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HOW MANY LAPLACE TRANSFORMS

OF PROBABILITY MEASURES ARE THERE?

FUCHANG GAO, WENBO V. LI, AND JON A. WELLNER

(Communicated by Richard C. Bradley)

Abstract. A bracketing metric entropy bound for the class of Laplace trans-
forms of probability measures on [0,∞) is obtained through its connection with
the small deviation probability of a smooth Gaussian process. Our results for
the particular smooth Gaussian process seem to be of independent interest.

1. Introduction

Let μ be a finite measure on [0,∞). The Laplace transform of μ is a function on
(0,∞) defined by

f(t) =

∫ ∞

0

e−tyμ(dy).(1)

It is easy to check that such a function has the property that (−1)nf (n)(t) ≥ 0 for
all nonnegative integers n and all t > 0. A function on (0,∞) with this property
is called a completely monotone function on (0,∞). A characterization due to
Bernstein (cf. Williamson (1956)) says that f is completely monotone on (0,∞) if
and only if there is a nonnegative measure μ (not necessary finite) on [0,∞) such
that (1) holds. Therefore, due to monotonicity, the class of Laplace transforms of
finite measures on [0,∞) is the same as the class of bounded completely monotone
functions on (0,∞). These functions can be extended to continuous functions on
[0,∞), and we will call them completely monotone on [0,∞).

Completely monotonic functions have remarkable applications in various fields,
such as probability and statistics, physics and potential theory. The main properties
of these functions are given in Widder (1941), Chapter IV. For example, the class
of completely monotonic functions is closed under sums, products and pointwise
convergence. We refer to Alzer and Berg (2002) for a detailed list of references on
completely monotonic functions. Closely related to the class of completely mono-
tonic functions are the so-called k-monotone functions, where the nonnegativity of
(−1)nf (n) is required for all integers n ≤ k. In fact, completely monotonic functions
can be viewed as the limiting case of the k-monotone functions as k → ∞. In this
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sense, the present work is a partial extension of Gao (2008) and Gao and Wellner
(2009).

Let M∞ be the class of completely monotone functions on [0,∞) that are
bounded by 1. Then

M∞ =

{
f : [0,∞) → [0,∞)

∣∣∣∣f(t) =
∫ ∞

0

e−txμ(dx), ‖μ‖ ≤ 1

}
.

It is well known (see e.g. Feller (1971), Theorem 1, page 439) that the subclass of
M∞ with f(0) = 1 corresponds exactly to the Laplace transforms of the class of
probability measures μ on [0,∞). For a random variable with distribution function
F (t) = P (X ≤ t), define the survival function S(t) = 1 − F (t) = P (X > t). Thus
the class

S∞ =

{
S : [0,∞) → [0,∞)

∣∣∣∣S(t) =
∫ ∞

0

e−txμ(dx), ‖μ‖ = 1

}

is exactly the class of survival functions of all scale mixtures of the standard expo-
nential distribution (with survival function e−t), with corresponding densities

p(t) = −S′(t) =

∫ ∞

0

xe−xtμ(dx), t ≥ 0.

It is easily seen that the class P∞ of such densities with p(0) < ∞ is also a class of
completely monotone functions corresponding to probability measures μ on [0,∞)
with finite first moment. These classes have many applications in statistics; see e.g.
Jewell (1982) for a brief survey. Jewell (1982) considered nonparametric estimation
of a completely monotone density and showed that the nonparametric maximum
likelihood estimator (or MLE) for this class is almost surely consistent. The brack-
eting entropy bounds derived below can be considered as a first step toward global
rates of convergence of the MLE.

