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1. THREE MULTIVARIATE MODELS
AND APPROACHES TO ESTIMATION

We begin by describing the three models and the resulting estimation
problems upon which we will focus. In all three models the parameter to be
estimated is the bivariate survival function. In this section we will describe
the three representations of the bivariate survival function, as maps from
the distribution function of the data, on which the three estimators for each
model are based. The estimators are obtained by substituting the empirical
distribution counterpart of the data into the representation.

Our aim is to prove that these estimators are uniformly consistent and
that the estimators converge weakly in supnorm at root-n rate to a Gaussian
process. Moreover, we also want to show that the bootstrap can be used
to estimate the variance of these estimators and to obtain some efficiency
results for these estimators.

The weak convergence and bootstrap can be proved by applying the
functional delta-method (Gill, 1989, V. d. Vaart, Wellner, 1995). This
means that we have to verify the (by the functional delta-method required)
differentiability of the representation and the weak convergence of the
empirical process which we plug in the representation. We were able to
verify these conditions under essentially no conditions on the model. For a
formal statement of our results see our final theorem in section 5. We also
succeeded in proving that for the bivariate censoring model (our third model)
the Dabrowska and Prentice-Cai estimator are efficient under independence.
Practical simulations show that the asymptotic distribution is closely
approached for surprisingly small samples (Bakker, 1990, Prentice-Cai,
19924).

The organisation of the paper is as follows. In section 2 we will give the
basic techniques as lemmas for obtaining the required differentiability result
for the representations. In section 3 we will prove the differentiability results
by applying these lemmas. In section 4 we will see how each representation
leads to an estimator for each model by just substituting the empirical
distribution of the data. In section 5 we verify the weak convergence of
these empirical processes which provide us, by application of the functional
delta method, with results which are summarized in our final theorem.
Finally, in section 6 we prove that for the bivariate censoring model the
Dabrowska and Prentice-Cai estimator are efficient under independence.

MobkeL 1. — Estimation of a bivariate distribution with known marginals.

Suppose that (X;.Y:),....(X,,Y,) are independent and identically
distributed with distribution function F on R:’éﬁ, and suppose further that
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the marginal distribution functions F v, Fy of F are known: Fy = F: % and

Fy = F) where F{, F{ are known one-dimensional marginal distributions.

Problem: Use the data and the knowledge of the marginal distributions
to estimate the joint distribution F.

MODEL 2. — The bivariate “three-sample” model.

Suppose that (X;1,Y7,),..., (X 1n,s Y1n, ) are independent and identically
distributed with distribution function F' on R%,, that X,;,..., X2,
are independent and identically distributed with distribution function
Fx = F(-,00) on R, and that Ys31,...,Y; ,, are independent and identically
distributed with Fy = F(cc,-) on R. Here the three samples are all
independent. We can regard this as either a “missing data” model (the Y’s
are missing in sample 2 and the X’s are missing in sample 3); or we can
regard it as an “auxiliary samples” model in which in addition to the first
sample of (X,Y") pairs we also have some auxiliary data (samples 2 and 3)
concerning the marginal distributions.

Problem: Use all the data to estimate F.
MobEL 3. - Bivariate random censoring.

Suppose that (S1,T1),...,(S,,T,) are independent and identically
distributed  with distribution function F on R2, = [0,00)% that
(C1,D1),...,(Cyn,D,) are independent and identically distributed with
distribution function G on R2, independent of all of the (8,T)s, and that
we observe -

(Xiaygaéivei) = (SZ/\CH:F'L /\DHI[Sz S C’z},vl[]; S DiD, i = 1,...,7&.

Problem: Use the observed data to estimate F.

For all three models we assumed that we have observations in R%,. The
estimators we propose are invariant under translations. Therefore our results
can be generalized to data on R2

We have the following relationships between these models. If ny and nj
are very large relatively to n;, then this model 2 approximates the known
marginals model 1. If we allow G to have three atoms at (0,00}, (o0, 0)
and (oo, oc) adding up to 1, then model 3 includes model 2 with N1, Ny
and n3 random.

Many other related models are of interest. For example, suppose that
F has marginal distributions F'y and Fy which are equal, but unknown:
Fx(z) = Fy(z), z € R. All three models have generalizations to the
case of k-variate F' with k > 3, but of course there are many different
generalizations of models 1 and 2 depending, for example, on which of the
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2F — 2 (multivariate) marginals are known in model 1. In this paper we
restrict ourselves to the bivariate case. The analyzed estimators have natural
generalizations to the k-variate case, and the k-variate analysis can be done
by simply using k-variate analogues of the ingredients we use in the analysis
for the case k& = 2; for some of these, see Gill (1990).

Efficient estimation in models 1-3 has proved to be difficult. Bickel, Ritov,
and Wellner (1989) have studied estimates of linear functionals of ¥ for
model 1 which are efficient under additional regularity conditions. Van der
Laan (1992) proposed an implicit modified maximum likelihood estimator
which depends on a bandwidth A, (n is the number of observations) for
model 3, which is proved to be efficient for s, — 0 slowly enough. The
choice of the bandwidth in practice is still an open problem and practical
tests remain to be done. Also here additional smoothness assumptions were
needed. The estimator can be computed with the EM-algorithm. It is well
known that this is an iterative algorithm which converges slowly. For
information calculations for models 1 and 3, see Bickel, Klaassen, Ritov,
and Wellner (1993) sections 6.3 and 6.6 and van der Laan (1992); for
information calculations for model 2, see van der Vaart and Wellner (1990).
It appeared that explicit information calculations are extremely difficult.
Only in the special case of independence in model 3 we succeeded in
obtaining an explicit expression for the information bound. These difficulties
in constructing efficient estimators and that they only seem to work under
additional regularity assumptions are a motivation for considering inefficient
estimators.

Considerable work on construction of inefficient estimates in model 3
has been done: among them Burke (1988), Dabrowska (1988), (where also
the Volterra estimator of P. J. Bickel is mentioned), Dabrowska (1989),
Prentice and Cai (1992a), (1992b), Pruitt (1991c), van der Laan (1991).
Many other explicit inefficient estimators have been proposed (see the
reference list in Dabrowska, 1988). Bakker (1990) and Prentice and Cai
(1992b) show that the Dabrowska and the Prentice-Cai estimators have
a very good practical performance and beat the other proposed explicit
estimators. Under independence they approximate surprisingly quickly
the optimal variance. Pruitt’s (1991c¢) estimator is an implicit estimator
which solves an approximation to the self-consistency equations. This
estimator uses kernel density estimators and consequently depends on a
bandwidth. His estimator has a good practical performance (Pruitt, 19915).
Also here we have the problem of selecting the good bandwidth and
additional smoothness assumptions on the model are necessary (van der
Laan, 1991).
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In this paper we focus on three inefficient estimators, but estimators
(except the Volterra estimator) which have been shown to have a very
good practical performance. We included the Volterra estimator because its
representation is similarly derived as the Prentice-Cai representation, and
the analysis of the Dabrowska and Volterra estimator gives the analysis of
the Prentice-Cai estimator for free. The estimators are explicit and easy
(quickly) to compute in contrary with efficient estimators which have to
be computed with quite computer intensive algorithms (such as the EM-
algorithm in van der Laan, 1992). The estimators are very smooth functions
of the observations and therefore they are very robust: ie. insensitive to
small changes of the underlying distributions. Moreover for each rectangle
[0, 7], where there is mass left for [0, 7]°, we do not need any assumptions
on the model for obtaining the consistency, weak convergence and bootstrap
results on [0, 7]. Also the last two properties are certainly not shared with
efficient estimators.

Our approach to estimation of F' in these three models is as follows:
we find representations of F’ as maps ® from the distribution of the data,
which can be estimated from the observed data, to F'. The three particular
representations which we study here are given by:

A. Dabrowska’s (1988) representation.

B. The Volterra equation.

C. Prentice and Cai (1992a) representation.

We give a new proof of the Prentice and Cai (1992a) representation.

NOTATION AND DEFINITION OF [0,7]. — If we write <,>,<,> then this
should hold componentwise for both components: so if = € R? then
<y ez <y,oe < Y. We often will not use a special notation
for the bivariate time-vector; if we do not mean a vector this will be made
clear. If F(t) = P(X < t) is a distribution function we will denote its
survival function with F(t) = P(X > t}. All functions we encounter are
defined on a rectangle [0,7] C RZ, where 7 can be chosen arbitrarily large
except that F(7—) > 0 and G(r—) > 0 is required. Finally, we define for a
bivariate function f : R* — R [|f[lc = sup | flz) |.

z€[0,7]
A. Dabrowska’s representation

The representation, the estimator and L-measure were all introduced by
Dabrowska (1988), but in a rather different way than we do here; we take
the representation in terms of product-integrals as done in Gill, 1990 (see
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also Andersen, Borgan, Gill, Keiding, 1992). We define the following three
hazard measures with their heuristic interpretation:

Aoldu,v—) = P(S € [u,u +du} | (S,T) > (u,v}),
Api(u—,dv) = P(T € [v,v +dv) | (5,T) > (u,v)),
An(du,dv)y =P(S € [u,u+duy, T € [v,u+dv)|S>u, T>w).

Formally, we introduce a vector hazard function A : [0,7] Rzzo - R%O
as follows: A(t) = (Ayo(t), Aor(t), A (t)), t € R, where

1
10( ) [0,t1] F(u"WtZ} ( 2)

5\

1
01(t) o0y Tl (t1,dv) (1)
1
A (t :/ = F(du, dv).
1(t) 00 Fluz,00) (du, dv) ‘

One of the main advantages of model building in terms of hazards is that
they are undisturbed by censoring and therefore in all three models we can
get estimates of the integrated hazards by replacing them by their natural
empirical counterparts. ’

For a bivariate distribution M (i.e. measure) H (1+ dM) is the bivariate

0.t
product integral over the rectangle [0,#] (see ((}ili, Johansen, 1990, or our
section 3.2). It is just like the univariate product integral defined as the
limit of finite products over finite rectangular partitions of [0, ¢]. Now, the
following representation can be proved:

F(t)= J] (1 = Aso(du,0)) T] (1 = Aas (0, dv)) [J(1 = L(du, dv))
[0,¢1] [0,t2] [0,]
=T (Aso(+,0), A01 (0, -), T2 (L)), (2)

L is defined by

L(ti - / A.}{)(d'u,, ‘U—}AQ}(U—, (l‘l)) - An(du, d’!}}
" Jioy (1= Aro(Lu, v=))(1 = Agi(u—, Av))
= I's(Az0, Aot A1), (3)

and @'y represents the bivariate product-integral mapping. With
A(lu,v—) = Aplu,v—) — Ajplu—,v—) we denote the jump of
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s — Aio(s,v—) at u. Assume that for each v (u — F(u,v)) €

and for each u (v — F(u,v})} < p for certain (signed) measures y; and
15, We define

/F(du,v}G{u,d@} = (u v) (u v)dpy (u)dps(v).

These assumptions are easily verified for the hazard measures by choosing
=F,and pp = Fz, the margmals of . We will see in section 4 that the

empmcal counterpart A, of A is obtained by replacing in the representation

of A F by an empirical survival function. Therefore, the assumptions are

verified in exactly the same way by choosing p; and 5 the marginals of

this empirical survival function. We will do this in the proof of the final

theorem in section 5.

Note that by (2) and (3) this gives a map I" such that

F =T(X) = T'1(Aso(+,0), A1 (0, ), To(L))
=T'1(A10(+,0), Ao1 (0, -), [oT3(A)). (4)
This representation can easily be heuristically verified, just as the one-
dimensional Kaplan-Meier product-integral.
For models 1-3 there are natural empirical estimators of A which
generalizes the famous Nelson-Aalen estimator from the one dimensional
case; we will do this explicitly and in detail in section 4.

If we denote the estimate of A with Kn, then the estimate of F based on
Dabrowska’s representation is simply

F,=T(A,).

