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Abstract. An exponential bound is obtained for the exceedance probability
of the supremum of the variations over all rectangles, contained in a

fixed rectangle R, of the multivariate empirical process. The probability

mass of this rectangle R figures in the expression of the exponential
bound. The bound is used in the study of the Tocal behavior of weighted
multivariate empirical processes. Applications are given to strong and
weak convergence of such processes indexed both by points and by
rectangles.

1. INTRODUCTION AND BASIC INEQUALITY

Let Xl’XZ"" be a sequence of i.i.d. random vectors in HQd defined

on a probability space {2,A,P) with common d.f. F. in this paper we

shall exclusively deal with the case that the Xi :{Xil""’xid} take

d

their values tn [~ = FD,le with probability 1 and that the common 4. 7F.
F s continuous with Uniform (0,1) marginals. For many purposes this is
not too serious a restriction since it has been observed in Wichura

(1973, p.293) that given a random vector Y in Rd with arbitrary d.f.,

there exists a random vector ¥ in Id with continuous d.f. F having
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Uniform (0,1} marginals and a measurable function ¥ : Id-+ Rd, such
that Y =, ¥(X); see also Philipp & Pinzur (1980, Lemma 1)

Adopting the notation of Qrey & Pruitt (1973), we shall write
X = <Xpse.esXg> = <xj> e IRd if it is desirable to display the
coordinates of x. If Xj = ¢ for all j we simply write <g>. For
<xj>,<yj> c IRd we define <xj> < <yj> to mean that xj < yj for all j;
wWe write <xj>-<<yj>if‘xjﬂ yj for all j and xj < yj for at least one j.
The half-open rectang1es(xl,yl] X x(xd,ydl will be preferably
written as R(x,y). In the present notation we have {O,ljd = (<0>,<1>1.

The class

(1.1)  R= R(xy) : REGY) < 19
of all half-open rectangles in Id will play an important role. We will
also write |t] = tyx...oxtys |dt| for Lebesgue measure on 19 and

B[ ItrB|dt| for any B « 89, Given any (random) function & on RY that

determines a finite (random, signed) measure on (le,Bd), we write

da, B ¢ Bd.

A weight funciion q is any function that satisfies

q : [0,1]1 > [0,=) and g > 0 on (0,113

q eontinuous and non—decreasing on [0,11;

(1.3)

e i

E
t 2q(t) non—inereasing for t < {0,11.
Note that in particular for any & « [0,}1 the function
(1.4)  ag(t) = £278 ¢ . 10,11,

is a weight function. Provided q(0) = 0, for values of t near O these
functions q coincide with those introduced by Shorack & Wellner (1982).
On the other hand we don't exclude here that g = 1 on [0,17.

The (reduced multivariate) empirical process (indexed by points) is
defined by
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(1.5) U (t) = n}(F_(t)-F(t)), te I,

where the empirical d.f. En based on Xl,...,X is as usual defined by

- n
nFn(t) = fifl = 4 = n : Xi e [<0 >,<tj>3}, T = <tj> ¢ Id. The process

d

(1.6) U (t)/q(F(t)), tel (0/0 = 0),

is called a weighted empirical process indemed by points, and the

process
(1.7) U {R}/q(F{R}), ReR (0/0 = 0),

is called a weighted empirical process indexed by rectangles.
The local behavior of (1.6) will be investigated in Section 2. Some
applications of these local properties to the speed of the Glivenko-
Cantelli convergence, referred to as strong convergence, and to weak
convergence will be given in Section 3, where we also consider a
functional. Our results are related to those in Orey & Pruitt {1973)
for multiparameter Wiener processes; see also Rlschendorf (1976, 1980).
For d = 1 we may refer e.g. to the recent papers by 0'Reilly (1974) and
Stute (1982). In Section 3 we also show how some properties of (1.6)
carry almost immediately over to (1.7). For d = 1 see Stute (1982) and
Shorack & Wellner (1982). For arbitrary d and q = 1 the empirical
process indexed by the still more general class of all convex measurable
subsets was studied by Stute (1977). For arbitrary d and non-1.1.d.
observations we refer to van Zuijlen (1982) and Alexander (1982).

The remainder part of this section is devoted to a basic inequality
dealing with an exponential bound for the supremum of the empirical
process over rectangles contained in a fixed rectangle; it is related
to Orey & Pruitt (1973, Lemma 1.2) and to Wichura (1968, Theorem 1}.
The proof is based on the representation of the empirical process as a
conditioned Poisson process along with symmetrization of the latter
process so that a Lévy-type inequality can be applied.