In probability and statistical applications, one way to understand the complexity
of a function class is by way of the metric entropy for the class under certain common
distances. Recall that the metric entropy of a function class F under distance ρ is
defined to be logN(ε,F , ρ) where N(ε,F , ρ) is the minimum number of open balls
of radius ε needed to cover F . In statistical applications, sometimes bracketing
metric entropy is needed. Recall that bracket entropy is defined as logN[ ](ε,F , ρ),
where

N[ ](ε,F , ρ) := min

{
n : ∃f

1
, f1, . . . , fn

, fn s.t. ρ(fk, fk
) ≤ ε,F ⊂

n⋃
k=1

[f
k
, fk]

}

and

[f
k
, fk] =

{
g ∈ F : f

k
≤ g ≤ fk

}
.

Clearly N(ε,F , ρ) ≤ N[ ](ε,F , ρ), and they are closely related in our setting below.
In this paper, we study the metric entropy of M∞ under the Lp(ν)-norm given

by

‖f‖pLp(ν) =

∫ ∞

0

|f(x)|pν(dx), 1 ≤ p ≤ ∞,

where ν is a probability measure on [0,∞). Our main result is the following.
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Theorem 1.1. (i) Let ν be a probability measure on [0,∞). There exists a constant
C depending only on p ≥ 1 such that for any 0 < ε < 1/4,

logN[ ](ε,M∞, ‖ · ‖Lp(ν)) ≤ C log(Γ/γ) · | log ε|2,
for any 0 < γ < Γ < ∞ such that ν([γ,Γ]) ≥ 1 − 4−pεp. In particular, if there
exists a constant K > 1, such that ν([εK , ε−K ]) ≥ 1− 4−pεp, then

logN[ ](ε,M∞, ‖ · ‖Lp(ν)) ≤ CK| log ε|3.
(ii) If ν is Lebesgue measure on [0, 1], then

logN[ ](ε,M∞, ‖ · ‖L2(ν)) 
 logN(ε,M∞, ‖ · ‖L2(ν)) 
 | log ε|3,
where A 
 B means that there exist universal constants C1, C2 > 0 such that
C1A ≤ B ≤ C2B.

As an equivalent result for part (ii) of the above theorem, we have the following
important small deviation probability estimates for an associated smooth Gaussian
process. In particular, it may be of interest to find a probabilistic proof for the
lower bound directly.

Theorem 1.2. Let Y (t), t > 0, be a Gaussian process with covariance EY (t)Y (s) =
(1− e−t−s)/(t+ s). Then for 0 < ε < 1,

logP

(
sup
t>0

|Y (t)| < ε

)

 −| log ε|3.

The rest of the paper is organized as follows. In Section 2, we provide the
upper bound estimate in the main result by explicit construction. In Section 3, we
summarize various connections between entropy numbers of a set (and its convex
hull) and small ball probabilities for the associated Gaussian process. Some of our
observations in a general setting are stated explicitly for the first time. Finally we
identify the particular Gaussian process suitable for our entropy estimates. Then
in Section 4, we obtain the required upper bound small ball probability estimate
(which implies the lower bound entropy estimate as discussed in section 3) by a
simple determinant estimate. This method of small ball estimates is made explicit
here for the first time and can be used in many more problems. The technical
determinant estimates are also of independent interest.

2. Upper bound estimate

In this section, we provide an upper bound for N[ ](ε,M∞, ‖ · ‖Lp(ν)), where ν
is a probability measure on [0,∞) and 1 ≤ p ≤ ∞. Before we start, we note that
M∞ is the convex hull of K := {K(t, ·) : t ∈ [0,∞)}, where for each t ∈ [0,∞),
K(t, ·) is a function on [0,∞) defined by K(t, x) = e−tx. There are some general
results on metric entropy of convex hulls conv(T ) using the metric entropy of T .
(Cf. Dudley (1987), Ball and Pajor (1990), van der Vaart and Wellner (1996), Carl
(1997), Carl et al. (1999), Li and Linde (2000), Gao (2004), etc.) For example,
Carl et al. (1999) proved that if N(ε, T, ‖ · ‖) = O(ε−α), α > 0, then

logN(ε, conv(T ), ‖ · ‖) = O(ε−2α/(2+α)),

where ‖·‖ is any Banach space norm. Although these results are best possible for the
general case, when applied to specific problems they could be far from being sharp.
This is especially the case when the metric entropy of T grows at a polynomial rate.
For example, in our case, because the functions e−kx, k = 1, 2, . . . , n, have mutual
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L2[0, 1]-distance at least 1
2n