This estimator was studied in the case of model 3 by Dabrowska (1988,
1989). Gill (1990) generalized the representation to dimension k& > 2 and
analyzed the estimator by applying the functional delta-method.

B. The Volterra equation

This equation is derived by extending the following argument for k = 1: let
1
0.4 £
be the cumulative hazard function corresponding to F'. Then

- / F_dA
Jo.
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and consequently

Flt)y=1- f F_dA.
[0,t]

For a given function A, this is a homogeneous Volterra equation for F,
where the solution is given by the Peano series (a special Neumann series)

Z A'(1), where A(F) = / F_dA. In this case, k = 1, this is solved

exphcltly by the product—mtegral of A:
F(t) = JJ(1 - da(s)).
[07t]

For theory about the univariate product-integral and in particular the
equivalence between the univariate Peano series and the univariate product-
integral we refer to Gill and Johansen (1990). ‘

For k = 2 the argument generalizes as follows. For F' on [0,00)?, as
defined above

1
A tz/ —dF,
ult) o4 F

where F(z) = P(X > z). This implies that
F(t) = / _F—,dAn. ' (5)
[0,%]

It remains only to relate F to F and the marginal distributions: let F; and
F; denote the marginal distributions of F'. Then since

Fi(t) + Fa(ts) - F(t) + F(t) = 1,

(5) yields

F(t)=1- Fi(t)) — Fy(t2) + / F_dAy,

(0.4

= U(t) + / F_dAy, (6)
[0.]

where U(t) = 1 — Fi(t1) — Fa(ts) involves only the marginal distributions
F and F,. Regarded as an equation for F given fixed functions ¥ and A, (6)
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is an inhomogeneous Volterra equation with a unique solution ®;(¥, A;;)
[Gill and Johansen (1990), Kantorovich and Akilov (1982)3_;). 396]. This
can be seen as follows. Represent the equation as (I — Ay )(F) = ¥ where

ANF) = / F_dA. It is easy to check that this structure takes care that
{0.1]

11| [| A1

k! ’
where one has to notice that by definition of 7 the supnorm (over [0, 7])
IIA]| is bounded.

AR ()l <

Consequently, Z Af{ is a bounded operator:
k=0

< [1Alloo exp([|Alloo)-

> AL(w)
k=0

This proves that F is given by the Neumann series of A Al

oc

F=>Y" Ak (v). )
k=0
Because A,,, depends only on A;; and

V() =1- [ (1= Aso(ds1,0) = JT (1 = Awo(0,ds2))
(0,1} (0,t2]
= Py(Aso(+,0), Ao1(0,4))

(7) defines a map
F=®(K) = &1(¥, Ayp) = &1 (®(Aso(-, 0), Ao (0,)), Aur). (8)

It is not clear from (7) that F' does also continuously depend on A;j,
but we will prove in section 3, as in Gill and Johansen (1990), that the
bivariate Peano series, and thereby ®;, satisfies the characterization of
weakly continuously compactly differentiable at (¥, A).

Finally, it should be noticed that because of the exponential convergence
of the terms Afim to zero, (7) provides us also with an exponentially fast
algorithm for finding a solution of the Volterra equation for known (¥, A;; ).
Now, the Volterra estimator of F' is given by:

F,=o(A,).

Vol 31, 0% 3-1995.
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C. Prentice-Cai representation

We give a new proof of the Prentice-Cai representation (see also Prentice
and Cai, 1992a). For still another proof, see Wellner (1993). For this we
need the following differentiability rules for U : R — Rand V : R — R:

dUV)=U_dV +dUV

1 dU
d(i?) = U

If we apply these one dimensional rules to the sections u — F(u,v)
and v — F(u,v) of a bivariate function F, then we denote these with
d; and d,, respectively. We apply these two one dimensional rules to
each of the two variables of R = F/F,F, in turn in order to express
dR = dy3R = di(d2(R)) as follows:

dR = R_dL

for certain measure L. Define the well known univariate hazards
Ay(dsy) = Aio(ds1,0), Aa(dss) = Ap1(0,dsz). The reader can easily
verify the following result [when applying the product rule to F/F; we
give the left continuous version to T instead of one of the F;, i = 1,2,
and we denote F_1)(sy,82) = F(s1—, s2), Fi_2)(s1,52) = F(s1,52-)):

dR = d»R
_ dioF 3 dyFodi F(_g) 3 diFrdoF (1) N diFidoFoF _
F.F, FoFy Fy F{F,_F, F.F,_FyFqy_
P (4 dEs
FiF, F_ F,_ F_

B dlf‘;l dzvﬁ(—lj , dlfl d‘2.F—2
Fl_ F.. N Fl— F—2—
{ A11(ds) — Ay(dsa)A1o(ds1, s2—)

—Al(d81>A01<81'—, dSz) + Ak(dSI}Ag(dSQ} }
(1= A(Ds1))(1 = Ax(Asy))

=R_

= R_dL.

At the third equality notice that 1/(1 — A (Asi 1 — Ax(Dse)) =
F,_F,_/F.F,. Integrating the left and right-hand side over the rectangle
(0,t] provides us with:

R(t)=1+ R(s—)L(ds). (9)

(0,4
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Here one has to notice that R(¢;,0) = R(0,t3) = 1 for all t. This is a
homogeneous Volterra equation with a unique solution given by the Peano
series of L which we will write out below.

By definition of R and the well known product integral representation of
the univariate F';, i = 1,2, this provides us with the following representation
for the bivariate survival function:

F(t) = T] (1 = Asoldu,0)) [T (1 = Aox(0,dv))R(t)

[0,84] [0,22]
Eel(Alﬁ(vo)*AOI(Oa } R} (10}
where R is the unique solution of (9), just the Neumann series Z A%(l)
k=0

as given in (7), given by the Peano series:

R=1+ // Z(duj)
1;1 03u1<u2<...<ungt]I:_‘[l
L)

= @2(

" Define
[))(3) = (1 - AIQ(AS}_,O))(l - Aol(o, ASz)).

Above, we derived the following representation of L in terms of the
hazards A

~ g 1
L(t} = / — {All(dS) - f\l()(dSi, SQ"‘>A01<0, ng}
(0,5 B(s)

- Al()(dsl, 0)A01(81-, d52> + Am(dSl, O}Am (O. ng)}
= 03(A10(+,0), Ap1 (0, ), K).

Of course, we can write @3(1—(}, but because of model 1 (marginals known)
we want to distinguish between hazards which are known in model 1 and
hazards which are not known in model 1.

Note that this gives a map

F=0(X) = 0:(As0(-,0), A1 (0,-), 04(L))
= 01(Ag(+,0), Ao1(0, ), ©203(A1p(-, 0}, Agy (0,-), X)). (11)
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Again, the estimate of F based on the Prentice and Cai representation is
simply
F,= 9{11,;}.

Prentice and Cai (1992a) motivated this representation through a
connection between L and the covariance of univariate counting process
martingales. Moreover, they proved almost sure consistency of the resulting
estimator for model 3 via continuity of ©.

Remark. — Firstly, the Volterra estimator is based on the idea to express
dF in F_dA for a certain measure A which makes F a solution of an
inhomogeneous Volterra equation, while in Prentice-Cai’s representation we
do the same with d(F/F,F,) which leads in this case to a homogeneous
Volterra equation. The Volterra uses an estimate of only one bivariate hazard
Ay, while the Dabrowska and the Prentice-Cai representations involve other
functions L and L which describe the covariance structure. Furthermore,
notice the similarity in the structure of L and L.

Elaborating on the functional delta-method and results

Our approach to studying the estimators, which we will denote by
F Fn ,F will be to study the maps ®, I' and © which define
them (analytically). In section 2 and 3 we show that these satisfy the
characterization of weakly continuous Hadamard differentiability with
respect to the supremum norm-metric for the sequences which can occur
in practice. In section 4 we represent X as maps from the distribution
function of the data to A itself for all three models. By applying the
functional delta-method to these representations we prove the required weak
convergence and validity of the bootstrap for X,.. Now, application of the
functional delta-method to the mappings ®, © and I' provides us with with
conmstency, weak convergence, and asymptotic validity of the bootstrap for
F Fn ,F . These results are summarized in Theorem 5.1.

ThlS method of analyzing provides us with optimal results for the
estimators in the sense that we essentially do not need any conditions.
The only improvements can be made by extending these results to the
whole plane and by investigating the rate at which the normalized estimators
converge to its linearization in terms of the empmcai processes we plug in.

This analysis of an estimator, say @{An }, separates the analysis in a
purely analytical (dxfferentxabihtv of ®) and a purely probabilistic [weak
convergence of Z,, = v/ n(An ;] part. After establishing purely analytical
properties of components of ® one can deduce several results for different
sampling methods, models (e.g. our models 1-3) or statistics without
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repeating the analysis. The supnorm might be considered as a quite naive
choice in order to get an optimal weak convergence result, but the supnorm
is easy to use, to interpret, and has a natural generalization to higher
dimensions.

After establishing the differentiability of the functionals which appear
in the representation I' and ® we got the differentiability of Prentice
representation for free: by the chain-rule a differentiability result for a
functional can be used for establishing differentiability for any composition
of several mappings (like the three representations) which involves this
functional. Because of this property of the analysis, other proposed explicit
estimators can immediately be put in our framework.

2. LEMMAS

In this section we give the basic techniques as lemmas for obtaining
the (by the functional delta-method) required differentiability result for the
representations. Moreover, we will give two illustrations which show how
these techniques easily lead to differentiability of relevant functionals.

DEFINITIONS AND NOTATION. — All functions we encounter are considered
as clements of the space of bivariate cadlag functions on [0, 7] (Neuhaus,
1972) endowed with the supnorm.

We will denote this space with (D[0,7],] - ||). If F,, converges in
supnorm to F, then we will denote this with F,, — F (this does
not lead to problems because we only use supnorm convergence). The
variation norm of a function F is defined as usual as the supremum
over all partitions of rectangles of the sum of the absolute values of
generalized differences over the partition elements (i.e. rectangles) of F,
and it will be denoted with ||F|[,. The uniform sectional variation norm
of a bivariate function F is defined as the supremum of the variations
of the sections u — F(u,v}, v — F(u,v}, (u,v} € [0,7], and the
variation of F' itself. It will be denoted with [|F||*. If a cadlag function
is of bounded variation, then it generates a signed measure. If for a F
we write F(du.v}, F(u,dv), F(du,dv}, we mean the one dimensional
measures generated by the sections u — F'(u,v),v — F(u,v} and the two
dimensional measure generated by (u, v} — F{u, v}, respectively, and it will
be automatically assumed that these sections and the function itself are of

bounded variation. Finally, integrals like / Fldu,v)G(u, dv) are defined as
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f :F (u, v} jG (w, v)dpy (w)dps (v}, assuming that for each v the mapping

(u — F(u v)) < py and for each u the mapping (v — F(u,v)) < p2
for certain (signed) measures ;1 and po. This assumption is satisfied by a
simple choice of measures p1, 2 in all our applications as will be shown
in the proof of the final theorem in section 5 (see also illustration 2 at the
end of this section).

Lemma 2.1 (Telescoping). — Let a;, @ = 1,...,k, bj, i = 1,...,k be
real numbers.

k k k oj—1 k
Hai—Hbizznai(aj-bj) H bi.
i=1 i=1 j=11i=1 ISR

This can be easily verified and it holds also for matrices (see Gill and
Johansen, 1990). It is a very useful lemma for proving that differences of
two products converge to zero and that is what we often have to do in the
differentiability proofs.

In our applications we want to be able to define integrals / FdH when

H is of unbounded variation. This can be done by applying integration by
parts so that H appears as function.

LemMa 2.2 (Integration by Parts).