We shall also need an exponential bound for a Poisson random variable
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in a similar way as exponential bounds for binomial random variables
might be used in a direct approach (see Remark 1.1). For any Binomial
(n,p) random variable U we have

{
\on

| 2
(1.8) P(n 2[U-np| = &) = 2 exp(—?ﬁ%ijﬁy b %>},

for » = 0, p e (0,1}, where ¢ satisfies

A
2 log(1+x)dx, x > 0.
0

p 1 [0,=] + R deereasing to 0, v(0) = 1;
(1.9)
p(r) = 2

The inequality (1.8) is due to Bennett (1962); see Shorack & Wellner
(1982) for further details.

Similarly we have for a Poisson (t) random variable Z that

2
(1.10)  P(|Z-t| 2 2) = 2 exp(-%¥ $(%J\

\ e
for » =2 0, t » 0, and v as in (1.8). The proof of (1.10) is immediate
1
from (1.8): relabel xn® by » in (1.8) and then use the fact that for
np = 1, U >4 Zasn - w,
Let Nn = {Nn(t) b LO,w)d} be a Poisson process with

(1.11) EN(t) = nF(t), te (0,9 nem,

where F is the d.f. of the Xi' We shall use the fact that conditional
on Nn(<1>) = n, the processes

(Lo12) 0 7 (t) = n-%(Nn(t)~nF(t)), tedt,

are equal in law to the Un(t), t e Id, in (1.5) for each n ¢ IN.

LEMMA 1.1. For any R e R with F{R} < 1 and all X > 0 we have
C
(s P(SUPSchUn{S}| = x) £ C(F{R })P{supSCR|Zn{S}| =

where the suprema ave taken over all S ¢ R with S < R, C(8) ~ 1 as 5~1,
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C(6) = 2 for 0 = }, and U_ and I ave given in (1.5) and (1.12
f n n

ngspectively.

PROOF. Let A = [supg_ R S}I > 1] and B = [supg_ R|Z {S}] = a1. Then,
since dn Zn|N (<1>) = and using the independence of N {R} and
N (R}, we see that

P(A) = P(B|Nn(<1>) =y =
= P(B n [Nn(<1>) = nilj /P{N (<1>) = n) =
= 2p_oP(B o [N R} = kI n [N (RS} = n-k1)/P(N (<1>) = n) =
= Zp_o(P(N (R} = n=K)/P(N_ (<1>) =n))P(B n [N (R} = k1) <
_ PINLER®Y = [nF{R®}])
PN _(<I5) = n) P(B),

because P(Z=k) = P(Z=[+]) if Z is a Poisson (t) random variable
(Lt] = largest integer = t). An application of Stirling's formula

completes the proof. (.E.D

THEOREM 1.1: basie imequality. Let R ¢ R with F{R} < 1. Then Sfor
T A 1
every » > (8F{R})? we have

14

(1.14) P(supSCRiUn{S}| = 1) P(]Zn{R}i = ) =

2
< 2C{d) ex [ \ -
() expl 32FIR1 “\4P{R 2 ))
where the supfpﬁum ts taken over all S ¢ R with S < R, and
c(d) = 2292 (FRCY) < 22943 o prpy < 3

PROOF. Let N: denote an independent Poisson process identically
distributed as Nn. We now use the symmetrization inequalities of Loéve
(1977, p.256-260). For any S ¢ R, write uN {5} for the median of (the
distribution of) Nn{S}, and set

-1
zg = n (N -ul )
and
S =3 SR L Sl
Zn =n (Nn Nn} Zn Zn ]
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Note that the rv's ZE{S} are symmetrically distributed for all
rectangles S < 19. By Lodve (1977, p.256,(a)) it follows that

|uN_(S}-nF(S}] < (20F(S3)2,
and hence, for S = R,
|2, {5} = 245y [+(2F 51 <
< |ZSI|+(2FRY)®.
Thus by Lemma 1.1 it follows, with C = C(F{R®}) from Lemma 1.1, that
P(supscR|Un{S}[ = 3) = C{F{RC})P(SUDSCR|Zn{5}3 S s

< cp(supSCR|ZE{S}| > A—(ZF{R})%} =
< CP(supg_plZS}] = 32)
since A » (8F(RY)? impiies -(2FRD)? > -1a
= ECP(supSCRiZ§{5}! = §x)
by Logve (1977, p.259, B(ii})
< 22 ep( 2Ry | = 41)
by the same argument as given in the proof of Lemma 1.2 of Orey é&

Pruitt (1973) which uses only the aymmetry and independeni inerement

properties of the process

< 2*%20p(jz 1Ry = 1)

i S 5 ' * .
since |7 {R}| < |Z {R}|+|Z (R}| where i, 5L
and this proves the first inequality in (1.14): the second one follows
upon applying (1.10). Q.E.D.