−3/2, we immediately have N(ε,K, ‖·‖L2[0,1]) ≥ Cε−2/3.
Thus, in the case p = 2 and with ν taken to be Lebesgue measure on [0, 1], the best
upper bound we can hope to obtain using the general convex hull result quoted
above is

logN(ε,M∞, ‖ · ‖L2(ν)) ≤ C2ε
−1/2,

which is much larger (at least in the dependence on ε) than the upper bound

logN(ε,M∞, ‖ · ‖L2(ν)) ≤ C| log ε|3,
which we will obtain later in the section.

We will obtain our upper bound estimate by an explicit construction of ε-brackets
under Lp(ν)-distance.

For each 0 < ε < 1/4, we choose γ > 0 and Γ = 2mγ, where m is a positive
integer such that ν([γ,Γ]) ≥ 1− 4−pεp. We use the notation I(a ≤ t < b) to denote
the indicator function of the interval [a, b). Now for each f ∈ M∞, we first write
in block form

f(t) = I(0 ≤ t < γ)f(t) + I(t ≥ Γ)f(t) +

m∑
i=1

I(2i−1γ ≤ t < 2iγ)f(t).

Then for each block 2i−1γ ≤ t < 2iγ, we separate the integration limits at the level
22−i| log ε|/γ and use the first N terms of Taylor’s series expansion of e−u with
error terms associated with ξ = ξu,N , 0 ≤ ξ ≤ 1, to rewrite

f(t) = I(0 ≤ t < γ)f(t) + I(t ≥ Γ)f(t) +
m∑
i=1

(pi(t) + qi(t) + ri(t)),

where

pi(t) =: I(2i−1γ ≤ t < 2iγ)
N∑

n=0

(−1)ntn

n!

∫ 22−i| log ε|/γ

0

xnμ(dx),

qi(t) =: I(2i−1γ ≤ t < 2iγ)

∫ 22−i| log ε|/γ

0

(−ξtx)N+1

(N + 1)!
μ(dx),

ri(t) =: I(2i−1γ ≤ t < 2iγ)

∫ ∞

22−i| log ε|/γ
e−txμ(dx).

We choose the integer N so that

4e2| log ε| − 1 ≤ N < 4e2| log ε|.(2)

Then, by using the inequality k! ≥ (k/e)k and the fact that 0 < ξ < 1, we have
within the block 2i−1γ ≤ t < 2iγ,

|qi(t)| ≤
∫ 22−i| log ε|/γ

0

(tx)N+1

(N + 1)!
μ(dx)

≤ |4 log ε|N+1

(N + 1)!
≤

(
4e| log ε|
N + 1

)N+1

≤ e−(N+1) ≤ ε4e
2

,

where we used tx ≤ 2iγ · 22−i| log ε|/γ = 4| log ε| in the second inequality above.
This implies, due to disjoint supports of qi(t),∣∣∣∣∣

m∑
i=1

qi(t)

∣∣∣∣∣ ≤ ε4e
2

.(3)
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Next, we notice that for t ≥ 2i−1γ and x ≥ 22−iγ−1| log ε|, e−tx ≤ ε2. Thus∣∣∣∣∣
m∑
i=1

ri(t)

∣∣∣∣∣ ≤
m∑
i=1

I(2i−1γ ≤ t < 2iγ)

∫ ∞

22−iγ−1| log ε|
ε2μ(dx) ≤ ε2.(4)

Finally, because |f | ≤ 1 and ν([0, γ)) + ν([Γ,∞)) ≤ 4−pεp, we have

‖I0≤t<γf(t) + It≥Γf(t)‖Lp(ν) ≤ ε/4.