/:/Ot F(u,v)H (du, dv) 2/08/(: H([u, s] x [v,t]])ﬁf(du, dv)

+/O H([u, s] x (0,t])F(du,0)

+ /t H{(0,5] x [v,t])F(0,dv)
0
+ F(0,0)H((0,s] x (0,t]).

s pt K t
/ / F(du, v)H (u, dv) = / / H(w, [v, ) F(du, dv)
0 Jo g Jo

-E~/ H(u, (0,t])F(du,0).
0

Notice that with these formulas we can also define these integrals for H
of unbounded variation. Also, we can bound | FdH by 16][H||..[|F|[}.

Notice that if F is zero at the edges of 30 7], then only the first term at
the right hand-side is non-zero.
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Proof. — We refer to (Gill, 1990) for the general R* case. It works as
follows. For the first integral, substitute

F(u,v) :] F(du',dv")
(0,1} x(0,¢]

+/ F(du"0}+/ F(0,dv"} + F(0,0)
(0,u] (0,v]
and for the second integral substitute
F(du,v) = / F(du,dv') + F(du,0)
(0,0]

and apply Fubini’s theorem. [J

This integration by parts formula is a special case of the following general
integration by parts formula by letting A, = (0, s], but it is one which takes
account of mass given to the edge of the rectangle [0, 7]: Let A, C R? be
a measurable set indexed by s € R%. Then we have:

[ 1Pt = [ 1w /?M Fdu')dH (w)
- [([z. ()T () 0H 1)) Pl

Assume that Fp,F> are of bounded variation and that Fj(s;,s;) or

Fi(s1—,52) or Fi(s1,s3—) or Fj(s;—,s,~) is cadlag, i = 1,2. Then
F; and F), generate signed measures. We have

/ Fi(u) Fa(u)dH () = / Fl(u)d( /0 ’ Fz(v)dH(v}). (12)
So by two times applying lemma 2.2 to

/ Fu(w) Fy(u)dH () = / Fﬂu)d( /0 F2(v}dH(v})
we can do integration by parts so that H appears as function and F}, F),

as measures.
The following lemma is trivially checked, but useful.

Lemma 2.3 (d-A interchange). — We have:
//F(&S,Alﬁ}G(ds,dt} :// Flds. dt)G(Ls, At
/ / Flds.t)G(As.dt) = / / F(As BG(ds, dt).
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Recall the denominator in the mappings L and L inT and ©, which are
of the form 1/{(1 — a}(1 — b)}, where a,b are are only nice functions in
one coordinate, and therefore certainly do not generate a measure. Therefore

it is not clear how we can integrate w.r.t. this denominator. The following
lemma will take care of this problem.

LemMma 2.4 (Denominator splitting). — Let ay, az be real numbers.
Then the following holds:

1 1 n as
(1—@1)(1“&2) 1'*0,1 (l—al}(l'—(lz>

or A
1 ay Qs a0z
— =14 +
(1—(11)(1 -‘-az) 1~—a1 1 — Qg (1—&1)(1—@2)

In general, we have:

I - aza] .

a4

1
This follows from the identity T a =14+ T—a
Now, we are able to define the followmg terms with integration by parts
as follows:

COROLLARY 2.1. — Define B(u,v) = (1 — Ayo(Lu, v))(1 — Ao1(u, Av)).
We have:

H(du U;A(u dv) Ay, dv)
// // H(du } 1- Am(’ll, }éx’v)
+/ H(Awu,v)Ao(du, v)Alu, dv)

3(uv)
J] 5 = [ reawa

// H(Awu, AU}Alz)id:)U}AM(u ,dv}

Aoz (u, dv)

//Hdu A }I—Am(u &*.’U)
/ 10{du, v}

o f [renan T
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H plays the role of a function of unbounded variation (Brownian bridge)
and A, Ajg, Ag; are cadlag functions of bounded variation. Notice that all
terms at the right-hand side of the equalities where H appears as measure

are of the form [ FdH where F generates a finite measure. Therefore, for

all these terms we can apply the integration by parts formulas of Lemma 2.2
in order to make H appear as function.

Again, this corollary is simple to prove by applying denominator splitting
and d-A-interchange. In the differentiability proof of the L-mapping we
have to be able to bound the terms above in the supnorm of H. It is
now clear that this can be done with the integration by parts formulas.
We will see that this is the whole story of the differentiability proofs: we
use denominator-splitting and d-A-interchange in order to get an integral

FdH, where F generates a measure (so it must be of bounded variation)

and then we apply our integration by parts formulas in order to bound these
terms in the supnorm of H.

We did not deal, yet, with an integral of the form / HdF,, |F,|l — 0,

\|H||, = oo, which we want to show to converge to zero. Here, one cannot
do integration by parts in order to bound this in the supnorm of F,,, because
H is not of finite variation. The next ingredient takes care of this, the so
called Helly-Bray technique:

Lemma 2.5 (Helly-Bray lemma). — If H € (D[0,7],]|lw) is of
unbounded variation, then we can approximate H with a sequence H,,
where ||Hy,|l, < M(m) < oo and ||H — Hy|leo — 0. This gives us the

Jollowing bound:

i./HdF

For H,, one can (e.g.) take the step function equal to H on a grid #™.
We did the substitution H = (H — H,,) + H,,, integration by parts and

bounding terms like /Fde by ||F||s||Hnl|lw. The bound in Lemma 2.5

< \[H = Hol|o | Flly + 16| Fl oo M(m).

.

is useful because it proves that integrals of the form [ HdF,, converge to

zero when ||F, |- — 0, even if |H||, = oc, provided that ||F,||, < oo

(just let m — oc slowly enough).

IrLustraTiON 1. — We will iliustrate how these lemmas easily provide
us with the characterization of compact differentiability of ® : (F,G) —

/ FdG at a point (F,G) with F and G cadlag functions of bounded

Vol 31 8% 31995




562 R. D. GILL, M. J. VAN DER LAAN AND J. A. WELLNER

variation for sequences F,,G, of uniformly (in n) bounded variation: if
Y, = JulF, - F)=.Y, Z, = y/n(G, — G)—.Z, then

Vi(®(F,,G,) — ®(F,G)) — d®(F,G)(Y, Z)—.0

for a certain continuous linear mapping d®(F,G) : (D[0,7])> — R. We
have by telescoping:

Vn(®(F,,G,) - ®(F,G)) = fYndG +/FndZn.
So if we subtract from this its supposed limit
48(F,G)(Y, Z) = /YdG—l— / Fdz,
then we get (again) by telescoping:

/ (Y, - Y)dG + / (F, — F)dZ + / Fod(Z, - Z)

where the last two integrals are defined by integration by parts. The first
integral can immediately be bounded by ||Y,, — Y||o||Gll, — 0. The second
integral converges to zero by the Helly-Bray lemma. For the third integral
we can do integration by parts with respect to F,, and thereby bound this
term by c||Z, — Z||oc||Fullv — 0.

ILLUSTRATION 2. — We will give an illustration of how these lemmas are
used to prove convergence to zero of quite complicated terms which we will
encounter in our analysis of the Dabrowska’s estimator. Consider the term

(1/8n(u,v) — 1/B(u, v)}H (du, dv), where H is of unbounded variation,

and 3, (u, v), B(u,v) is the denominator of L as defined above corresponding
to (A%, AZ), (Aro, Aor) and (Al, Ag, ) converges in supnorm to (Ao, Ao1)-
We will show that this term converges to zero if Ajg, Ao1, Afg, Ag; have
the following four properties :

1y 3> 6 > 0on [0,7] for certain 6 > 0.

2) There exists a sequence of uniformly in 7 finite (signed) measures tiz,
so that A7 (u, dv) < po,(dv) for all u. Similarly for Aqq, Aor, Af;

3) There exists a sequence of uniformly in 7 finite (signed) measures (i1,
so that A7 (du, v) < po,(du) for all w. Similarly for Ao, Aor. Ag:.

4) || A7y (du, v}/ py(du)l| e < M and [[AT,(w, dv)/ pa,(dv)|ls < M for
certain M < ~ (uniform boundedness of the Radon-Nykodym derivatives).
Similarly for Ayg, Agr, Al
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In our applications the assumptions 2-4 are easily verified by a simple
choice of ju3,,, fi1, ptan, b2 and by definition of [0, 7] assumption 1 will hold
trivially. This will be done in the proof of the final theorem in section 5.

This term involves all the above techniques. Apply the denominator
splitting lemma to rewrite 1/, (u,v) — 1/3(u,v). This gives

1 1
Balu,v) — Blu,v)
_ ATy (Au,v) Aro(Du,v)
B (1 — A7y(Au,v) - 1-— App(Lu,v) )
Agl(u7 A‘U) AOI (u’ Av)
* (1 TAp (A 1< Am(u,z_\v;)‘

+ <A§‘0(Au, v)AG (u, Av)  Aso(Au,v)Ag (u, /.\'u))
Bn(u,v) Bu,v) ‘
Then the integral is the sum of three integrals which we will denote with
A, B and C respectively. The first term A is given by:

AT (Du,v) Ayo(Du,v)
- d
/ (1 - AL (Au,v) 1= Ap(Au,v) H(du, dv)
_ / ALy (Au,v) _ A(Buyw)
- 1 - A% (Au,v) 1= Ap(Au,v)
A (Au,v) Ao(Lw,v)
- m ad
+/ (1 —ATy(Au,v) 1= Ao(Au,v) Hon(du, dv)
_ AYy(du, v) Ao(du,v)
B / < 1= AL (Au,v) 1= Ap(Du,v) (H = Hp) (A, do)
A (Aw,v) Ap(Lu,v) ‘
T / (1 =A% (Du,v) 1= Ap(Au,v) Hn (s, dv).
We did the substitution H = H — H,, + H,, (Helly-Bray) and applied
d-A-interchange. Consider the first term, say Al.

)(H — H,,)(du, dv)

Al. Here, we can apply the second integration by parts formula of
Lemma 2.2. Then one of the terms we get is the following:

[ 1 n n
/<H ~ Hu (L, [v,73]) 1= An(Bu0)? AT (du, v)AT (Au, dv)
1
< - ‘iH . H"E s’jC
T inf | 1- AL (Au,v) §>2 l Il

(u,2)€[0,7]

X / [ Alo(du, v)AT (Lo, dv) |
< CUH - H,n;g:@/ | ATg(du, v)AT (Du, dv) |,
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where we used assumption /3,, > & > 0 on [0, 7] for certain 6 > 0 in the last
line, which follows from assumption 1 and the uniform convergence of 3,
to /3. The other terms one gets after applying integration by parts are dealt
in the same way. By assumption 2-4 we have:

/ | ATy (du, vIAT (Aw, do |

_ /. A?0<du,'(}) A?O(u’dv>
Mln(du} #2n(d?}}
< MP|pallollpznlls < M,

| pan(du)pan (dv) |

for certain M’ < oo. So if A}, satisfies assumptions 1-4, then
CllH — Hylloo [ | Alp(du, v)ATy(Au, dv) |— 0 for m — oo. The other

terms are dealt similarly using the assumptions 1-4 for Ay and AT,

A2. The second term can be bounded by the supnorm of A (Aw,v)/(1—

To(Au,v)) — Arg(Du,v) /(1 = Ap(Au,v)) (which converges to zero)
times the variation norm of H,,.

So if we let m = m(n) — oo slowly enough for n — oo, then both
terms Al and A2 converge to zero.

The second term B is dealt similarly. Now, we will deal with the third
term C. Firstly, by telescoping we can rewrite:

ATo(Au, v)AF (u, Av)  Aso(Du,v)Agr(u, Av)

ﬁ"(uv 'l)) ﬁ(u, 'U)
— 1 1 Y
B (ﬁn(u, v)  Blu,v) )Am(Au,v;Am(u, Av)
1 . )
+ EROR) (ALy(Au,v) — Ajo(Au, v))Aei(u, Av)
1 " "
+ mAm(Aua V) (AG (u, Av) — Ao1(u, Av)).