REMARK 1.1: a variation on the basic inequality. A slightly weaker
version of Theorem 1.1 can be proved for arbitrary F by conditioning
on ?n{R} and using the exponential bound in Kiefer (1961, Theorem 1-m)
together with (1.8). This proof is patterned on that of van Zwet's
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lemma (see Ruymgaart (1974, Lemma 4.4)) and can be found in Ruymgaart
& Wellner (1982).

2. LOCAL BEHAVIOR OF WEIGHTED EMPIRICAL PROCESSES

In this section we derive some local properties of weighted
empirical processes. In particular we derive exponential bounds for
the exceedance probability of the supremum and the oscillation of the
weighted empirical process over a subrectangle. All results are
immediate corollaries of Theorem 1.1. We shall occasionally use the

properties

{2l a2w(Ca) = 3202((28) Ya z 20 Yo e (0,2);

W

G2 2% (a) =z cplca) Yo = 0 ve e (017,
These inequalities are immediate from (1.9).

THEOREM 2.1: van Zwet's lemma. For all R ¢ R and } » O we have

2d+10k_2

(2.3)  P(supg glU {SI[/FE(R) = 2) < 2 (0/0 = 0,

where the supremum 15 takew cver aqll S ¢ R with S < R.

PROOF. If F{R} = i, (2.3) follows directly from (1.14) by replacing
A by hF{R}%, applying Chebychev's inequality and noting that the
constant 22d+3.16 = 22d+? works .

If F{R} » 1, partition R into disjoint rectangles Ry and R2 so that

R = R1 U R2 with F{Ri} < L. Then, using

supSCR|Un{S]| < SUDSIrRl,S CR2|Un{Sl}+Un{52}| =

pd
- SUPSIch|Un{51}|+SUDSZCR2|Un{SZ}I

; 1 1 1
and the elementary inequality F{R}12 = (F{Rl]+F{R2})f = %(F{Rl}%+F{R2}2},
we Tind that

' 1
P(sup_plU 1S} = AF{R}?) =
LR S8 e
- P{supslchlUn151;1 > 1AF(R;}?)
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T a5(F(a))ag(F(b) g3
’ a,(FB1)-0(F@)) ~ (F(b)-F
for a,b « 19 with a < b.

In the sequel we shall use the numbers C; € (0,%) (i = 1,2,3) as
generic constants that may only depend on the dimension d. (If y was
not fixed to % in (2.12), the constants C2 and C3 would depend on v as
well.)

it
o -
a)) {Lj‘l(bj"aj)}

COROLLARY 2.1. et a,b « 19 with a < b and F(a) > 0, and let
6§ ¢ [0,3]. Suppose that condition (2.12) is fulfilled. Provided X = 4

we have

(2.16) P(suptcR(a’b)[Un{t)|/F%_5(t) S n) s

2 -
) (s
= Cl exp\ F25(b) yknéré+5(b)1)'

Provided k = 8d{2§:1(bj—aj}}d (» = 8d suffices) we have
3-8 3-8 Sy
(2.17) P(SuPs,tcR(a,b)|Un(S}/F2 (s)-U (t)/F% "(t)] = &) =
2
G Cah
2 e )

[
exp: - W —5 T
1 SHR {E§=1(bj“aj)}26 \nz{zﬁzl(bj~aj)}z

PROOF. Let us first consider (2.16). Because of (2.13) we have

(8 (b)12/FE0(a) = (8.2)%F%(a),

so that the required condition on A 1is satisfied according to Theorem

2.2. The bound itself follows easily from

2_1-26 16 2 1
Czl F (a) w(C3AE (a)w 2 Czl w( lcﬁA \;
F(b) K nEF(b) 7 Fzﬁ(b) \n2F2+6(b)J

for the inequality we use (2.13) and the monotonicity of w.

Let us next turn to (2.17) and write £§=l(b
It is immediate from the inequalities

j'aj) = ¢ for brevity.
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(F(b)-F(a))® _ 2% s
RO NGO

FA(b) (, (F(b))-a5(F(a))) 4
G5 (F(a))a,(F (b)) P

that follow from (2.14) and (2.15) respectively, and from Theorem
2.3 that the required condition on A is satisfied. As far as the bound

itself is concerned we observe that

EE}ZqE(F(a)) 7 Cpag(Fla)

F{b)-F(a) wk(F(b)-F(a) n%} i

I

(F(b)-F(a))/z

by (2.2) with C

I

gt
et U\néiﬁ+°f

i
by (2.18) and (2.1) with « = (F(a)/%)° © and B =1

which yields the required upper bound for the first part of the
expression on the right in (2.6), and we note that

CpPR(F@NAE(F(D))  , Cpag(Fa)ag(Fb))
)

1

5 b
F(b) (a (F(5))-ag(F()) \F(b) (a(F(b))-a(F(a)))n*

=

X
73 w( =1 x?
n2F2(b)z®/
q
b

(F(a))a, (F(b)) , L s
— and B = 1/(2%27)
(a(F(b))-a,(F(a)))

by (2.12) and the monotonicity of W
which yields the required upper bound for the second part of the
expression on the right in (2.6). Since both upper bounds are of the same
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order, the result of the corollary follows immediately. 0.E.D.