Together with (3) and (4), we see that the set

R =:

{
m∑
i=1

qi(t) +

m∑
i=1

ri(t) + I(t < γ)f(t) + I(t ≥ Γ)f(t) : f ∈ M∞

}

has diameter in Lp(ν)-distance at most ε2 + ε4e
2

+ ε/4 < ε/2.
Therefore, if we denote Pi = {pi(t) : f ∈ M∞}, then the expansion of f above

implies that M∞ ⊂
∑m

i=1 Pi +R, and consequently, we have

N[ ](ε,M∞, ‖ · ‖Lp(ν)) ≤ N[ ]

(
ε/2,

m∑
i=1

Pi, ‖ · ‖Lp(ν)

)
.

For any 1 ≤ i ≤ m and any pi ∈ Pi, we can write

pi(t) = I(2i−1γ ≤ t < 2iγ)

Ni∑
n=0

(−1)nani(2
−iγ−1t)n,(5)

where 0 ≤ ani ≤ |4 log ε|n/n!. Now we can construct

pi = I(2i−1γ ≤ t < 2iγ)
N∑

n=0

(−1)nbni(2
−iγ−1t)n,

p
i
= I(2i−1γ ≤ t < 2iγ)

N∑
n=0

(−1)ncni(2
−iγ−1t)n,

where

bni =

⎧⎪⎨
⎪⎩

ε
2n+2 � 2n+2ani

ε � if n is even,

ε
2n+2 
 2n+2ani

ε � if n is odd,

cni =

⎧⎪⎨
⎪⎩

ε
2n+2 
 2n+2ani

ε � if n is even,

ε
2n+2 � 2n+2ani

ε � if n is odd.

Clearly, p
i
(t) ≤ pi(t) ≤ pi(t), and

|pi − p
i
| ≤ I(2i−1γ ≤ t < 2iγ)

N∑
n=0

|cni − bni|(2−iγ−1t)n

≤ I(2i−1γ ≤ t < 2iγ)

N∑
n=0

ε

2n+2
(2−iγ−1t)n

≤ ε

2
I(2i−1γ ≤ t < 2iγ).

Hence
m∑
i=1

p
i
≤

m∑
i=1

pi ≤
m∑
i=1

pi ≤
m∑
i=1

p
i
+ ε/2.
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That is, the sets

P =:

{
m∑
i=1

p
i
: pi ∈ Pi, 1 ≤ i ≤ m

}
and P =:

{
m∑
i=1

pi : pi ∈ Pi, 1 ≤ i ≤ m

}

form ε/2 brackets of
∑m

i=1 Pi in the L∞-norm, and thus in the Lp(ν)-norm for all
1 ≤ p < ∞.

Now we count the number of different realizations of P and P. Note that, due
to the uniform bound on ani in (5), there are no more than

2n+1

ε
· |4 log ε|

n

n!
+ 1

realizations for bni. So, the number of realizations of pi is bounded by

N∏
n=0

(
2n+1

ε
· |4 log ε|

n

n!
+ 1

)
.

Because n! > (n/e)n, for all 1 ≤ n ≤ N , we have

2n+1

ε
· |4 log ε|

n

n!
+ 1 ≤ 3

ε

(
8e| log ε|

n

)n

.

Thus, the number of realizations of pi is bounded by

(
3

ε

)N+1

· exp
(

N∑
n=1

(n log |8e log ε| − n log n)

)

≤
(
3

ε

)N+1

· exp
(
N(N + 1)

2
log |8e log ε| −

∫ N

1

x log xdx

)

≤
(
3

ε

)N+1

· exp
(
N(N + 1)

2
log |8e log ε| − N2

2
logN +

N2

4

)

≤ exp
(
C| log ε|2

)
for some absolute constant C, where in the last inequality we used the bounds on
N given in (2).

Hence the total number of realizations of P is bounded by exp
(
Cm| log ε|2

)
.

A similar estimate holds for the total number of realizations of P , and we finally
obtain

logN[ ](ε,M∞, ‖ · ‖Lp(ν)) ≤ C ′m| log ε|2

for some different constant C ′. This finishes the proof since m = log2(Γ/γ).