We have to integrate these terms with respect to H. We set
H = (H - H,, )+ H,, (here an application of Helly-Bray-lemma starts).
By using the d-A-interchange trick we can transform all three terms with
H — H,, into integrals where H — H,, appears as a function: e.g.

. 1 . . .
/{H — H,,)(du, dv) m (Al A, vy — Ao{ L, v)jAgr (u, Avj

- / (H = H,)(Du, Av)

AT ey ot A (s YA Y
o) (A (du,v) — Agldu, v ) Aoy (u, du).
o My Y
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So if assumption 1-4 holds, then as we did above we can bound this term by
C;{H - Hmfé }sz(gnulni{t »u' t + iéﬂl“vi“@i%v) < AI,%EH - Hm”oc

Similarly, we have this bound for the other terms with H — H,,,. The three
terms with H,, we can directly bound by

(1/ 80w, v) = 1/B(u, v)) [ M (m),
1(Afo(Au, v) = Aro(Au, v))|[ M(m),
H(AG (u, Av) = Aoy (u, Dv) )|l M (m),

where M (m) stands for a constant times the variation norm of H,,. So we
can conclude that we have the following bound:

j H(du, dv) ALy(Au, v)AF (u, Av)  Ago(Au, v‘Am (u, Av)
U< ol H< nwef}%:i o ) H

where €, converges to zero. Let now m — oc slowly enough to obtain
that this bound converges to zero (here ends Helly-Bray). This proves the
statement.

In general all terms we will encounter in the differentiability proofs are
dealt in the following way:

Telescoping

Step 1. — Firstly, we do telescoping in order to rewrite a difference

of two products as a sum of single differences: / A, B, — / AB =

/(A,n —A)B+ | A,(B, — B). Consider one term (e.g.) /(An — A)B.
Here, we know that A,, — A, but A, can appear as a measure in one or two
coordinates: /(An — A)(du, dv}B(u, v} or /(An — AY(du,v)B(u, dv} or
the easiest case /(An — AY(u,v)B(du, dv).

Goal

Step 2. — We want to bound the term / (A, — A)B, where we usually

have that A,, — A appears as a measure, in the supnorm of A, — A which is
known to converge to zero. Therefore our goal is to get this term in a form
so that we can apply integration by parts with respect to 5.
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Denominator-splitting, d-/\-interchange
Step 3.

Case 0. — If A, — A appears as function we do not even have to apply
integration by parts and we are ready.

Case 1. — If B generates a measure of bounded variation or is it a
product of such functions (of bounded variation but some left and some
right continuous) we can bound the term in the supnorm of A, — A by
applying the integration by parts formula of Lemma 2.2.

Case 2. — If B is of unbounded variation, we substitute B =
(B —~ B,,) + By, and we now want to bound the term with B — B,,
in the supnorm of B — B,, and the term with B,, in the variation norm of
B,, (Helly-Bray Lemma 2.5). We go back to step 3.

Case 3. - If B involves the denominator 3 we firstly apply the denominator
trick Lemma 2.4 and d — A-interchange Lemma 2.3 as in Corollary 2.1 in
order to rewrite the term to a term of Case 0 or 1.

3. DIFFERENTIABILITY OF THE DABROWSKA, VOLTERRA,
AND PRENTICE AND CAI REPRESENTATIONS OF F

In this section our goal is to establish Hadamard differentiability of the
Volterra, Dabrowska, and Prentice-Cai representations of F. In fact, we
will prove that each of these representations is continuously Hadamard
differentiable, thereby paving the way for validity of the bootstrap in each
case.

NOTATION AND ASSUMPTIONS ON SEQUENCES. — For any symbol which occurs
as argument of the analyzed mapping, say A, A, and A¥ are sequences
which both converge in supnorm to A and moreover it will be automatically
assumed that they are of bounded variation uniformly in 7.

A,. plays the role of the estimator of A using the original data and A¥
plays the role of the same estimator, but using a bootstrap sample of the
original data.

3.1. The Volterra Representation

We do the proof of the Volterra representation before the proof of the
bivariate product integral (as part of the Dabrowska representation}, because -

Annales de Ulnstitur Henri Poincaré - Probabilités et Statistigues




INEFFICIENT ESTIMATORS OF THE BIVARIATE SURVIVAL 567

the proof is easier to generalize from the univariate case and we will still be
able to refer to the global differentiability proof.
Consider the inhomogeneous Volterra equation

3

F(t) = (t) + f F(s=)dA(s). (13)
{0.t]

We consider this equation as an implicit equation for F for given functions
¥ and Aq;. For any measure o on R? set:

oo

P((s,t];0) = 1+Z/ ) aldul). . a(du™).  (14)
s<ul <L <un Lt

n=1

P(:;a) = P, is the Peano series corresponding to «. The following
propositions will be proved below in a separate subsection. The proofs are
similar to the proofs given in Gill and Johansen (1990) as they already
remarked on p. 1531. The non-homogeneous Volterra equation has a unique
solution in terms of P(-;Aq1):

PropOSITION 3.1. — If F satisfies (13), then

F(t) = (1) + / (5= )P((s, 8] Ay )dAss (s).

0<s<t

Repeated substitution of the Volterra equation into itself and interchange
of the order of integration make the claim intuitively clear. Here are two
propositions giving useful properties of the Peano series P.

ProposiTioN 3.2 (Kolmogorov equations). — The Peano series P = P,
defined by (14) satisfies

P,(s,t] = 1-%—/ P.(s,uja(du) =1+ / P, (u,tla(du).

s<u<t Js<ust

ProposiTion 3.3 (Duhamel equation). — If « and 3 are two measures on
R? with corresponding Peano series P, and Pj, then

Ps(s,t] — P,(s,t] = / P.(s,u)Ps{u,t](§ — a){du}. (15)
Js<u<t

With the Duhamel equation one can show the following differentiability
result for the Peano series. For all propositions and theorems recall our
assumptions on the sequences A,,.
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ProposiTioN 3.4 (weak continuous compact differentiability of P, in
supremum norm). — Assume

Wi = Valaf —an) = hin (D[0,7].]] - [lx)-
Then, with P¥ = P(; o), P, = P(-;a,)
Vi(P# — P,)(s,t] — Ph(s,t] uniformlyin (s,t)€[0,7]> (16)

where P is given by
Ph(s,t] ::/ P(s,u)P(u,t]dh(u). (17}
<u<lt

If h is of unbounded variation this is defined by (repeated) integration by
parts (see Lemma 2.2).

CoNsiSTENCY. — In general, notice that this differentiability result for
a mapping A certainly implies continuity of A; if F, — F then
A(F,} — A(F). Therefore our differentiability results will also provide
us with almost sure uniform consistency of our estimators.

Now, we have the tools to prove the weak continuous differentiability
property of the Volterra representation ®; (¥, A;).

TueoreM 3.1 (weak continuous differentiability of ®,). — Suppose that
71 (U U,y — a in D[0,7]
tHATE —AY) — ﬁ in D0, 7).
Then

EHOUE AT —0(T,,AY)) — dB(¥, A ){(a,B) in D[O,7], (18)

where dO(W, A11)(+, -} is a continuous linear functional defined on D0, T].
Proof of Theorem 3.1. — For convenience denote Ay; with A.
P#(s,t] =P((s.t]; A¥)
P,(s,t] =P((s,t]; A},

and write -F = $, (U7
equation (13)

A#), F, = ®,(V,.A,) and F = ®,(V,A). By

ntt

FA) = u# () +/ U# (5= ) P# (s, }dA % (s) (19)

nno\"
Ja<t
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and
F.(t)=9,(t) —2—/ U, (s—)Py(s, t]dA.(s) (20)

so that subtraction yields (by telescoping)

L EL (8) = Fult)) =t72 (D) — U (1))
+ / EL(UF — U,)(s—) P (s, fjdAF(s)

+/ U, (s=)t; (P¥ — P,) (s, t)dA¥
s<t

+/ U, (s=)Pu(s,t]t; 1 (dAF —dA,)(s)
s<t
=I,+II,+III,+1IV,.

I, — I by hypothesis. Our goal is to show that II, III, IV,

converge to their supposed limits [I,III,IV. Firstly, one should

notice that the supposed limits are well defined: for example

1V = / W(s—)P(s,t]dB(s) is defined by repeated integration by parts
s<t

(Lemma 2.2). By telescoping we have:

I, —II= / <t(,af — a)(s=)P(s,t)dA(s)
+ [ ata)PE - Ps Aans)
+ / as=) P (s, (ld(AF — A)(s).
. (a# — a)(s- )P (s, (A% — A)(s).

Because A is of bounded variation the first two terms can directly be
bounded by a constant times the supnorm of (o — ) and (P# — P)(s, t],
respectively. (a# — «) converges to zero by hypothesis and (P# — P)(s, ¢]
converges to zero by Proposition 3.4. Similarly, using that A,,, A# are of
bounded variation uniformly in n, we prove that the fourth term converges
to zero by bounding it in the supnorm of (¥ — «). For the third term we
have to apply the Helly-Bray Lemma 2.5 with H(s} = a(s)P#(s,t] and
F(s) = A¥ — A, because « is of unbounded variation. So here we need
that s — P#(s,t] is of bounded variation uniformly in n. This follows
from the bounded variation of A¥ as shown in the proof of Proposition 3.4.
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The convergence of I11,,, IV, to their supposed limits is proved, similarly:
only integration by parts and Helly-Bray are needed. This completes the
proof. 0O

3.1.1. Proofs of Propositions

Proof of Proposition 3.2 (Kolmogorov equations). — For convenience,
we define the region which appears in each term of the Peano series:
B, (s,t] = {(u},...,u") € (R®)" :s <u' <...<u" <t} Now,

P,(s,u) =1+ Z/ aldu') - a(du™), (21)

n(3u)
$o

/s ., Pl ain) = / » 1o (dw)
+Z / a(dud) - - a(du™)a(du)

Bri1(s,t]
—-Z/ aldu) - - a(du™)
n (8,t]
=P, (s,t] — 1.

The backward equation is similarly proved. [

Proof of Proposition 3.3 (Duhamel equation). — Consider the following
m + n-fold integral:

/ aldud) - a(du™)B(du™ ) - fldum). (22)
B wn (8,

By splitting the integration on »™ we can write this as:

/ {/ odu') - 'a(dum*l)}
s<um=ult B (s,u™)

g {/B (ur t;ﬁ(dumH} " 'ﬁ(d“m”)}a(du). (23)

Similarly, splitting the integration on u™ T, we can also write it as:

/ {/ aldut) - -a(dum}}
s<umtl=adt B,,(sumth)

X { / Bldum*?) - 3(du"m‘}3dm (24)
B {um+i ]
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Since (23} equals (24) for all /. and n, we can sum up the resulting identity
on m and n to obtain

/ Pa(s, ) {Py(u, 1] — 1}a(du)
s<u<t

N /<» <z{PQ(S’u} = 1}Ps(u, t]3(du). (25}

Combining (25) with the Kolmogorov equations yields the Duhamel
equation. [

Proof of Proposition 3.4 (weak continuous differentiability of P,). — By
the Duhamel equation we have:

M PE — P (s f] = / Po(s,u)P¥(u, dhF(u).  (26)

s<u<t

The difference with its supposed limit is given by (telescoping)

/< <t(P" ~ P)(s,u)P(u,t]jdh(u)
+/ Pu(s,u)(PF = P)(u, t|dh(u)

+ / Po(s,u) P# (u, tld(h# — h)(u).
s<u<t

Firstly, notice that all three terms are defined by repeated integration by
parts (Corollary 12), which can be done because s — P.(s,t] (and P# P)
are of bounded variation uniformly in n (see below). The first and second
term converge to zero by the Helly-Bray Lemma 2.5 and the third term can
be bounded by the supnorm of h# — h by applying integration by parts
(Lemma 2.2). In all three bounds the variation norm of P,, P# P considered
as functions s — P, (s, t] appear which are uniformly bounded. This is seen
as follows. From the definition (14) of the Peano series it follows directly that
1Pulloe < exp(llal|s) [see (7)]. Then by the Kolmogorov equation we have:

WPl < égpﬁggxiga;}i < exp(|lalie).