REMARK 2.1: van 7wet's lemma. Although the constant on the right
side of (2.3) is excessive, the bound is uniform in rectangles R ¢ R
and continuous d.f's with Uniform (0,1) marginals. Hence for such
d.f's Theorem 2.1 implies van Zwet's lemma; see also Remark 1.1.

REMARK 2.2: the special choice q = 1. If the weight function g is
identically equal to 1, the result of Theorem 2.3 simplifies to
(2.18) P{SUQS,teR(a,b)|Un (s)-U.(t)] = 1) =

2
o Cah
< ¢;00 (ermrrar {orre )
> ' n®(F(b)-F(a))’
It is easily seen that (2.18) remains true for F(a) = 0, provided
F(b)-F(a) < 1.

REMARK 2.3: improvement by additional conditions on F. If we assume
that F has a density with respect to Lebesgue measure, bounded away
from both 0 and =, we may improve on the assertion of Theorem 2.2.

See Ruymgaart & Wellner (1982) for details; see also Section 3.A.

3. APPLICATIONS TO STRONG AND WEAK CONVERGENCE

A. Processes indemed by points. One has to be careful when the weighted

empirical process is studied over sets of time points, including points
d : F(t) = 0}. This will be illustrated by the following
example, related to what has been observed in Shorack & Wellner (1982,
p.640).

close to {t « 1

Let d = 2 and take forF thed.f. that has mass 1 uniformly distributed
over the line segment joining (0,1) and (1,0). Hence with probability
1 all the X 7ie on this line. Consider any such Xi[m) in the open
segment. By letting t converge to Xi(m) from the "north-east" to
the "south-west" it is clear that

(3.1) U, (BI/AFE) ¢ = (X))
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W

1
+ P(supsch2|Un{52}[ > 3AF{R,}%) <

- 22d+9h_2 +22d+93—2 “ 22d+10}\—2

by applying (1.14) followed by Chebychev's inequality twice with
F{Ri} < } in each case. Q.E.D.

THEOREM 2.2. Let a,b « 19 with a < b and F(a) > 0. For
Xz {SF(b)}%Kq{F(a)} we have

(2.4) P(sup, R(a, b)}U (t)|/a(F(E)) =2 ) =
20(d) exp{-2 ‘) ¢{ 9(F(a
F{b)n

A
L

m'.-t-._,

PROOF. From the monotonicity of g (see (1.3)) and because
R{a,b) < R(0,b), where O is short for <0>, it follows that

[2=h) (SuPt R(a,b)’ U (t) /a(F(t)) = A=

< P(suPy p(0,b)! (2] = aa(F(a)))-

Because U (t) U {R(O t)} it is immediate from Theorem l. 1 that this
last expression is bounded above by the quantity on the right in (2.4),
provided x satisfies the condition in the theorem. Q.E.D.

THEOREM 2.3. Iet a.b « 19 with a < b and F(a) > 0. For
f___d’ 1 i
x zmax{224d(F (b)'F(a))z/q(F(a)), 224F2 (b) (q(F(b)) )-q(F(a)))/
(q(F(a))q(F(b)})} we have

(2.6)  P(supg i p(a,b) Yn(s)/alF(s))-Up(t)/alF(t NI =z2) <
e e D DI )

eXp\ | I)7

128¢ 2(F(b)-F(a)) \8d(F(b)-F(a))n*

o[ SR SR,
\"28F (0 (a(F (b)) -a(F() 12 \&F (b) (a(F (b)) -a(F(2)))n*//

PROOF. The probability in (2.6) is bounded above by P;+Ps» where

(2.7} P1 = P(SUPS,tcR(a,b}|Un(s)_un(t)| > 1aq(F(a)))s
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o o 1 Q(F(
(28} pz 5 P\SUpt--R(a,b)wn(t)‘ = 3 C[(F(
As to P let us note that
o=
(2.9) SuPs,tcR(a,bJ‘Un(s)'Un(t)! 2 Lj=l SUDSch|Un{S}I’
where, for j = 1,....,d, the rectangle Rj is given by
(2.10) Rj = {O,blix...x(D,bj_ljx(aj,ijx(O,bj+1jx...x(D,bd],

and where the supremum is taken over all S ¢ R with S ¢ R.. It follows
that F{Rj} < F(b)-F(a). We see from (2.7) and (2.9) that

(2.11) p; = z?zlp(supscRJ|un{S}¢ > aq(F(a))/(2d)).