3. Entropy of convex hulls

A lower bound estimate of metric entropy is typically difficult, because it often
involves a construction of a well-separated set of maximal cardinality. Thus we
introduce some soft analytic arguments to avoid this difficulty and change the
problem into a familiar one in this section. The hard estimates are given in the
next section.

First note that M∞ is just the convex hull of the functions ks(·), 0 < s < ∞,
where ks(t) = e−ts. We recall a general method to bound the entropy of convex
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hulls that was introduced in Gao (2004). Let T be a set in R
n or in a Hilbert space.

The convex hull of T can be expressed as

conv(T ) =

{ ∞∑
n=1

antn : tn ∈ T, an ≥ 0, n ∈ N,

∞∑
n=1

an = 1

}
,

while the absolute convex hull of T is defined by

abconv(T ) =

{ ∞∑
n=1

antn : tn ∈ T, n ∈ N,

∞∑
n=1

|an| ≤ 1

}
.

Clearly, by using probability measures and signed measures, we can express

conv(T ) =

{∫
T

tμ(dt) : μ is a probability measure on T

}
;

abconv(T ) =

{∫
T

tμ(dt) : μ is a signed measure on T, ‖μ‖TV ≤ 1

}
.

The following is clear:

conv(T ) ⊂ abconv(T ) ⊂ conv(T )− conv(T ).

Therefore, for any norm ‖ · ‖,
N(ε, conv(T ), ‖ · ‖) ≤ N(ε, abconv(T ), ‖ · ‖) ≤ [N(ε/2, conv(T ), ‖ · ‖)]2.

In particular, at the logarithmic level, the two entropy numbers are comparable,
modulo constant factors on ε. The benefit of using the absolute convex hull is that
it is symmetric and can be viewed as the unit ball of a Banach space, which allows
us to use the following duality lemma of metric entropy: there exist constants c1,
c2, K1, K2 > 0 such that for all ε > 0,

K1 logN(c1ε, abconv(T ), ‖ · ‖2) ≤ logN(ε,B, ‖ · ‖T )
≤ K2 logN(c2ε, abconv(T ), ‖ · ‖2),

where B is the unit ball of the dual norm of ‖ · ‖, and ‖ · ‖T is the norm induced
by T , that is,

‖x‖T := sup
t∈T

| 〈t, x〉 | = sup
t∈abconv(T )

| 〈t, x〉 |.

Strictly speaking, the duality lemma remains a conjecture in the general case.
However, when the norm ‖ · ‖ is a Hilbert space norm, this has been proved; see
Tomczak-Jaegermann (1987), Bourgain et al. (1989), and Artstein et al. (2004).

A striking relation discovered by Kuelbs and Li (1993) says that the entropy
number logN(ε,B, ‖ · ‖T ) is determined by the Gaussian measure of the set

Dε =: {x ∈ H : ‖x‖T ≤ ε}
under some very weak regularity assumptions. For details, see Kuelbs and Li
(1993), Li and Linde (1999), and also Corollary 2.2 of Aurzada et al. (2009). Using
this relation, we can now summarize the connection between the metric entropy of
convex hulls and the Gaussian measure of Dε as follows:

Proposition 3.1. Let T be a precompact set in a Hilbert space. For α > 0 and
β ∈ R, there exists a constant C1 > 0 such that for all 0 < ε < 1,

logP (Dε) ≤ −C1ε
−α| log ε|β
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if and only if there exists a constant C2 > 0 such that for all 0 < ε < 1,

logN(ε, conv(T ), ‖ · ‖) ≥ C2ε
− 2α

2+α | log ε|
2β

2+α ;

and for β > 0 and γ ∈ R, there exists a constant C3 > 0 such that for all 0 < ε < 1,

logP (Dε) ≤ −C3| log ε|β(log | log ε|)γ

if and only if there exists a constant C4 > 0 such that for all 0 < ε < 1,

logN(ε, conv(T ), ‖ · ‖2) ≥ C4| log ε|β(log | log ε|)γ .