Soif {jaell, < M, then || P, ||, is bounded. This proves the bounded variation

of P,, P# P by assumption on «,,. This completes the proof, [
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3.2. The Dabrowska Representation

3.2.1. The L-mapping

We will state the differentiability result for the by far most complicated
mapping L in the Dabrowska representation.

PROPOSITION 3.5. — Denote A = (Ayo,Ao1, Ar1). Let T's = I'sy — I3, where

- " Arg{du, v=Ag1 (u—, dv}
T A\:/
a(4) (0,4 Blu,v)

and

e An(du, d'l))
FSZ(A)_/{O,,:} Blu,v)

Assume that AT, AL #)]le < M < o0 and
1. 3> 6 > 0 on [0,7] for certain 6 > 0.

2. There exists a sequence of uniformly in n finite (signed)
measures |y, so that ATy(u,dv) < paa(dv) for all u. Similarly for
AlOvA?O#a‘/XOMAghAgl#'

3. There exists a sequence of uniformly in n finite (signed)
measures i1, so that AT (du,v) < pan(du) for all u. Similarly for
AlOaA?U#,AOhASl’Agl#-

Afy(du,v) Afo(u, dv)
pialdu) || Hoaldo) |
(uniform boundedness of the Radon-Nykodym derivatives). Similarly for
Am, A?U#v AOL, Agl’ Agi#
If ho# = Jn(A# — X,) — h, then we have:

4. < M and < M for certain M < oo

ValD(£,#) = T(R,)) - dD(A)(RE) = 0, (27)
for a certain continuous linear map dI'(A):

(D0, 7], | floe)? — (DO, 7], [+ [ls0)-

Proof. — We will give the proof of the characterization of ordinary compact
differentiability, i.e. we replace A, by A and A¥ by A, in (27). The reader
can easily verify that the proof goes through when we do not do this. We

Annales de ['Institur Henrl Poincaré - Probabilités et Statistiques




INEFFICIENT ESTIMATORS OF THE BIVARIATE SURVIVAL 573

have by telescoping:

\/E{P;n(f\gn A’fo} - F31(A01,A10}}
Blu, v) (AT (du, v—) AP (u—, dv)

_ \/,ﬁ(// { ——1\m{du,v—}Am(u—,dv)}})

B, v)B(u,v)
: (B = Bn)(u, v)Aro(du, v=YAg; (u—, dv)
vl ff B, 0)B(a, ) )
— // h?{)(duW ‘EJ“}AQI(U-—,d”L’) + hgi (u_7 d’U}A?O(du» U—)
- ﬂn(u7 U)

+ / / \/fﬁﬂ ﬁ"g" (u, v)Aro(du, v=)Ag; (u—, dv).

It is easy to check that v/n p=bBn

— H(u,v) for a fixed function

H(hao, hoy) Tinear in (hio, hoy) which we will not write down. So the
last term converges in || - ||o. to

// H(hlo, h(n}(’u, ’U)Alo(d’u, ’U—)Aol (u~, d’i})

Notice that the supposed limit d@(K) is a continuous linear map because
all terms can be defined by integration by parts with Lemma 2.2. We only
consider the second integral. The first is dealt similarly. The difference
between the second integral and its supposed limit can be rewritten by
telescoping as the following sum of terms:

// (hgy — hm}(u——,dv)l\?fo(du’v—}
5n<u~'u\j
1 1Y), .
+// ([3— - B—)(u,v) + hot(u—, dv)Aio(du, v—)
// (A?O "Am}{du,b’—-}hgl(?i'—,d'v}
+ = .
B (u,v)

Term i. — Use corollary 2.1 with H = hgy = hot, A = A%, 8 = fa.
Then apply integration by parts (the second part of Lemma 2.2) and

bound this term by the supnorm of Ay, — hj, times integrals like
11 ’

/ g;;z\w(du.fa;m,}Am{u——,dv}g. For the rest we refer to the techniques

in illustration 2 where we show by using the assumptions 1-4 that this

variation is bounded.
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Term ii. — Similar to our illustration II with h(du,dv} replaced by
ho1(u—, dv)Aso(du, v—}.

Term iii. — Substitute ho; = (ho1 — hi:) + hg;. Now bound the term
with (ho; — kgt ) in the supnorm of (ho1 — hg}) times a constant, and bound
the term with hZ% in the supnorm of Afy — Ao times the variation of hg},
both in exactly the same way as we did in term i. Now, let m — oo slowly
enough (Helly-Bray Lemma 2.5).

The proof for I3y is similar, but easier. [J

3.2.2. The bivariate product-integral

The essential ingredient for establishing differentiability results for the
product-integral is the Duhamel equation. For the univariate product integral
theory we refer to Gill and Johansen (1990). They also sketch how the
proofs can be generalized to the multivariate product-integral. Here, we
will present and prove the bivariate analogues of the Kolmogorov equations
and Duhamel equation and finally state the differentiability result for the
bivariate product-integral. For any signed measure L on R? set

P((s,4,L) = [[(1 + L(du, dv)), (28)
(s:t]
where the bivariate product-integral
Py(s,t) = P((s,8], L) = [[ (1 + L(du, dv))
(s,]
is defined as the limit of finite products of

T

T @+ Lo vi-0), (i wp)])

2,5=1
over partition-elements
Jig = ((wimy,vj-1), (u,v5)] with masx{] (uizg,v-1) = (i v;) [}

converging to zero. The ordering (specifying in what way we multiply
over the elements of the partition) of this product is not relevant by the
commutativity of multiplication in R, but for our proofs we choose the video
ordering (left under to right under then to left under one strip higher etc.).
The proof that this product-integral is uniquely defined (that each sequence
of partitions of rectangles with mesh converging to zero has the same limit)
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is exactly the same as the proof for the univariate product-integral as given
in Gill and Johansen (1990), p. 1515,

Remark. — We use the same notation P((s,t], L) for the bivariate Peano-
series and the bivariate product integral. In one dimension these two are the
same and in two dimensions the same properties (Kolmogorov equations,
Duhamel equation) can be proved. By using the total ordering in R? we
can obtain all one dimensional results and we can go back and forth from
total ordering to partial ordering.

ProPERTY 3.1. — [[ (1 + L(du,dv)) < exp(||Ll,) So if L is of bounded
(0.7]
variation, then t — P((0,t], L) is bounded in supnorm.

This follows immediately from 1+ | L(J; ;) |< exp(| L(J; ;) |). We will
see that we can easily get generalizations of the Kolmogorov and Duhamel
equation of the univariate case by replacing univariate intervals by rectangles
with respect to the total (video) ordering. That is indeed what we will do.
Then we will show that we can rewrite the obtained results in terms of
rectangles with respect to the usual partial ordering.

LemMMA 3.1. — Write (0,t] = {z € R? : 0 < = < t} for an interval with
respect to the partial ordering on R®. Denote ])0,1t]] for an interval with
respect to the total (video) ordering on R%: (z,y) €]]0,t] & 0 < y < t,
ory = t2,0 < x < ty. Then for s < t

(0,¢1N]]0, s]] = (0, £1] x (0,52) U (0,51] x {30}
(0,¢]N]]s, 00]] = (s1,t1] X {82} U (0,1] X (52, 8]

The lemma says that we can describe these intersections as the union of one
two dimensional rectangle and a one-dimensional line segment, both with
respect to the partial ordering. The proof is trivial.

ProrosiTion 3.6 (Kolmogorov equations). — Denote (0,t] for an interval
with respect to the partial ordering on R? and denote ]]0,t]] for an interval
with respect to the total ordering on R2. The bivariate product-integral
P = Py satisfies:

Proof. — We prove the first equality. Consider a finite partition 7, of (s, ¢]
of rectangles with diameter smaller than £,,. Replace the product-integrals
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by a finite product over this partition. Then the integral is an integral of
a simple function with respect to the measure L. Because of the identity

m m =1
H(l +a;) =1+ Z H(l +a;)a; it follows that the equality holds for this
i=1 i=1 j==1
finite partition. By the convergence of this product to the product integral for
h,, — 0 (see definition of product integral) the left-hand side P7*(s, t] and
the integrand on the right-hand side P[*{(s, ] N]]s, u[[} converge to PL(s, ]
and Pr{(s,t]N]]s,u[[}, respectively. By using the dominated convergence
theorem it is now straightforward to show that the right hand side converges
for this sequence of partitions to 1 + / Pr{(s,t]N]]s,u[[}L(du). O
(s,t]

COROLLARY 3.1. — If L is of bounded variation, then t — P((0,t], L) is

of bounded variation.

Proof. — This follows straightforwardly from property 3.1 and the
Kolmogorov equations. For the precise argument see the proof of
Theorem 3.4. O

Lemma 3.2 (Duhamel equation with total ordering). — We have:
Pa(ofﬂ - Pﬁ(o,t]
_ /(0 ) P.{(0,£]n]]0, s[[} d(a — B)(s) Ps{(0,t]N]]s,o0[[}. (29)

Proof. — The proof is the same as the proof for the Kolmogorov
equations except that we now have to use the telescoping-identity

n n n i-1 n
Hai—Hb;zznaj(ai—bi} H bj. Od0
i=1 i=1 i=1 j=1 J=i+l

Now, with these two lemmas we are able to write down a Duhamel
equation which involves product-integrals over rectangles or lines with
lower and upper corner chosen out of the corners of (s,t]. We can simplify
this to only product-integrals over rectangles and lines with lower corner
at (0,0} as follows.

Lemma 3.3,

P (0, ]P0, 5]
Pa! iat — RANEEE il i i
v 1 P, (0, (51, t‘ZHPL‘t(Oe <t1? 52}1

which is the generalized ratio of the product-integral over a rectangle with
lower corner at (0.0} and upper corner at one of the four corners of (5.t].
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Proof. — The proof follows straightforwardly from the multiplicativity of
the product-integral. []

ProposiionN 3.7 (Duhamel equation). — Define

V(s,t) =P2{(0,t1] (0, 52)} P2 {(0, 51]
x {s2}}Ps{(s1,t1] X {823} P{(0, 1] x (s2,t2]},

where Ps{(s1,t1] X {s2}} and P3{(0,t1] x (s3,t2]} can be written as a
generalized ratio of product-integrals over rectangles with lower corners
at (0,0) and upper corners with coordinates taken from s and t (see
Lemma 3.3). Then

P, (0,t] — P3(0,4] = f(o ) V(s, t)d(a — B)(s). (30)

All these product-integrals are of bounded (uniformly in t) variation in
s by application of the Property 3.1. So by our repeated integratién by
parts formula Corollary 12 we can do integration by parts so that a — 3
appears as a function.

Proof (Duhamel equation). — Firstly, apply Lemma 3.2. Then by
Lemma 3.1 and the multiplicativity of P, we can write the product-integrals
as a product over product-integrals over rectangles and hyperplanes with
respect to the partial ordering. Finally apply Lemma 3.3. [

THEOREM 3.2. — The bivariate product-integral P : (D[0,7],] - ||oc) —
(D, 7] [ - flo):

L J](1 - L(du, dv))
[0,1]

satisfies the characterization of weak continuous differentiability, as stated
in (27), for sequences ||L,||, < C, ||[L#||, < C converging to a signed
measure L.

It is already known that it holds for the univariate product-integral (Gill
and Johansen, 1990).

