 and 9) shows

that theMLE-basedmethod (i) is anticonservative for smaller sample sizes, but as the sample size

grows the coverage probability improves substantially. The MLE-based method (iv) stays
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substantially anticonservative even at higher sample sizes. The likelihood ratio-based CIs are

very slightly anticonservative while the subsampling-based CIs are slightly conservative.

MLE-based CIs were also computed using least squares-based cross-validation for g, to
assess the optimal bandwidth. The results (not exhibited here) are very compatible to what is

reported in the table above; hence we do not present a separate table. As in the above case, the

actual coverage of the 95% MLE-based CIs is below or around 90% for smaller sample sizes

but improves similar to column 7 of Table 1, as the sample size increases. These CIs also

continue to be slightly wider than their likelihood ratio-based counterparts.

The likelihood ratio and subsampling-based techniques therefore seem more reliable for

moderate sample sizes than theMLE-based ones as far as coverage is concerned. From the point

of view of precision it appears that the likelihood ratio-based intervals are shorter in average

length than the ones based on subsampling without compromising coverage substantially.

Simulation setting 2. The survival time distribution F was changed from Exponential(1) to

Gamma(3,1) and the observation time distribution was changed to Uniform(0,5); t0 was taken

to be the median value of Gamma(3,1), so F(t0) ¼ 0.5. Likelihood ratio and MLE-based CIs

were constructed for the same selection of sample sizes as in the previous setting with 1000

data sets being generated for every sample size. For this example, f(t0) was estimated as before,

but kernel smoothing was no longer used to estimate g(t0). Instead, we used our background

knowledge that the observation time distribution is uniform and estimated the density as

(T(n)�T(1))
� 1. This gives us a very accurate estimate of g(t0) even at moderate sample sizes.

Table 2 compares the likelihood ratio-based CIs with the MLE-based ones.

Note that the above pattern resembles simulation (1). The likelihood ratio-based intervals

outperform the MLE-based intervals in terms of both length and coverage, especially at

smaller sample sizes where the MLE-based intervals are fairly anticonservative. Subsampling-

based CIs were not computed for this setting.

Table 2. Comparing confidence intervals, simulation (2)

n len(lrt) len(mle) cv(lrt) cv(mle)

50 0.501 0.518 0.938 0.839

75 0.450 0.468 0.946 0.888

100 0.416 0.433 0.952 0.890

200 0.333 0.352 0.949 0.929

500 0.243 0.262 0.954 0.942

800 0.212 0.224 0.947 0.925

1000 0.195 0.210 0.963 0.941

�len� ¼ Observed average length; �cv� ¼ observed average coverage.

Table 1. Comparing confidence intervals, simulation (1)

n len(lrt) len(mle) len(sub) len(par-mle) cv(lrt) cv(mle) cv(sub) cv(par-mle)

50 0.485 0.515 0.587 0.412 0.942 0.868 0.925 0.805

75 0.428 0.463 0.516 0.367 0.943 0.898 0.950 0.810

100 0.390 0.420 0.465 0.336 0.940 0.889 0.959 0.839

200 0.308 0.326 0.370 0.269 0.941 0.910 0.948 0.860

500 0.231 0.243 0.282 0.198 0.946 0.927 0.956 0.861

800 0.198 0.210 0.235 0.170 0.949 0.936 0.953 0.851

1000 0.183 0.190 0.226 0.158 0.941 0.910 0.951 0.874

�len� ¼ Observed average length; �cv� ¼ observed average coverage.
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Simulation setting 3. The goal of this setting is to understand how the different methods for

estimating F(t0) compare when t0 lies in a region of steep ascent of the distribution function F.

This is motivated by our analysis of the rubella data set presented in the next section. The

NPMLEof the distribution of time to infection by rubella jumps from .571 at t ¼ 12 years to .857

at t ¼ 13 years and stays flat in the interval 13–15 years, thereby indicating that the range 12–

13 years is a region of steep ascent of the distribution of time to immunization. The (non-

parametric)MLE-basedCIat t ¼ 12 years and the subsampling-basedCI at the same time-point

are seen to be substantially wider than the corresponding CIs computed via other methods (see

Fig. 2). Also, the (non-parametric) MLE-based CI for t ¼ 12 is the widest CI of its type; a

similar phenomenon holds the subsampling-based CIs. We therefore seek to investigate the

relative behaviour of the different confidence sets in a region of sudden change of the

distribution function.