Using Theorem 1.1 along with (2.2) (choose c = F{Rj}/(F(b)—F(a)}) it
is clear that an upper bound for Pq is given by the first part of the
expression on the right in (2.6).

By the same argument as the one in (2.5) it follows that Py is
bounded above by the second part of the expression on the right in
{2z 61 BuEIn)

In most applications the rectangles will arise as elements of a
partition. In such cases the points a and b will be close together. A
reasonable assumption turns out to be that a and b satisfy

(2.123 z? 1(b=a;) < 3F(b).

(The number 3 could be replaced by any fixed y ¢ (0,1).) If (2.12) 1is
fulfilled it follows that
(2.13)  F(a)/F(b) = (F(b)-s]_;(bs-a,))/F(b) = 3,
d 1 o d I§ -
(2.14) F(a)/zjzl(bj aj) = EF(b)/zjzl(bj aj} =i

Restriction to the weight functions 9 in (1.4), 6  [0,%1, Teads
to further simplifications. For such G we have
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for any g with g{(0) = 0. Hence for almost all w the paths of the
weighted empirical process are not in the function space D{IZ) as
defined e.g. in Bickel & Wichura (1971) and Neuhaus (1971). It is also
clear that the supremum over all t e Id of the absolute value of the
weighted empirical process equals « with probability 1.

For any v ¢ (0,11 by R(y) ¢ R we understand a partition of (<0>,<l>]
into rectangles, obtained as a Cartesian product of partitions of the
axes, such that

(3.2)  ming,  bimai =y WR(a,b) ¢ R(y).

We shall, however, mostly use the partitions

d

(3.3)  S(y) :{R(<T‘fil%'¥¥>,<’[‘§}3{]>) . <k(§)> ¢ N

1
i

that consist of squares ([1/y] = largest integer = 1/y). Of course one
has

(3.4) S{y) Zs ome of the R(y).
Given 0 = o < 8 = 1 let us also introduce the subclass
(3.5) S{via,B) = {R(a,b) « S(v) : F(b) = a, F(a) = B},

of all squares having a non-empty intersection with the set
e 17 5 od Bt 4

If we choose
(3.6) ¥y = y(a) = o/(3d),

we see that

Lybsa) = =S s 4o < 3E(BY  WR(aLb) € S(rle)ins),
[3d/al
so that condition (2.12) is fulfilled for all squares in S{y(a):u,B).

Note that (3.6) entails in particular that

(3.7 s

(3.8) fo = F(t) = B} ¢ URcS(y(u);a,S)R c {la = F(t) = 2g}.



RUYMGAART ~ WELLNER

THEOREM 3.1: strong convergence. For each e > 0 there exists C € (0,%):

u_()]
—_ = 1, a.s.

(3.9)  limsup ., SUP¢.p(t)z(e log n)/n (CF(t) Tog n)?

L
PROOF. Let us choose o = o = (e Tog n)/n, g = 1, A =& = (C log n)?

for some C ¢ (0,=), and vy, = Y(an) as in (3.6). Using the corresponding
partition (3.5) and its properties it is immediate from (2.16) and the

monotonicity of ¢ that

(3.10) P(supt:F(t)aan|Un(t)]/F%(t) 2 Ay) S

=

£)[/F(t) = ) <

s P(mangs(Y al

sara1) SUPeer!Un
o - 2\' % =
< ERES(Yn;anal} Cl exp( sznv(CSXnX{nun) )) =

(C3dn/(e log n)1)d €, exp(-C,(C Tog n)w(C3(CXe)%)) =

d—CC2
a(n ), as n > =.

1

Since the sum over all n ¢ I of the numbers on the right in (3.10) is
finite provided we choose C such that CC2 > d+l, the conclusion of the
theorem follows by the Borel-Cantelli lemma. Q.E.D.

THEOREM 3.2: weak comvergence. Let & £ (0,%] and o ¢ (0,1). Provided

the condition

U (t)]
. " n _ 7
(3.11) 11ma+0 Timsup, . P(Supt:F(t)Sa Egtgzzg-z A) =0 v >0
1
is satisfied, the weighted empirical processes {Un(t)/F2 G(t), t e Id}
converge weakly to a Gaussian process in the space D(17).

PROOF. The weak convergence of the finite dimensional distributions
being immediate, we restrict ourselves to the behavior of the modulus
of continuity. Although moment inequalities suffice, here we will use
the exponential bound (2.17) of Corollary 2.1.