Proof. — For this we refer to the differentiability proof of the bivariate
Peano series in the preceding section: the same ingredients (Kolmogorov
equations, Duhamel, repeated integration by parts) have to be used in the
same way. L[]
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3.3. Prentice-Cai representation

Recall the Prentice representation

F(t) = 01(A10(+,0),A01(0,), R)
= 01(A10(+0), Ao1 (0, ), ©(L))
= 01 (A10(+0), Ao (0, -), ©2(O5(K)
= 0(4),

where ©; is a product of two univariate product integrals w.r.t. Ajg(-,0)
and Ag; (0, -), respectively, times R; ©, = ®, is the Volterra representation;
O3 is the L mapping which has the same structure (slightly easier) as the
I's = L mapping of Dabrowska’s representation. So the weak continuous
differentiability characterization has been proved for ©; in Gill and Johansen
(1990), O, is proved in Theorem 3.1, O3 is proved by copying the proof of
Proposition 3.5. The chain rule provides us now with the weak continuous
differentiability characterization for ©.

3.4. Differentiability theorem for I', ® and ©

TueoreM 3.3. — All three representations are defined in section 1. Let
I’ be the Dabrowska representation and A the vector of hazard measures
corresponding with F as defined in section 1: F' = I'(A).

DABROWSKA REPRESENTATION.

ASSUMPTIONS. — Assume that ||[A}]], < M < oo, [[A11.%]], < M < oo
and

1. F(r) > 0.

2. There exists a sequence of uniformly in n finite (signed)
measures jty, so that AYy(u,dv) < pon(dv) for all w. Similarly for
Aso, AT¥, Aoy, AGy, AG#.

3. There exists a sequence of uniformly in n finite (signed)
measures (1, so that Afy(du,v} < po,(du} for all w. Similarly for
Al()a 11?9#¥ A‘Olv A*gl? Agi#

A7 (du,v) ] WA (u, dv) |

4. §§~—————~——~10<(,“ U) é < M and ‘t~——————1 m(lfi' 2 %
| pialdu) f% pan(duv) ]
(uniform boundedness of the Radon-Nykodym derivatives). Similarly for
.\;(), J‘i?’ﬁ#. :’\(}1‘ A{I}ll s Agl #

i
i
i
i
i

< M for certain M < ~
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Let Z3# = \J/a(K# — K,.) — Zz. We have the following differentiability
result for I

Va(L(AF) - T(K,.)) — dD(R)(257) — 0,

for a continuous linear map dU(A) : (D[0,7], ]| - [|oo)® = (D0, 7], ]| - [|oo)-

PRENTICE-CAI REPRESENTATION. — The same statement holds for the Prentice-
Cai representation F' = ©(A).

VOLTERRA REPRESENTATION. — The same differentiability result holds for
F = ®(A) with the assumptions 2, 3 and 4 replaced by:

[(ATo, Ag)lle < M <00 and (AT #, A5 )]l < M < oo,

Proof. — This differentiability property has been proved for the univariate
product integral in Gill and Johansen (1990) (so this gives it for I';, 01, ©»),
for the bivariate product integral in Theorem 3.2 (so this gives it for I'y), for
the bivariate Volterra representation (bivariate Peano series) in Theorem 3.1
(so this gives it for ., ®,), for the L mapping in Theorem 3.5 where we
need the denominator assumptions (so this gives it for ['s, ©3), where one
has to notice that Assumption 1 tells us that 3 > 0 (denominator in L and
L). Now, the theorem follows from the chain rule.

4. THE ESTIMATORS

Let ®,I' and © denote the Volterra, Dabrowska and Prentice-Cai
representation, respectively, which were defined and studied in sections
2 and 3. We now construct the estimators in models 1-3 which are based on
these representations. From now everything indexed by n is random.

ESTIMATORS FOR MODEL 1. — Estimation of a bivariate distribution function
with known marginals.

In this model the marginal distributions are known. Recall the Definition 1
(or call it representation in terms of F) of the integrated hazard
X = A(F) = (Apo(F), Aor(F),A11(F)). We estimate the hazards with
their natural empirical estimators. So let

Fulty= - Zlf{XY\>{t; 2],
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be the empirical survival function. Then we take A, = A(F,.}. So A, has
the following coordinates:

AY = / A=) >0 e ()
(0.1

Fn(s"}
ITF, (u—,t) >0
4 ?OE/ - —-(u 2 > 1F‘n(duat2>v
(0,41] Fn(’{l,-,t2>
I[F, (t,,v—
AL _=_/ Enltsv) > 0 p g,
Ot  Falti,v=)

DABROWSKA ESTIMATOR. — We only have to estimate the L operator which
captures the dependence structure, and this L operator was a nice functional
of A. Recall the representation (2):

F =T1(Ago(-,0), Aa (0, -), ToT5(R)).

Because Ajo(+,0) = Ago(-, 0)(FD), Ao1(0,-) = Ag1(0,-)(FY) are known
we only have to plug in A, for A in order to get the estimator based on
the Dabrowska representation. So

—D ' - ,
F, (t) =T1(Aw(+,0), Aor(0, ), Tol'3(An)) (¢) (31)
for te Ef ={s:F,(s=) >0}
which is just a product: —F_(l)(tl}'F—g(tg) H (1- L(A,)). Using the Dabrowska
(0,4]
representation tells us that F, =Fi,Fs, H(l - L(Kn}}. So the estimator
simplifies to )

—=0—=0
P b 5
FlnFQn

VOLTERRA ESTIMATOR. — Recall the Volterra representation (8):
F = @1 <®2([&19('5 0}' ‘)\01 (Ov '),\}7 jxll}’

where W = 1— F) — FJ = ®3(A14(+, 0}, Ag1(0,-)) is completely known and
thereby need not to be estimated. So the Volterra estimator is now given by:

FY(t) = &, (®s(A1o(-.0). A (0, ), A%)(8)  for teEF. (32)
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PRENTICE-CAI ESTIMATOR. — Recall the Prentice and Cai representation (11):

c ; o
= @1(1&10( 0)1‘/\01( @2<®3(‘\10( )‘»"&01{03'}»‘/\}»'

Also here we only have to estimate the L= ©3-mapping which is a
functional in (A10(-,0), Ag1(0, -}, A}. Define

K, = 05(A10(-,0),A01(0,-), A,.)).

. So then the Prentice-Cai estimator is given by:

F)
= 91(1\10('7 0)7 AOI(O= '}7 62(83(1\10("0)1 Aoy (0’ ')a Kﬂ)))(t) (33)
for teE;

= Fo(t1)Fy(t2) O (K )(t).

ESTIMATORS FOR MODEL 2. — The “three-sample” model.

As above we consider all three representations as mappings from
(A10(+,0), Ao1(0,+)) = (Aso(-, 0)(F1), Aor(0,-)(F2)) and A = A(F) to
itself. We obtain the estimators for model 2 by replacing these by:
(ATl 0), A1 (0,)) = (Ao, O)(FP*™), Aoy (0,)(FF*+™)) and A, =
A(F™), respectively, where F™ is the (joint) empirical distribution of F'
using the n; observations of sample 1, F{"™™ is the marginal empirical
distribution of F; based on the n; + no observations from sample 1 and
2, and F;" 7™ is the marginal empirical distribution of F, based on the
ny + n3 observations from sample 1 and 3. In other words we use all the
appropriate marginal data to estimate the marginals F, F5. We are now just
back in model 1 if we set FY = F[" %" and FY = F;* ™" and forget the
second and third sample. In other words, we just use the auxiliary samples
to estimate the marginals and then we just take the estimators proposed in
model 1 (with known marginals replaced by these estimated marginals) using
the first sample. Therefore, we obtain the following estimators for model 2:

DABROWSKA ESTIMATOR. — Define V.7 = {s: F " (s—) > 0}. Then
P < Fr T F " ) o
Fo(t) = (t2) () (¢) for teVr .
F7 (t1)Fy (1)

VOLTERRA ESTIMATOR.

T (t) =@y (Bo(Agg(-, 0)(F 72,

A@}g\(}, }{F; T 5}}$1\11{F”1 }}{t} for t & S/:P\ {34}
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where ég(Alg(-,Q}(F{”‘L"’Z), Ao1(0, -}(FZ"’J'””S}} =1 F{”*'"Z - F§‘+”3.
PReENTICE-CAI ESTIMATOR. — Define
K, = O3(Aso(-, 0)(F™ T2), Aor (0, ) (F3 %), A(F™)).
Then

=PC 5ni i = tng

F o) =F," "7t} Fy  (t2)0:(K,)(t)  for teV].

Remark. — If we only use the bivariate sample for the K, in the Prentice-
Cai estimator, then we get the same simplification as we had with the
Dabrowska estimator in model 1:

—F—,PC' B _ﬁ?1+n2ﬁ;]+n3 -ﬁm
n Ff';‘l *Fi’;1 :

ESTIMATORS FOR MODEL 3. — Bivariate random censoring.

Here, one sees the advantage of choosing the hazards as parameters of
the model: they are perfectly suited for censored data. Define the following
subdistributions of the data corresponding with the four kinds of censoring
which can occur.

Hj;(t)=P(X <t,Y <tp,6=d,e=j) for 4,j€{0,1}, teR2.

e H(t)= P(X <t1,Y Sto) =Y Hy(t).
29
Then, on [0,7] with H(r—) = FG(r~) > 0,
.All<t) = :..—.qg-s:._—:—)‘—-‘:dF(é)
0.4 £1(5=)G(s—)
1
= Joy ey

@(’u*,tz)
Awp(t) = = = Fldu,t
m( ) /5‘0331} F(u"7t2}G(u"st2> ( “ 2>

1
= = (Hy; + Hig}{du,ts)
/{o,zl} H(U*JQE( H 10)(du,t2)
Gty v—) ,
Ao (t) “—:/ = ( Ij‘ / Fty, dv)
0.0 Flt1,v=)G(t1,v—)
1
= e suammsm— Hu“}*H‘ }(t,d?)},
/M H(t;.%}( AT
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If we define H = (Hgg, Hglg H{m? Hn}, then A = A(H} Let

1

n

ZI(Xk S tisyk S t2:5k :7;36357 :j}
k=1

H,; =

be the empirical distribution of H,; for i,j € {0,1} and H, =
(HnI()a Hngl, HnOG: Hnll}!- We estimate A with

—

Ao =A(H,) for teWr={t:H) >0}

In other words A, is given by the formulas above with H;; replaced by H,,;;.

DABROWSKA ESTIMATOR. — Recall the representation S = I'(X). We have
Fo(0) =TA)()  for teW?, (35)

which equals the product Fy,, Fs, H(l - L(Kn)) where F,, Fs, are the
univariate Kaplan-Meier estimators of F'1, F'y, respectively.

VOLTERRA ESTIMATOR. — Recall the representation S = ®(X). We have

Fr =o(K,) for tewr, (36)

n

where @2(1—{“} =1~ Fy, — F,,.
PRENTICE-CAI ESTIMATOR. — Recall the representation S = O(A). So

PC

F,”=0(K,) for teW?, (37)

which is equal to the product Flann@z(eg(Kn)).

5. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

We will use the results of section 3 to establish functional central limit
theorems for the estimators defined in section 4 for models 1-3. As outlined
in section 1, we do this by applying the functional delta-method theorems
in Wellner (1993) to the representations @, I" and ©. Since the necessary
characterization of weak continuous Hadamard differentiability has been
established in section 3, the remaining hypothesis of the delta-method which
we need to verify here is weak convergence of the normalized arguments of
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®,T" and ©. We use the modern weak convergence theory, due to Hoffmann-
Jorgensen (1984) and Dudley (1985) following an evolution from Dudley
(1966), which makes measurability an irrelevant issue, but measurability in
the limit is required. With this theory one does not have to give up the Borel-
sigma algebra but (in non-separable metric spaces D) it gives up the goal of
inducing distributions on D equipped with some sigma-algebra of subsets.
Weak convergence will now be equivalent to convergence of inner and outer
probabilities of Borel P-continuity sets. We consider random processes as
elements of the cadlag function space endowed with the supnorm and the
Borel sigma algebra. We will denote this space with (D[0, 7], || - ||oc, 3). If
X, converges weakly to a random X in this sense we will denote it with
anDéX . For an extensive weak convergence theory we refer to van der
Vaart and Wellner (1993).