We chose the survival distribution F as follows: F(x) ¼ x for x � 0.25, F(x) ¼
.25 þ a(x� .25)2 for .25 < x � .25 þ �, and F(x) ¼ .75 þ k(x� .25� �) for .25 þ � < x � 1.

Here a ¼ 20,000, � ¼ 1/200, k ¼ .25/(.75� 1/200), so that F(1) ¼ 1. The distribution function

thus constructed is continuous and continuously differentiable in a neighbourhood of t0 ¼
.25 þ �/2, where F(t0) ¼ .375. The function F rises very steeply from .25 to .75 in the interval

[.25, .25 þ �] (so t0 is the midpoint of this interval) and the slope of F at t0 is equal to 100. The

observation time distribution was taken to be uniform on the interval (0, 1). Sample sizes n ¼
50, 100, 200 were considered and 1000 data sets were generated for each n. For the MLE-based

method f was estimated using kernel smoothing in the usual manner and g(t0) was estimated as

1/(T(n)�T(1)), as in simulation (2). For the subsampling-based method, the same selection of

block sizes was used as in simulations (1) and (2); K ¼ 300 bootstrap samples were drawn for

determining the optimal block size, and the final (symmetric) subsampling-based intervals

were constructed using S ¼ 300 subsamples of the optimal block size. We present the results

in Table 3.

Table 3 shows how the different methods adapt to a sudden change in F. The likelihood ratio

method continues to be stable, producing confidence setswith coverage close to the nominal (and

at modest sample sizes). The MLE- and the subsampling-based methods however do not react

well at all. While they produce shorter confidence sets on an average (than the likelihood ratio-

basedmethod), this is only at the expense of extremely erroneous coverage. Hence, in a situation

of this sort, the likelihood ratio method seems to be the only reliable candidate.

3.2. Confidence sets for F� 1(h0)

We illustrate the construction of confidence sets for the h0th quantile of F, for a given h0
strictly between 0 and 1. Confidence intervals for the quantile can be constructed, using either

the likelihood ratio-based approach (theorem 2) or the MLE-based approach (theorem 1). The

latter requires estimation of f(t0) and f(t0) where t0 � F� 1(h0); in the following simulation

setting, this is done using kernel density estimates f̂ and ĝ with optimal bandwidth h deter-

mined by likelihood-based cross-validation for f and least squares-based cross-validation for g;
the point t0 is estimated by F�1

n ðh0Þ.

Table 3. Comparing confidence intervals, simulation (3)

n len(lrt) len(mle) len(sub) cv(lrt) cv(mle) cv(sub)

50 0.720 0.506 0.380 0.968 0.632 0.443

100 0.658 0.513 0.363 0.965 0.706 0.510

200 0.608 0.460 0.345 0.949 0.707 0.589

�len� ¼ Observed average length; �cv� ¼ observed average coverage.
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Simulations. We present results from a simulation study involving estimation of the median of

the Exponential(1) distribution, based on a current status model. We compare the likelihood

ratio-based method to the MLE-based method. The true value of the median is log 2 ¼ 0.693.

The observation time G is also chosen to be Exponential(1), as in simulation (1). The sample

size is allowed to vary as in the previous simulation settings; for each n, 1000 data sets of size n

are generated and asymptotically 95% confidence sets for F� 1(0.5) are obtained using the two

methods. For the MLE-based method f and g are estimated using kernel smoothing, with

likelihood-based cross-validation being employed to select the optimal bandwidth for f and

least squares-based cross-validation being used to select the optimal bandwidth for g. Table 4

shows the average lengths of the CIs obtained using these methods (over 1000 replicates) and

the corresponding coverage probabilities. The observed coverage probabilities for the

likelihood ratio-based method are seen to be close to 95%; however, the MLE-based CIs

are once again fairly anticonservative, and continue to stay so even at higher sample sizes

(unlike what happens when estimating the distribution function itself). The likelihood ratio-

based intervals are seen to be somewhat wider than the MLE-based ones, but are more

reliable, since the reduced widths of the MLE-based intervals come at the expense of coverage.