According to Bickel & Wichura (1971) we have to verify that
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- 1 G
(3.12) 11ma+0 ]1msupn+m PK”

where, for given a,

(3.13)  wi(u /F7%) =
S (t)\

F2‘5<s) e

T TnfR(u} mastR(a) Sups,teR

Because of (3.4) we have

(3.14) w&(uan?'ﬁ) <

U,(s) U (t] 4

F5(s) ol

< max sup

s,teR

ReS(a)

Hence, relabeling o by y(a) = «/(3d), see (3.6}, and taking into
account (3.11), we may prove as well

Uy
. : [ [0 o ;
(3.15) I1ma+o 11msupn Piw Y(u),a \FE‘GJ = } Yi > 0,
where
U
3.16) we, o (D) -
( ) WY{J}5Q\F2_5;
P U(s) U (t)

= max

ReS(v(a);a,1) “YPs teR |Fz 55) -F%_ﬁ(t) :

For any » > 0 we may apply (2.17) for a sufficiently small, since
then ) = 8d(dy(a)}6, and application yields

{0 / e
(3.17) P\w e }

u(s) U (t)
ol Dh e le ) &
ZReS(v(a)50,1) "\ 3YPs, teR 85 Py 2 |
£, ta
< (3 \ fir 3 1
\F-"] L 75 ¢t;T;T$§}/ >
» ¢y (28 dexp(- %), as n > o,

since ¢(0) = 1. From this (3.15) follows at once. Q.E.D.

In the next theorem it is claimed that (3.11) holds true for the
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trivial choice & = } without any further condition on F. Of course

this result is not new, but we give a proof which displays once more

the usefulness of Theorem 1.1.

THEOREM 3.3: weak convergence, trivial weight funcition. If we choose
6 = 1 (f.e. the weight function tdentically equal to 1
t e 17} converge to a

), relation {3.11)

holds true. Consequently the processes {Un(t),

Gauseian process in D(Id}.

PROOF. Let us first fix a « (0,2) and consider the partition S(a).
It is clear that

P{su[:)i_’:!:{t)iu LUn(t)] > ) <

P(suptER\Un(t)l =z A) =

=

ERES(G;O,&)
2
X C
< ([-ll\d C exo(-;g—— ¢(—7§i—-7}
a2 } 1 \ F(R) “\nZF{R}‘*
because of Theorem 1.1
2
d Gt C
Gl e o
L5l el

by application of (2.2) with ¢ = F{R}/(2da), where ¢ < 1 because
F{R(a,b)} = F(b)-F({a) = 2da ©F R{a,b) « S{a) and o ¢ (051

d

" :
» ¢y (t2)? exp(-c % Ly i

This last upper bound obviously converges to zero as o decreases to

zero. Q.E.D.

1t will be clear from the introduction to this section that for non-
trivial weight functions (3.11}) is not satisfied without any restriction
on F. A sufficient condition will turn out to be that F has a density T

with respect to Lebesgue measure such that
(3.18) 0 <M < f(t)shy<= Vte i

for some numbers M; and Mz. Without loss of generality the condition
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THEOREM 3.4: weak convergence, additional conditions on the s
Provided that F satisfies (3.18), condition (3.11) is satisfied for any
§ € (0,21, Comsequently the weighted empirical processes

]
NG
space D(Id) :

) t e I} comverge weakly to a Gaussian process in the

PROOF. Let x > 0 be arbitrary but fixed throughout the proof and
choose o ¢ (0,1}). Let a, = n_(1+6J. It is clear that the probability
on the left in (3.11) is bounded above by

(3.29)  P( U (t)]
s Supt:F(tJ«.;D_. 175 _—
i E {t) iUn(t)|
+ P(Supt:aniF(t}ga FE:EEE; )

Lemma 3.1 applies to the second term with o replaced by a, and 8 by
1
@, provided o is small enough to ensure that x > (8/v)%(a/y)®; this
yields
Bl

i L ool G

1 TR (t)<aryy TET EXDK_FSXZ(t) o SA" J'
G

- Loosplo 2 Vigh =
= Gy I{F(t)éa/y} T{T-exp\ T;T§7?]|dt| <

(3.30)

S CC) | 1t e 1% ¢ Jt] < o/,

for some constant C(1) depending on » and C2. This upper bound is
independent of n and obviously converges to 0 as o + 0.

Let us now turn to the first term in (3.29) and note that, provided
e {1t = E(E) = an} for i = 1,...,n, we have

(U (t)]
(3.31) n n2FEO 4y o pipm(1+8)(248)
F28(¢) ’
for n = nO(A) « IN. It follows that
_ [u,(t)]
(832 hms;upn%o P(supt:F(t)Sanhgz:gzzg-é A) =

L FR = e i) =0,

= Timsup, (1 ~P{n;_; ; o
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that F has Uniform (0,1) marginals may be maintained, but this is not
essential for this part of the subsection. See also Riischendorf (1980)
and Harel (1980).