Furthermore, the results also hold if the directions of the inequalities are switched.

The result of this proposition can be implicitly seen in Gao (2004), where an
explanation of the relation between N(ε,B, ‖ · ‖T ) and the Gaussian measure of Dε

is also given.
Perhaps the most useful case of Proposition 3.1 is when T is a set of functions:

K(t, ·), t ∈ T , where for each fixed t ∈ T , K(t, ·) is a function in L2(Ω), and where
Ω is a bounded set in R

d, d ≥ 1. For this special case, we have

Corollary 3.2. Let X(t) =
∫
Ω
K(t, x)dB(x), t ∈ T , where K(t, ·) are square-

integrable functions on a bounded set Ω in R
d, d ≥ 1, and B(x) is the d-dimensional

Brownian sheet on Ω. If F is the convex hull of the functions K(t, ·), t ∈ T , then

logP

(
sup
t∈T

|X(t)| < ε

)

 −ε−α| log ε|β

for α > 0 and β ∈ R if and only if

logN(ε,F , ‖ · ‖) 
 ε−
2α

2+α | log ε|
2β

2+α ;

and for β > 0 and γ ∈ R,

logP

(
sup
t∈T

|X(t)| < ε

)

 −| log ε|β(log | log ε|)γ

if and only if

logN(ε,F , ‖ · ‖2) 
 | log ε|β(log | log ε|)γ .

The authors found this corollary especially useful. For example, it was used in
Blei et al. (2007) and Gao (2008) to change a problem of metric entropy into a
problem of small deviation probability of a Gaussian process, which is relatively
easier. The proof is given in Gao (2008) for the case Ω = [0, 1], and in Blei et al.
(2007) for the case [0, 1]d. For the general case, it can be proved as easily. Indeed,
the only thing we need to prove is that P(Dε) can be expressed as the probability
of the set supt∈T |X(t)| < ε. We outline a proof below. Let φn be an orthonormal
basis of L2(Ω). Then

X(t) =

∫
Ω

K(t, s)dB(s) =

∞∑
n=1

ξn

∫
Ω

K(t, s)φn(s)ds,
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where ξn are i.i.d standard normal random variables. Thus,

P(Dε) = P

{
g ∈ L2(Ω) :

∣∣∣∣
∫
Ω

f(s)g(s)ds

∣∣∣∣ < ε, f ∈ F
}

= P

{
g ∈ L2(Ω) :

∣∣∣∣
∫
T

∫
Ω

K(t, s)g(s)dsμ(dt)

∣∣∣∣ < ε, ‖μ‖TV ≤ 1

}

= P

{ ∞∑
n=1

anφn(s) :

∞∑
n=1

a2n < ∞,

∣∣∣∣∣
∞∑

n=1

an

∫
T

∫
Ω

K(t, s)φn(s)dsμ(dt)

∣∣∣∣∣ < ε,

‖μ‖TV ≤ 1

}

= P

{ ∞∑
n=1

anφn(s) :

∞∑
n=1

a2n < ∞, sup
t∈T

∣∣∣∣∣
∞∑

n=1

an

∫
Ω

K(t, s)φn(s)ds

∣∣∣∣∣ < ε

}

= P

(
sup
t∈T

|X(t)| < ε

)
.

Now returning to our problem to estimate logN(ε,M∞, ‖ · ‖2) in the statement
(ii) of Theorem 1.1, where ‖ · ‖2 is the L2-norm with respect to Lebesgue measure
on [0, 1], we notice that M∞ is the convex hull of the functions K(t, ·), t ∈ [0,∞),
on [0, 1], with K(t, s) = e−ts. Clearly, for each fixed t, K(t, ·) is a square-integrable
function on the bounded set [0, 1]. Now, for this K, the corresponding X(t) is a
Gaussian process on [0,∞) with covariance

EX(t)X(s) =
1− e−t−s

t+ s
, s, t ≥ 0.(6)

Thus, the problem becomes how to sharply bound the probability

P

(
sup

t∈(0,1]

|X(t)| < ε

)
.