4. Analysing the Austrian rubella data

The methods explained in the above section are illustrated here on some data made available

to us by Niels Keiding. The data set concerns 230 Austrian males older than 3 months for

whom the exact date of birth was known. Each individual was tested at the Institute of

Virology, Vienna during the period 1–25 March 1988 for immunization against Rubella. The

Austrian vaccination policy against Rubella had then for some time been to routinely

immunize girls just before puberty but not to vaccinate the males, so that the males can be

taken to represent an unvaccinated population.

The goal here is to estimate the distribution of the time to infection (and subsequent

immunization) by rubella in the male population. It is assumed that immunization, once

achieved, is lifelong. We denote the distribution of the time to immunization by F. Let Ti

denote the age of the ith individual at the time of testing for immunization and let Xi denote

the time to immunization. Thus Xi is distributed as F. Let G denote the age distribution in the

population. Thus Ti is distributed as G. However Xi is not observed; the only information

available is whether the person is immunized or not at the time of testing. Thus we observe

(Di ¼ 1fXi � Tig, Ti). Under the i.i.d. assumption on fXi; Tigni¼1 and the assumption of

independence between Xi and Ti (current age and age of immunization are independent) we are

in the current status framework.

Keiding et al. (1996) analysed this data using the current status model. They used the

asymptotic distribution of the MLE to obtain (pointwise) confidence sets for F. The densities

Table 4. Confidence intervals for the median using the likelihood ratio- and MLE-based methods

n len (lrt) len (mle) cv(lrt) cv(mle)

50 0.962 0.933 0.938 0.854

75 0.871 0.868 0.935 0.830

100 0.788 0.707 0.935 0.856

200 0.626 0.556 0.941 0.838

500 0.470 0.410 0.957 0.834

800 0.407 0.373 0.952 0.808

1000 0.367 0.261 0.950 0.828

�len� ¼ Observed average length; �cv� ¼ observed average coverage.
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at the point of interest t0, namely f(t0) and g(t0), were estimated using parametric methods. In

particular g(t0) was estimated by fitting a Weibull distribution to G. The parameters of the

Weibull were obtained by using maximum likelihood with the observed Ti’s as data. On the

other hand f(t0) was estimated as,

f̂ ðt0Þ ¼ ð1� Fnðt0ÞÞk̂f ðt0Þ;

where Fn is the NPMLE of F and k̂f is an estimate of the instantaneous hazard function kf
corresponding to F; in terms of the Weibull parameters a and b, kf is given by: kf(x) ¼ abxb� 1.

For details on the estimation of kf, we refer the reader to pages 121–123 of Keiding et al.

(1996).

Figure 1 shows the NPMLE of the distribution of the time to immunization along with

likelihood ratio-based 95% CIs for F(t) with t varying over the sequence 1, 2, . . . ,75 years. The

distribution function is seen to rise steeply in the age-range 0–20 years, with a dramatic jump

from 12 to 13 years of age. There is no significant change beyond 30 years, indicating that

almost all individuals are immunized in their youth.

To compare the several types of CIs for this data we computed: (a) the likelihood ratio-

based CIs for different ages; (b) MLE-based CIs constructed using the parametric Weibull fits

for F and G to estimate Cn; (c) MLE-based CIs constructed using kernel smoothing procedures

to estimate Cn (the optimal bandwidth for f is chosen using likelihood-based cross-validation

and that for g is determined through least squares-based cross-validation); and (d) sub-

sampling-based CIs which are constructed in the exact same way as in simulations (1) and (3).