The additional condition on F enables us to use a different kind of
partitioning that is particularly well suited for the study of F near
the "lower" boundary of its support, i.e. the set {F(t) = 0} which is
equal to the "lower" boundary of the unit cube Id under this extra
condition. For fixed & « (0,1) we first partition [0,1] by

2>..

(3.19) 1s65>0 B

This infinite partition is used in Shorack & Wellner (1982). The induced
infinite partition of Id consists of the class of rectangles

(3.20) (o) = fR(<e*)5 ek )-Lyy  (5)> « mYy.

Given 0 £ o = 8 = 1 let us also introduce the subclass
(3.21)  Q(63a,8) = {R(a,b) < 0(8) : F(b) = a, F(a) < B}.
Condition (3.18) entails that

(3.22)  F(a)/F(b) = (My/My)e? = v c (0,1) WR(a,b) ¢ 9(e),

so that the essential part of (2.13) is.satisfied with 1 replaced by +.
In particular we have

{3.20F o = Flt) = Bl & Hpeo(eias) - {ya < F(t) < B/v}.

In the sequel Cq> C2 and C3 will be generic constants depending only on
& in (3.19), v in (3.22) and the dimension d.

LEMMA 3.1. Provided F satisfies (3.18), for each n ¢ MN, & ¢ (0,31,
i T T 1
O0<azp=1agnda:z (S/Y)E(B/Y)é we have

3
(3.24) P(supt:agF(t)SB|Un{t)|/F2 G(t) S s
et [ty
=C 1 T () T
1 (yasF(t)</y} TET ©*P\ FO/2 5y TG 1me72

))]dt[.
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PROOF. We proceed as in the proof of Theorem 3.1 but here we use
the partition 0(8;a,8). In order to apply Theorem 2.2 to the rectangles
in this partition let us observe that

10 1 3l 1
(8F(b)12/F2%(a) = (8F(b)/F(a)3PF (a) = (8/v)2(8/v)°,
so that the condition on » is satisfied. Application yields
(3.25) P(Supt:mﬂF(t)SBiUn(t)|/Fé_0(t) B )s
i) (C3AF%-6(a) \
=3 £ = ] T [
"R(a,b)eq(050,8) 1 TPUTFBY - W Iy /)

Because of (3.22) the first factor in the exponent is bounded below

as follows

2-1-2¢6
621 F (a) 5 s

(3.26) ——pr— > YR F (1) 2 G,
£38/2

A2F25(8) vt e R(a,b).

Using (2.2) with c = (t), (3.22) and the monotonicity of ¢ the
second factor may be bounded below by

i-6 35/2
CaaFe “(a) CaF=o 51t
B2 o) = P )
EEE n2Fz" %(a)
)
i F36/2(t)¢(C3AF (a) .
= S EE e
i\néFc-i_s(a).Y 8 A
CaX
sl Ll s ’
= B (t)lﬁ’\W; vt ¢ R{(a,b).

Hence the product is bounded by the exponential on the right in (3.24).

Combination of (3.25)-(3.27) yields (3.24) when, in addition, we
use
d d k(j)-1,7F
(3.28) 1 =[(1-8)" 1:_,9 o

2 J : i e
= R(<sk(J)>,<ek(J) 1>)

.1

; (l—fJ}_d-Jr

1
ekl ol TR

Lv)

at the transition from summation to integration. Q.E.D.
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because under the present conditions on F it is clear that

= n
(3.33)  Plot G IFOL) = ) = UG = a /Myl =
e I
= {1-P([X;] = unfMl)} -

fTeM n

{|tj£un/

It follows by elementary computations that this last bound in (3= 333

converges to 1 as n » =. Q.E.D.

REMARK 3.1: the dependence on d only of the Ci' It is clear from the
expression for C(d) in Theorem 1.1 that C; varies with F{R(a,b)}. A
uniform (for all R ¢ R) upper bound for Cl can be obtained, however, by
splitting R into rectangles R1 and R2 viith F{Rl} = F{RZ} = FF{R} = L,
similar to what happens in the proof of Theorem 2.1. Then it is easily
seen that Theorem 1.1 remains true for all R ¢ R with C(d) replaced by
2.22%3 and » by A/2. Tt follows that C, and C, are to be modified as
well. It should, however, be also noted that in this section we do have
F{R} = } with only a few exceptions that could be easily taken care of
by a straightforward modification of the argument.