This will be done in the next section.

4. Lower bound estimate

Let X(t), t ≥ 0 be the centered Gaussian process defined in (6). Our goal in this
section is to prove that

logP(sup
t≥0

|X(t)| < ε) ≤ −C| log ε|3,

for some constant C > 0.
Note that for any sequence of positive numbers {δi}ni=1,

P

(
sup
t≥0

|X(t)| < ε

)
≤ P( max

1≤i≤n
|X(δi)| < ε)

= (2π)−n/2(detΣ)−1/2

∫
max1≤i≤n |yi|≤ε

exp
(
−〈y,Σ−1y〉

)
dy1 · · · dyn

≤ (2π)−n/2(detΣ)−1/2(2ε)n

≤ εn(detΣ)−1/2,

(7)
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where we use the covariance matrix

Σ = (EX(δi)X(δj))1≤i,j≤n =

(
1− e−δi−δj

δi + δj

)
1≤i,j≤n

.

To find a lower bound for det(Σ), we need the following lemma:

Lemma 4.1. If 0 < bij < aij for all 1 ≤ i, j ≤ n, then

det(aij − bij) ≥ det(aij)−
n∑

k=1

max
1≤l≤n

bkl
akl

· per(aij),

where per(aij) is the permanent of the matrix (aij).

Proof. For notational simplicity, we denote cij = aij − bij . Then

det(aij − bij)− det(aij)

=
∑
σ

(−1)σc1,σ(1)c2,σ(2)cn,σ(n) −
∑
σ

(−1)σa1,σ(1)a2,σ(2) · · · an,σ(n)

=
∑
σ

(−1)σ
n∑

k=1

[c1,σ(1) · · · ck−1,σ(k−1)](ck,σ(k) − ak,σ(k))[ak+1,σ(k+1) · · · an,σ(n)]

≥ −
∑
σ

n∑
k=1

[a1,σ(1) · · · ak−1,σ(k−1)](bk,σ(k))[ak+1,σ(k+1) · · · an,σ(n)]

≥ −
n∑

k=1

max
1≤l≤n

bkl
akl

∑
σ

[a1,σ(1) · · · ak−1,σ(k−1)](ak,σ(k))[ak+1,σ(k+1) · · · an,σ(n)]

= −
n∑

k=1

max
1≤l≤n

bkl
akl

· per(aij). �

In order to use Lemma 4.1 to estimate det(Σ), we set

aij =
1

δi + δj
and bij = e−δi−δjaij

for a specific sequence {δi}ni=1 defined by

δmp+q = 4p+m(m+ q), 0 ≤ p < m, 1 ≤ q ≤ m

for n = m2.
Clearly, we have

0 < bkl/akl ≤ e−2m4m , 1 ≤ k, l ≤ n = m2.(8)

It remains to estimate det(aij) and per(aij), which are given in the following lemma.

Lemma 4.2. For the matrix (aij) defined above, we have per(aij) ≤ 1 and det(aij)

≥ (240e)−2m3

.

Proof. It is easy to see that

per(aij) ≤ n!(max
i,j

aij)
n ≤ (m2)!

(2m4m)m2 ≤ 1

since aij ≤ (2m4m)−1 for 1 ≤ i, j ≤ n = m2.
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To estimate det(aij), we use Cauchy’s determinant identity; see Krattenthaler
(1999):

det(aij) = det

(
1

δi + δj

)
=

∏
1≤i<j≤n(δj − δi)

2

∏
1≤i,j≤n(δj + δi)

=
1

2n
∏n

i=1 δi
·

∏
1≤i<j≤n

(
δj − δi
δj + δi

)2

.