Figure 2 gives a comparison of the lengths of the CIs computed via the four different

methods. The likelihood ratio-based CIs are seen to be generally shorter than the subsampling-

based intervals (with a few exceptions in the age range 26–30). The likelihood ratio-based

intervals are regularly behaved in the sense that their left end-points and right end-points are

monotone increasing in t. While this is not a requirement (as we are not constructing con-

fidence bands) this certainly seems to be desirable, at least from an aesthetic perspective. This
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Fig. 1. Likelihood ratio-based confidence intervals.
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property is not shared by any of the MLE-based CIs; in particular, the CIs obtained via kernel

smoothing exhibit the most pronounced violations. In fact, they react very sharply to rapid

changes in the distribution function. The NPMLE of F jumps from .571 at t ¼ 12 to .857 at

t ¼ 13; this is the most dramatic change in F over its entire domain and suggests that the age

range 12–13 is a zone of steep ascent of F. This is reflected very heavily in the corresponding

confidence intervals via kernel smoothing for t ¼ 12, 13. The CIs are much wider at these

points (especially the CI for t ¼ 12, which is the widest CI via kernel smoothing) as compared

with the CIs for neighbouring time-points. This is also the case but to a lesser extent for the

subsampling-based CIs (the CI for t ¼ 12 is the widest CI). On the other hand, the MLE-

based CIs obtained using parametric fits and the likelihood ratio-based CIs do not react so

drastically to the jump. Our simulation results indicate that in a zone of rapid increase of the

distribution function the likelihood ratio method is substantially more reliable than other

methods (unless good parametric fits to the data are available).

It is also clear that none of the methods can be expected to come up with the shortest

intervals in any given situation. The CIs via kernel smoothing tend to be shorter than the

likelihood ratio-based CIs on an overall basis, but this is not necessarily a virtue, as our

simulation studies indicate that the reduced length of the MLE-based intervals may often be

associated with suboptimal coverage. From our experience, it seems that the likelihood ratio-

based intervals adapt nicely across different situations in the sense that the length is adjusted

optimally to maintain coverage close to the nominal. This adaptability is not exhibited by the

MLE-based confidence intervals.

From Fig. 2 we see that the lengths of the different CIs more or less agree at the very

beginning (with the subsampling intervals being shortest), then in the range from 2 to 8 years

or so, both the likelihood ratio and the two other non-parametric intervals become shorter,

but the NPMLE intervals become too short. On the other hand, while the �parametrically

based� intervals decrease slowly in length, and do not react to the steep change in the

distribution function in the interval from 8 to 14 years, all three of the non-parametric

methods try to �catch� the rapid increase of F in the interval from 8 to 14 years. The NPMLE

method �overshoots� dramatically while the LR and subsampling approaches seem to be closer

to each other, with the LR intervals being shorter. After 14 years or so the NPMLE intervals

Fig. 2. Comparison of confidence interval lengths, Rubella data: (¤) LR; (?) MLE(par); (j)

MLE(nonpar); (m) MLE(sub).
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are definitely shorter (with the exception of 23 years). It looks as if the parametric MLE

method gives shorter intervals than the likelihood ratio and subsampling methods from

8 years on, but probably does not have good coverage properties in view of the result from

simulation (1) given in Table 1. Of course this is the difficulty with comparisons in this real

example: the actual coverage probabilities are unknown.

Quantile estimation and the rubella data set. We apply the two different methods of quantile

estimation discussed above to the rubella data set. We estimate selected quantiles of the

distribution of the time to immunization.

Table 5 exhibits CIs for F� 1(p) for p varying across the sequence 0.40, 0.50, 0.70, 0.90,

obtained by three different methods. Column 1 displays the different values of p, column 2 the

values of F�1
n ðpÞ and column 3 shows the MLE-based CIs estimated using the Weibull

parametric fits for f and g as obtained in Keiding et al. (1996). Recall that by theorem 1,

an approximate 95% CI for F� 1(p) is given by

F�1
n ðpÞ � D̂nn�1=3qZ;:975; F�1

n ðpÞ þ D̂nn�1=3qZ;:975
h i

;

where qZ,.975 is the 97.5th percentile of Z and D̂n estimates

D � 1

f ðF�1ðpÞÞ
4f ðF �1ðpÞÞpð1� pÞ

gðF �1ðpÞÞ

� �
:

We estimate g(F� 1(p)) by ĝðF�1
n ðpÞÞ, where ĝð�Þ is the Weibull-based estimate of g(Æ) (with

Weibull parameters obtained from Keiding et al. (1996). To estimate f (F� 1(p)) we note that

this is equal to (1� p)kf (F
� 1(p)), where kf is the instantaneous hazard corresponding to f. We

estimate kf (F
� 1(p)) by k̂f ðF�1

n ðpÞÞ, where k̂f is the Weibull-based estimate of kf (with the

Weibull parameters obtained from Keiding et al. (1996)). Column 4 shows the MLE-based CIs

where D is estimated non-parametrically using kernel-based estimates of f and g; the point

F� 1(p) is estimated as before by F�1
n ðpÞ. The optimal bandwidth for estimating f is chosen

using likelihood-based cross-validation, while that for estimating g is chosen using least

squares-based cross-validation. Finally column 5 shows the likelihood ratio-based CIs for

F� 1(p).

One pleasing property of the likelihood ratio-based CIs in Fig. 1 is the monotonicity of the

left end-points as well as the right end-points with increasing t and in Table 5, with increasing

p. This is not exhibited by the MLE-based CIs. As we are only concerned with pointwise

confidence sets here, monotonicity is not a crucial statistical issue but if the question was one

of constructing confidence bands, it would be a key requirement.
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Appendix

Proof of lemma 1

Clearly

An;k;x � F�1
n ðh0 þ kn�1=3Þ � F �1ðh0Þ þ xn�1=3

n o
;

which equals the event

FnðF �1ðh0Þ þ xn�1=3Þ � h0 þ kn�1=3
n o

using the equivalence that for any distribution function H and u 2 (0, 1) and t real,

H� 1(u) � t if and only ifH(t) � u. Now, F� 1(h0) ¼ t0. Also, since F has a continuous positive

derivative in a neighbourhood of t0, it follows that h0 ¼ F(t0). Then, the above display can be

rewritten as

n1=3 Fnðt0 þ xn�1=3Þ � F ðt0Þ
� �

� k
n o

:

From theorem 2.4, page 1710 of Banerjee and Wellner (2001) we know that

n1=3 Fnðt0 þ xn�1=3Þ � F ðt0Þ
� �

!d
1

gðt0Þ
ga;bðxÞ;

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt0Þh0ð1� h0Þ

p
and b ¼ f (t0)g(t0)/2 and ga,b(x) is the right-derivative of the

GCM of the process Xa,b(t) (defined in section 1) at the point x. Therefore

lim
n!1

P n1=3 Fnðt0 þ xn�1=3Þ � F ðt0Þ
� �

� k
� �

¼ P
1

gðt0Þ
ga;bðxÞ � k

� �
: ð3Þ

Now, using the switching relationship (see e.g. Banerjee, 2000, Lemma 3.6.11, p. 144) it follows

that

P
1

gðt0Þ
ga;bðxÞ � k

� �
¼ P argminhXa;bðhÞ � gðt0Þkh � x

� �
:

But

Xa;bðhÞ � gðt0Þkh ¼D
a
b

� �2=3
argminhX1;1ðhÞ þ ð1=2Þ kgðt0Þ

b

� �
;

by e.g. Van der Vaart and Wellner (1996, problem 5, p. 308). Hence, the limiting probability in

(3) is

P
a
b

� �2=3
argminhX1;1ðhÞ þ

k
f ðt0Þ

� x
� �

:

But argminhX1,1(h) � Z. We thus have

lim
n!1

P n1=3 F�1
n ðh0 þ kn�1=3Þ � F �1ðh0Þ

� �
� x

� �
¼ P

a
b

� �2=3
Zþ k

f ðt0Þ
� x

� �
:

Noting that

a
b

� �2=3
¼ 4h0ð1� h0Þ

gðt0Þf ðt0Þ2

 !1=3

finishes the proof.
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Proof of theorem 2

Since the underlying distribution function is continuous, with probability 1 it is the case that