B. Processes indexed by rectangles. Quite a few properties for processes

indexed by rectangles may be obtained from related properties of
processes indexed by points. For this purpose we associate with the
i.i.d. random vectors Xl’XZ"" in Id the i.i.d. sequence Yl,Yz,... of
random vectors in IZd, where Y. = (l_xil’xil’“"1“Xid’xid)‘ The common
d.f. of the Yi will be denoted by G and the empirical d.f. of the first
n by Gn. The d.f. G obviously concentrates mass 1 on the set

{t e12d ; ty;.1ttp; = 13 § = Lsw..,db. Since F has Uniform (0,1)
marginals, the same is true for G, so that our only condition on the
underlying d.f. is still satisfied.

Let us consider an arbitrary half-open rectangle R(s,t) ¢R and
write R(s,t) for the corresponding closed rectangle. For this closed

rectangle we have

(3.38) U IR(s,t)} = Vo (L1-5p5tpsu.0slmsgsty)s
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e can't, however, proceed as in that paper since we haven't
derived all the properties on weak convergence of weighted empirical
processes in the supremum-norm that are required. But we still may
observe that for any fized o ¢ (0,1),

2 ; v

2
R e

/ Y du, as n > e
n,o a  {G{u)zal G(u 5 2

2d}. Relation

where V is the Timiting Gaussian process of the Vn in D{I
(3.43) is immediate from Theorem 3.3, since 1/G is bounded by 1l/z on

{G = al.
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3
where V_(u) = n*(§ (u)-G(u)), u < 1%

. It is possible, however, to stay
with the half-open rectangles, because '

(3.35) U {R(s,t)} =4 Un{ﬁ(s,t)}.

This relation holds true because each hyperplane parallel to one of
the sides of 14
g B,

has zero F-mass, due to the uniformity of the marginals

~ THEOREM 3.5: strong convergence. For any e > 0 there existe Ce (0,=);
[U (R}

o SHPRSE RS e T uln T R e s

(3.36) Timsup, | T
(CF{R}1log n)*®

PROOF. We only have to translate Un{R} in terms of Vn(u), taking
into account (3.35), and apply Theorem 3.1. Q.E.D.

REMARK 3.2: intervals as a special case. Specializing Theorem 3.5
to d = 1 we obtain relation (1.37) in Shorack & Wellner (1982) as a
special case. Note that F{R} = |R| when d = 1.

REMARK 3.3. In Ruymgaart (1977) an attempt has already been made to
obtain properties of processes indexed by sets, more general than
quadrants, from properties of processes indexed by points (= quadrants).
This paper, however, contains an error due to the omission of a condition
on the underlying d.f. In Ruymgaart & Wellner (1982) the same idea is
used to describe the behavior of processes indexed by ordinate sets.

By approximating such a set, one is faced with the necessity of letting
the dimension of the vector representing this approximation grow to «
with n. Hence the dependence on d of the constants Ci(d} places a
serious restriction on the speed of the Glivenko-Cantelli convergence

of processes indexed by ordinate sets.

C. On weak convergence of a functional. Motivated by Shorack & Wellper

(1982, Section 2), let us consider the statistics
U R(s,t)3 |2

o
(3.3) s° = s et sieL,n ) TTRGAT ds dt,
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under the null hypothesis that the underlying d.f. F of the Xi is

e d : : :
uniform on 1, for arbitrary dimension d.

By letting G and Vn as in Section 3.B it follows that in the present

special case

d j
(e e s O e S I
(3.38)  &(u) =_{ =1ty 2j-1423

0, otherwise ,

so that we may write as well SE = 5%,0,a+5§ - where « ¢ (0,1) and
Va(u)
2 . n
(35 40 RS = du »
n0s0 e 124 00g(u) <3 (U
2
2 Vn(u}

(3.40) & . -7 du.
e~ per?dca(uyety B9

Let us first consider Sﬁ,O,u' As we have seen in the beginning of
Section 3.A the supremum of the weighted empirical processes will
cause problems for such degenerate d.f.'s like the one in (3.38). Here
we are dealing with an integral of the weighted empirical process, how-
ever, and then the problems don't arise. It follows simply from the
Markov-inequality that

(3.81) SC o > 0, a5 o + 0, wnifomly in n,

because we have

2 i G(u)(1-G(u)) 2
SUPL.IN E5n,0,0 = T{0<G(u)sa} — GLay U *

< |{0 < G(u) = a}] + 0, as a + O,
Relation (3.26) entails that

Sﬁ 18 asymptotically equivalent with Sg o for any
{3.42) o

sequence {an} with B 0, as n » =,

Taking e.qg. o = (Tog n)/n brings us in a position similar to that of
Shorack & Wellner (1982, beginning proof of Theorem 2.1).