To estimate the last product, we partition the set {(i, j) : 1 < i < j < n = m2}
into the following three sets and estimate each part separately. For 1 ≤ i < j ≤
n = m2, write i = mp+ q and j = mr + s with 1 ≤ q, s ≤ m. Denote

A = {(i, j) : i = mp+ q, j = mp+ s, 0 ≤ p ≤ m− 1, 1 ≤ q < s ≤ m},
B = {(i, j) : i = mp+ q, j = m(p+ 1) + s, 0 ≤ p ≤ m− 2, 1 ≤ q, s ≤ m},
C = {(i, j) : i = mp+ q, j = mr + s, 0 ≤ p ≤ m− 3, p+ 2 ≤ r ≤ m− 1,

1 ≤ q, s ≤ m}.

Thus, A, B and C form a partition of {(i, j) : 1 ≤ i < j ≤ n = m2}.
First, for (i, j) ∈ A,

δj − δi
δj + δi

=
s− q

2m+ s+ q
>

s− q

4m
.

Thus

∏
(i,j)∈A

(
δj − δi
δj + δi

)2

≥
m−1∏
p=0

∏
1≤q<s≤m

(
s− q

4m

)2

=

m−1∏
k=1

m−k∏
q=1

(
k

4m

)2m

≥
m−1∏
k=1

(
k

4m

)2m2

=

(
(m− 1)!

(4m)m−1

)2m2

≥ (8e)−2m3

.

Second, for (i, j) ∈ B,

δj − δi
δj + δi

=
(4m+ 4s)− (m+ q)

(4m+ 4s) + (m+ q)
≥ 1

5
.

Thus we have

∏
(i,j)∈B

(
δj − δi
δj + δi

)2

≥
m−2∏
p=0

∏
1≤q,s≤m

5−2 ≥ 5−2m3

.

Third, for (i, j) ∈ C, we have r − p ≥ 2, and

(
δj − δi
δj + δi

)
=

4r(m+ s)− 4p(m+ q)

4r(m+ s) + 4p(m+ q)
= 1− 2 · 4p(m+ q)

4r(m+ s) + 4p(m+ q)
> 1− 1

4r−p−1
.
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Thus, since
∏
(1− xk) ≥ 1−

∑
xk for 0 < xk < 1,

∏
(i,j)∈C

(
δj − δi
δj + δi

)2

≥
m−3∏
p=0

m−1∏
r=p+2

∏
1≤q,s≤m

(
1− 1

4r−p−1

)2

≥
m−2∏
k=1

(
1− 4−k

)2m3

≥
(
1−

m−2∑
k=1

4−k

)2m3

≥ (2/3)
2m3

.

Therefore, we have

∏
1≤i<j≤n

(
δj − δi
δj + δi

)2

=
∏

(i,j)∈A

·
∏

(i,j)∈B

·
∏

(i,j)∈C

(
δj − δi
δj + δi

)2

≥ (60e)−2m3

.

On the other hand, it is not difficult to see that

2n
n∏

i=1

δi = 2m
2

m∏
q=1

m−1∏
p=0

4p+m(m+ q) < 2m
2 · 4m2(m−1)/2+m3

(2m)m
2

= 43m
3/2+m2/2+m2 log4 m < 42m

3

for m > 1. Hence,

det(aij) =

(
2n

n∏
i=1

δi

)−1

·
∏

1≤i<j≤n

(
δj − δi
δj + δi

)2

≥ (240e)−2m3

. �

Now combining the two lemmas above and using the estimate in (8), we obtain

det(Σ) ≥ (240e)−2m3 −m2 · e−2m4m ≥ e−16m3

provided that m is large enough. Plugging into (7), we have

P

(
sup
t≥0

|X(t)| < ε

)
≤ e8m

3

εm
2

.

Minimizing the right-hand side by choosing m ≈ | log ε|/12, we obtain

P

(
sup
t≥0

|X(t)| < ε

)
� exp

(
−(432)−1| log ε|3

)
.

Statement (ii) of Theorem 1.1 follows by applying Corollary 3.2. At the same time,
we also finish the proof of Theorem 1.2.
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