Let P, as usual be the empirical distribution using the i.id. data
Xi,t=1,...,n, X; ~ Py. Now, we consider a bootstrap sample of n i.i.d.
observations Xi# .t = 1,...,n with Xi# ~ P,, We denote the empirical
distribution based on this bootstrap sample with P# and estimators of (say)
6 based on this bootstrap sample with §#. The question of interest is: does
Vn(8# — On)zD;»Z# a.s. (i.e. given the data X;,¢ = 1,...) as n — oc,
where Z#27 and \/n(6, — )= 27

Recall section 4 where we defined the estimators.

MopEeL 1. — For all three representations we used the representation
F — A(F) for estimating A: for each representation we plugged in the
same X, = A(F,) for A = A(F). Let V; = A(F), Vi, = A(F,) and
Vi# = A(F#). So we need to prove that v/n(Vy, — %):%Zl and

ViV = Vip)=2Zias. in (D[0,7])?
for certain Gaussian process Zi.

MopEL 2. - For all three representations we used the representation

F — A(F) g 1&10(,0)(F1) and F2 — AO]‘(O )(Fg) for
estimating A and Aio(+,0), A1 (0, ), respectlvely for each repre-
sentation we plugged in the same A, = A(F ™) for A(F) and

(Aio(:, 0) (T F7™), Ao1 (0, -)(F3" ™) for_ (Aso(-, 0)(F1), g1 (0, -)(F2)).
Let Vo = (Aso(-0)(F1),Ac1(0,-)(F2),A(F)) and let Vj, and Vj*
be defined as above by substituting (F7'F" FF75 Fmt) and
(Fjtme# ppitns# pri#) | respectively. So we need to prove that

(VQn - 79'2}::>'ZQ and
Va(Vst = Vo)== Zoas. in (D[0,7])°
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for certain Gaussian process Z. We will do asymptotics as n; — oo,
irrespative of what n, and nj do.

MobpeL 3. —~ For all three representations we used the representation
H — A(H) for estimating A: for each representation we plugged in the
same A, = A(H,) for A(H). Let V5 = (A(H)) and let V3, and Vi be
defined as above by substituting H, and ﬁf respectively. So we need to
prove that v/a(V, — V3)=2Z5 and

Va(VE = Van)=>Zsas. in (D[0,7])?

for certain Gaussian process Zs.

By the functional delta-method (Wellner, 1992), applied to the representa-
tions V;, i = 1,2,3, it suffices [for showing that /n(V;* — %n)éZi a.s.,
i = 1,2,3] to show that the representations V;(F),V2(Fi, F3, F) and
V3(H) satisfy the characterization of weak continuous differentiability and
that the bootstrap works for the plugged in empirical processes:

X# = /n(F* - F,)=>X"as.

Yn# = \/Y—L(Fnl# _ Fm,Flnﬁ-nz# _ Flnx'%-nz,F?#nH—ns _ F2m+na)
:%X2a.s.

Z# = n(H* - H,)=X3s.

where the Gaussian processes X*, i = 1,2,3 are the limit processes of
the non-bootstrapped processes X,,, Y., Z,, respectively.

Firstly, we will state a lemma which will easily provide us with the weak
continuous differentiability of the three representations V;, ¢ = 1,2, 3.

Lemma 5.1. — The functional
A (F.C) e / F(s)dG(s)

satisfies the characterization of weak continuous differentiability at any
point (F,G) where F and G are of bounded variation for sequences
(Fn,G,), (F¥#,G#) of bounded variation uniformly in n [see (27)].

This lemma has been proved in illustration I and this mapping is also
contained in the mapping L and L: the integration by parts Lemma 2.2 and
the Helly-Bray Lemma 2.5 are the only ingredients we need in order to
carry out the univariate proof in Gill (1989).
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Recall the representations of V,, i = 1,2, 3: they are all compositions of
1 . . S .
Y — v and A. So the weak continuous differentiability of Vi, i = 1,2, 3

1
follows directly by the weak continuous differentiability of ¥ — = at a

Y > & > 0on|0,7] foraé > 0 and application of lemma 5.1 and the chain
rule. In models 1 and 2 F plays the role of Y and in model 3 FG plays
the role of Y. So for models 1 and 2 we need the assumption that [0, 7] is
chosen such that F(7) > 0 and in model 3 we need that F(7)G(r) > 0.

It remains to verify that the bootstrap works for the empirical processes
we plugged into V;, ¢ = 1,2,3 which follows straightforwardly from well
known empirical process theory:

MobEL 1. — F,, is just the usual empirical process indexed by the indicators.
So the weak convergence of X,, and the bootstrapped X7 (a.s.) are well
known.

MOoDEL 2. — We need to show weak convergence of Y, and Y, to the
same limit process XZ. ‘

Let n = n; + ny + ng and suppose that A\,; = n;/n — A; > 0 and
Ani Eni/n — A 20,4 = 2,3. It is well known (just empirical processes
indexed by the indicators) that

(V™ = P, Jor F (et = patns),
Vin T (Fp e ) o

as. in (D[0,7])® for n — oc and for a certain Brownian bridge
W = (W, Wy, Ws). Because /n/n; — 1/VAL /n/ni+mny —
VI/(A + X2) and \/n/(ni +n3) — /1/(A1 + A3) this implies (just
write for the first coordinate \/n = \/n/ny,/n and similarly for the second
and third coordinate):

VA((F™# = Fr) (Bt = sy (et = ppesne)) 2, X

a.s. in (D[0,7])® for n — oc and where

: 1 1 1
X = —=W, / Wa | ——— W3 ).
(\/)\1 S0 VD Vo VD W 3)

MopEL 3. — Again, the weak convergence of Z7 is well known from
empirical process theory.
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5.1. Final theorem

THEOR&EM 5.1 (Funcuonal central limit theorems for the estimators
F F, andF in the models 1, 2 and 3). — Suppose model i, i € {1,2,3},
holds and assume that

F(ry>0 if i=1o0r i=2
FG(t)>0 if i=3.

Recall the definitions of X', Vi = Vi(F), Vo = Vo(Fy, Fy, F), Vs = Vg(ﬁ}
made in this section and the representations V; — T(V;), V; — ®(V}),
Vi — O(V;) given in section 1, i = 1,2, 3. We denote their derivatives with
dl',d® and dO©.

DABROWSKA'S ESTIMATOR. — For models i = 1,2,3.

and
Vi, = F)Z(dL (Vi) 0 dVi(F)(X*) in (DI0,7], - [l )
for a continuous linear map
(Vi) 0 dVi(F) : (D0, 7], 1| - [lsc)® — (D[0, 7], || - [|oc)
ifit=10rt¢t= 3 and

d(V2)  (D[0, 7], | loe)® = (D[0, 7], | - [lo0)-
Moreover,
VA(FL® = F e dD(Vi)(X)as. in (DO, 7], - [lo)-
So this estimator is consistent, its normalized version converges weakly to a

Gaussian process and the bootstrap is asymptotically valid.

PRENTICE AND CAI'S ESTIMATOR. — The same statement holds: just replace
dL(V;) by dO(V;).

VOLTERRA ESTIMATOR. — The same statement holds: just replace dT'(V;)
by d®{V;).

Proof. — We have to verify the conditions of the (bootstrap) functional
delta-method for Hadamard differentiable functionals (Theorem 3.4 and
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Corollary 5.2 in Wellner 1992) and apply it to I',©® and ¢ all three
considered as functionals in V; for model 1, V5 for model 2 and V5 for
model 3. Then we have the weak convergence result by application of
Theorem 3.2 and the bootstrap result by application of Corollary 5.2. The
weak convergence of /n(V;¥ — Vi,.) (as.) and of /7 (Vi — Vi) i = 1,2,3,
have been shown above. For the differentiability condition we only need
to verify the conditions of Theorem 3.3. Assumption 1 in Theorem 3.3
is F(r) > 0. For the other assumptions it suffices to show that A, X,
and K;"f satisfy the Assumptions 2-4 stated in Theorem 3.3 (the bounded
Radon-Nykodym derivatives assumptions). Here, one has to notice that
assumption 2-4 for A’fI,A?f are stronger than the requirement that these
functions are of bounded variation uniformly in 7.

VERIFICATION OF ASSUMPTIONS 2-4 OF THEOREM 3.3. — We will prove these
conditions for Ajo(¢) = — [ F(du,ty)/F(u—,t,). It will be clear that the
proof for Ay; and Aj; is similar. We have

F(du, tz) 1 =

Aoldu,v) = — = < = F(du,0).
o0 ) = ) S T Y

Therefore we have Ajg(du,v) < F(du,0) and Ajo(du,v)/F(du,0) <
1/F(7) (i.e. Radon-Nykodym derivative is bounded). Furthermore we have:

/ i(ds,dv) +/ f’(ds,‘v) Fs—, dv)
(0,u] F(s—,v) (0,u] F(s—,v)?

1 - 1
F(0, dv) + =——— F(0, dv).
o F0d0) + 5 F0,de)

Therefore we also have Ayg(du,v) < F(0,dv) and Ayo(u, dv)/F(du,0) <
1/F(r) + 1/F(r)>. This proves conditions 2-4 for Ay by setting
1 = Fy and pe = Fy (the marginals of F). Notice now that

Am(u, d’i)) =

|

<

]
"y

() =— / F,(du,t3)/F,(u~,t;) for certain random survivor function

F,, which converges a.s. in model 1 and 2 to F and in model 3 to
FG. So in the proof of Assumptions 2-4 we just replace F by F,
in order to obtain bounds 1/F,(7) and 1/F,(7) + 1/F,(r)? for the
Radon-Nykodym derivatives. By the almost sure convergence of F),, these
bounds are bounded uniformly in n (if n large enough) a.s. Finally, we

have A77(t) = — / ‘F—'f{ du, ts) /—Ff{u—.,tg} for certain random survivor
function Ff which converges a.s. in model 1 and 2 to F and in model 3
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to FG. Therefore the same proof works. This completes the verification
of the Assumption 2-4.

We can now apply Theorem 3.3 and thereby we can apply the functional
delta-method Theorem 3.4 and Corollary 5.2 in Wellner (1993). This proves
the weak convergence and bootstrap results of the theorem.

The consistency follows from the continuity of the representations [, ©, ®
in V; and the almost sure consistency of V;,, to V; in supnorm and on its turn
the consistency of V;,, follows from the continuity of the representations V;
in the empirical processes plugged in and the almost sure consistency of
these empirical processes (Glivenko-Cantelli). [

Remark. — So far we did not write down the influence curves (derivatives)
dU(V;)odVi(F)(X1), dO(V;) o dVi(F)(X*) and d®(V;)odV;(F)(X") of the
estimators because these formulas are large and not necessary for this work.
The variance of these influences curves equal the variance of the limiting
distributions of the estimators. Therefore, the influence curves become useful
if one wants to estimate the variance of the limiting distribution or in any
other efficiency analysis. Below we will write down the proof of efficiency
of the Dabrowska and Prentice-Cai estimator in case of independence, and
thereby also give an illustration of how an influence curve can be fairly
easily obtained.

6. INFLUENCE CURVES

If an estimator is a compactly differentiable function of the empirical
distribution of an i.i.d. sample, then it is asymptotically linear by application
of the functional delta-method (Gill, 1989); one can write

1 ¢ ,
0, =6+ - > ICe(X:)+op(n™%),

i=1

where ICg (X ), called the influence curve at the point X is the derivative of
the function in question applied to the centred empirical process, at sample
size 1, based on the single observation X;. This follows from linearity
of the derivative and the fact that an empirical distribution function is a
sample average. One has Fo(/Cs(X;}; = 0, while Var(ICs(X,)) is the
asymptotic variance of \/n(©, — ). So it is not surprising that the influence
curve plays an important role in efficiency and robustness studies.