0 < Tð1Þ < Tð2Þ < � � � < TðmÞ < t0 < Tðmþ1Þ < � � � < TðnÞ;

where T(i)’s are the ordered observation times and m is the number of observation times not

exceeding t0. We shall show that

sup
F �1ðh0Þ¼t0

LnðF Þ ¼ sup
F ðt0Þ¼h0

LnðF Þ; ð4Þ

where Ln(F) as before, denotes the log-likelihood for n observations in the interval-censoring

model. Now,

~kn �
supF LnðF Þ

supF�1ðh0Þ¼t0 LnðF Þ
;

and let

kn ¼
supF LnðF Þ

supF ðt0Þ¼h0 LnðF Þ
:

It then follows immediately that

2 log ~kn ¼ 2 log kn:

But 2 log kn is the LRS computed under the null hypothesis F(t0) ¼ h0. As F0 is continuous

with a positive density at t0 and F�1
0 ðh0Þ ¼ t0 under the null, clearly it is the case that

F0(t0) ¼ h0. A direct appeal to theorem 2.5 of Banerjee & Wellner (2001) then shows that

2 log ~kn !d

Z
ððg1;1ðzÞÞ2 � ðg01;1ðzÞÞ

2Þ dz:

To prove (4) we proceed as follows. We note that

F �1ðh0Þ ¼ t0

if and only if,

F ðxÞ < h0 � F ðt0Þ 8x < t0: ð5Þ

Recalling that

LnðF Þ ¼
Xn
i¼1

dðiÞ log F ðTðiÞÞ þ ð1� dðiÞÞ logð1� F ðTðiÞÞÞ
� �

;

we see that the supremum of Ln(F) under F
� 1(h0) ¼ t0 is precisely the supremum of

/ðwÞ ¼
Xn
i¼1

dðiÞ logwi þ ð1� dðiÞÞ logð1� wiÞ
� �

;

over the set 0 � w1 � w2 � � � � wm < h0 � w(mþ1) � � � � � wn � 1 (since T(m) < t0 with

probability 1, under the null hypothesis that F� 1(t0) ¼ h0, it must be the case (by (5)) that

wm � F(T(m)) < h0). Clearly, the supremum of /(w) over this set cannot be larger than the

supremum of /(w) over the set
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0 � w1 � w2 � � � � wm � h0 � wðmþ1Þ � � � � � wn � 1:

But we know that the supremum of /(w) over this set is indeed attained for a ~w and is

precisely supF(t0)¼h0Ln(F). If ~wm is strictly less than h0, then of course ~w is the maximizer of

/(w) over the set 0 � w1 � w2 � � � � wm < h0 � w(mþ1) � � � � � wn � 1 as well and (4) is

trivially satisfied. In case ~wm is equal to h0, there exists a smallest k � m such that ~wðk�1Þ < h0
and ~wðkÞ ¼ � � � ¼ ~wðmÞ ¼ h0 in which case, we define for each N, the vector ~wN by setting

~wN
ðkÞ ¼ � � � ¼ ~wN

ðmÞ ¼ h0 �
1

N

and letting ~wN
ðiÞ ¼ ~wðiÞ for all other is. Clearly, for all sufficiently large N, each ~wN is in the set

0 � w1 � w2 � � � � wm < h0 � w(mþ1) � � � � � wn � 1 and using the continuity of /,

lim
N!1

/ð~wN Þ ! /ð~wÞ:

This immediately implies that

sup
F ðt0Þ¼h0

LnðF Þ ¼ /ð~wÞ ¼ sup
F �1ðh0Þ¼t0

LnðF Þ:

This finishes the proof.

Comment. The above proof shows that there may not exist any distribution function F, in the

null hypothesis H0 specified by F� 1(h0) ¼ t0, for which the supremum of Ln(F) over all

distributions in the null hypothesis is attained. If the MLE of F under the constraint F(t0) ¼
h0, which we denote by F0n as before, satisfies F0nðTðmÞÞ < h0, then indeed, the supremum of

Ln(F) over all F in H0 is attained at F0n; if however F0nðTðmÞÞ ¼ h0, then there exists no

maximizer; however we can approach the supremum through a sequence of distribution

functions GN in H0 where GN ðTðiÞÞ ¼ ~wN
i .
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