Resirict attention to model 3 (the bivariate random censorship model).
We discuss here computation of the influence curves of our three estimators
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Ff (t), fﬁ:; (t), ch(t}, for given t, as function of a bivariate censored
observation (X,Y,6,¢). The form of the influence curve also depends on
the point at which we make the calculations, i.e. on the assumed “true”
values of F' and G.

In principle, using the chain rule, one can write down formulas by applying
the derivative of each composing mapping in turn. The resulting formulas
are very large and not very illuminating. The procedure can be speeded up by
noting the following algorithm for computing the derivative of our mappings,
applied to any function: consider integrals and product-integrals as ordinary
sums and products, consider differentials dF, dh etc. as ordinary variables
indexed by (e.g.) ¢; apply the usual rules of algebra, and then convert back to
a proper mathematical expresion by replacing sums and products involving
differentials by the ‘obvious’ integrals or product integrals. This also applies
to the Peano series since it is an infinite sum of multiple integrals.

The above statement is trivially true if the distributions involved
are discrete. By approximating the continuous distributions by discrete
distributions and using that the algorithm is correct for discrete distributions,
the result for continuous distributions follows straightforwardly from
appropriate continuity of the compact derivative in the sense that
ICq,(X) — ICo(X) for sequences ©, — ©. So the whole idea which
makes this algorithm work is that by appropriate continuity of the derivative
one can determine the derivative at a general point from the derivative at
a discrete approximation and the derivative at a discrete approximation is
obtained by applying the usual rules of algebra (i.e. the algorithm is then
trivially correct). It is proved for the Dabrowska representation in van der
Laan, 1990. We will not prove it here.

We will compute the influence curve by direct formal algebraic
manipulation of the representations of the estimators. We will use the
chain rule in the sense that we will decompose the calculation in two steps:
from the empirical distributions to the empirical hazards, and from the
empirical hazards to the survivor functions.

Also we will only compute the influence curve at a special point
where much significance occurs: namely F is continuous, F = F}F},
and G = GG, We call this “complete independence” (of all survival
and all censoring variables), and continuity of survival. The simplification
caused by independence of the survival variables is obvious. Continuity of
survival means that all unpleasant terms like 1/(1 — AA), both arising as
derivatives and as part of the representations themselves (the /3 function
in the Dabrowska and Prentice-Cai representations) disappear completely.
Also terms arising from the derivatives of 3 disappear, a more subtle
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point (this is shown by using the d — A-interchange lemma and that by
continuity the underlying hazards have no jumps), but fortunately true.
Finally independence of censoring makes the probabilistic structure of
the influence curves easier still and also allows optimality calculations
(computation of the efficient influence curve) to be done explicitly.

The finding will be: at complete independence the Dabrowska and
the Prentice-Cai estimators are efficient (see e.g. Bickel et al., 1993, for
efficiency theory). We prove this “at continuity” and conjecture it is also true
without this restriction. The Volterra estimator is not efficient at this point.
The result means that the Dabrowska and Prentice-Cai are almost equivalent
and close to efficient while the Volterra estimator is much inferior. This
finding has been supported by extensive simulations (Bakker, Prentice-Cai,
Pruitt).

6.1. Computation of the influence curves

We do not go through the computation in detail but suffice with the
remark that each step is made rigorous by application of our differentiability
results for all mappings which occur. Since we are going to suppress s, t
etc. a different notation is more convenient. We replace n by ~and use
1,2 to indicate functions only depending on the first or second variable.
In particular we use:

A, Al, Ag, Al\g and Ag\l
instead of
Au(y), Aw(50), Ao(0,), Agw(,) and Ag(s,-).

The influence curves for A, A; etc. are very simple and we denote them
as follows:

—~ dM
dA — dA =~
"
-~ dl‘v’;“ .
dA; — dA; = L i=1or2
bi
~ 1M
AR ~dAn; ~ M i =120r 2,1
Yy
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Prentice-Cai estimator are efficient under complete independence. Finally
notice that (40) provides us with a nice and simple formula for the variance
of the efficient influence curve:

Var(I(F, t,-)) = Var(IC,)Var(ICy) + F. Var(ICs) + FaVar(IC,).

For example, in the case that 7,75, C;,C, are all four independent and
uniform (0, 1), the reader can easily verify that this variance equals:

1 5 )
Zi(l + (1= t1)% + (1 — )% = 3(1 — t1)2(1 — t2)?).

Computer simulations for the Prentice-Cai and Dabrowska estimator show
that this limiting variance is already closely approximated for n = 100 (see
Bakker, 1990, Prentice-Cai, 1992q, 1992b).
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This gives us then, by inspection [just notice that the denominator of L
and L do not contribute to the influence curve by the d — A interchange
lemma and noting that f(As) = 0 if f is continuous]

D- —F—{_/ dMl _ dl‘ffg
n Y2

+ // (dﬁff - dMl\gdAg\l - dAMg\ldAp\z )}
)

and for Prentice-Cai we have

PC - F—{_ dl".’[l _/CUVIQ}
Y1 Y2

+ FJJ}{ / Puo.y(L)(dE — di)(ds)P(s,ﬂ(L)}

where
(dL — dL)
dM dM. dA dM: dA
~ ( e dz‘xl\2~——3 — dMy g —2 — dA2\1~——1- - dMy == !
Y Y2 Y
M a4 dﬂ?—dm)
)1 Y2

Finally, we have by using (38)
o (F [0, [ )
Y Y2
/ (Fl / M 7, / dM2) P(A)dA
Y1 Y2 /-

_ / @(S)W(—()fzp(s,t (A)

t
/ [\ do)/ P(S u) A dl‘?(;t) P(u t (A}
0

For convenience we denote P, 4(A) with P(u,t]. Let’s first simplify the
last two terms of the Volterra influence curve. We have by Fubini and the

Kolmogorov equation F(t) = W(t) +/ U(s)A(ds)P(s,t):
0

1%
/ U(s)A( db}/ ‘w;(A\d H;L}P(ut(x\)
\

- / ( / T(s)A(ds)P(s, u>d‘w”‘} Plu,1]
o \Jo y(u)
t

:/0 (Fu) — ¥(u a;d‘”‘ J plu.t],

ylu)
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Therefore we have the following simple form of the influence curve of the
Volterra estimator:

v ("Fi dM, __._2/“ dM2>
Y1 Y2

+ / (Fl / M, +F, / %) P(A)dA
Y1 Y2 J_

[T, dM(s) .
/OF(S} o(s) P(s,t].

Next, simplification arises on assuming independence in F' and G. Then
Al\g = Al, A= AlAQ, Y = Yiys, P(L) =1 (L = 0) and L = 0. The
influence curve of Volterra does not simplify much under independence and
therefore we will not proceed with writing out the Volterra influence curve
under independence.

D,PC: —F{~ %—/%ﬁ
2

Y1
+ // (dM - dMl\QdAQ - dMg\ldAl )}
Y1y2

and notice that by cancellation of terms PC simplifies to exactly the same
influence curve as Dabrowska’s! Now, let dN1, dN,, Y1, Y, be defined by
dM = dN — YdA, dMy\; = dN1Ys — Y YodA; etc. Then we obtain for
Dabrowska and Prentice-Cai

F{*_/dMl [ dM

Y1 Yo
lesz - Yli/'szldAg - dNiyyszQ
n // +Y1YodA1dAy — dN,Y1dA, + Y, YodA dA,
Yiyz

— dM M. M, M:
S )
o Y2 Y1 Y2
We will now show that this is also the optimal influence curve.

6.2. Optimal influence curve under complete independence

Denote the bivariate censored data with V:so V = (X,Y,8,¢). The score
operator for F' is given by:

[ L*(F)y — L*(Prg) : (h)(V) = Ex(h(S.T) V).
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This follows from the general formula for the score operator in missing

data models (see Bickel er al., 1993, section 6.4). Then the information
operator is given by

"1 L(F) = LA(F) . ITi(h)(S,T) = Ep, . (Er(h(S,T) | V} | (S,T))

Define x; = I(s o) — F(t) € L*(F). Then the efficient influence curve for
estimating F(t) is given by

U, t,) =17l (5) € L*(Pr).

For this general formula for the efficient influence curve we refer to Bickel er
al., 1993, section 6.4. Assume now complete independence. Let t = (t;, ,),
Ki, = I(tl 59) —Fi(t1), by, = It 00y — F3(t2). Define hy (univariate function
of S) by lTl(hl) = Ky, and h, (univariate function of T by [ l(hz) = Kt,.
Then by complete independence [notice that {Ti(hyhy) = (Ti (h)ITi(ho)]
we have

lTi(hlhz + hlfz + th_l) = iTi(hl)iTi(hg} + le"rl'(hl) +—F—ll'-rl~(h2)
= Ky Ky, T+ —F2Kft1 + Fl Kt

= Kt¢.
So under complete independence we have:
U(F,t,-) = i(hyhy + h1Fa + hoFy).

Again, by complete independence we have I(hyhs) ) = ll(hl)lg(hz) where

ll(hl’j = E(hI(S) ’ (X 5)} and lz(hz; = E(hz(T 2 (Y 6}) ll(hlj is the

efficient influence curve for estimating F7(t) for the univariate censoring

model where we only observe (X, §) and we have a same statement for

I2(hs). So ; (hi), i = 1.2, equals the influence curve of the ;(éplan-Meler
VL

Yi

estimator for estimating F; which is given by: IC, = —F; ,i=1,2.

So under complete independence we have

[(F.t,-) = IC,ICy + IC,Fy + IC,F,
e { / dM; / M, / dM; / dMg} (40)
5 . Y2

and this is exactly the influence curve of the Dabrowska and Prentice-Cai
estimator under complete independence. This proves that the Dabrowska and
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Prentice-Cai estimator are efficient under complete independence. Finally
notice that (40) provides us with a nice and simple formula for the variance
of the efficient influence curve:

Var(I(F,t,-)) = Var(IC;)Var(ICs) + FiVar(ICy) + FoVar(ICy).

For example, in the case that 71, T3, C;, C; are all four independent and
uniform (0, 1), the reader can easily verify that this variance equals:

é(z + (1= t1)% + (1= t2)* = 3(1 — £1)%(1 — t)?).

Computer simulations for the Prentice-Cai and Dabrowska estimator show
that this limiting variance is already closely approximated for n = 100 (see
Bakker, 1990, Prentice-Cai, 1992a, 1992b).

ACKNOWLEDGMENTS

This paper began with Peter Bickel’s discovery of the estimator based on
the Volterra representation in Seattle in August, 1986, and was originally
conceived as a project involving Bickel, Gill, and Wellner. All the present
authors owe thanks to Peter for his interest in this research over an extended
period, and for a number of valuable suggestions.

REFERENCES

P. K. ANDERSEN, @. BorGAN, R. D. GiLL and N. KeibiNG, Statistical Models Based on Counting
Processes, Springer-Verlag, New York, 1992.

D. M. BAKKER, Two nonparametric estimators of the survival function of bivariate right censored
observations, Report BS-R9035, Centre for mathematics and computer science, Amsterdam,
1990.

P. J. Bicker, Y. Ritov and J. A. WELLNER, Efficient estimation of linear functionals of a
probability measure P with known marginal distributions, Ann. Statist., Vol. 19, 1991,
pp. 1316-1346.

P.J. BickeL, C. A. J. Kraassen, Y. Ritov and J. A. WELLNER, Efficient and Adaptive Estimation
Jfor Semiparametric Models, John Hopkins University Press, 1993.

M. D. Burkg, Estimation of a bivariate survival function under random censorship, Biometrika,
Vol. 75, 1988, pp. 379-382.

D. M. Dasrowska, Kaplan Meier Estimate on the Plane, Ann. Srarist., Vol. 16, 1988,
pp. 1475-1489.

D. M. Dasrowska, Kaplan Meier Estimate on the Plane: Weak Convergence, LIL, and the
Bootstrap, J. Multivar. Anal., Vol. 29, 1989, pp. 308-325.

R. M. Dubiey, Weak convergence of probabilities on nonseparable metric spaces, and empirical
measures on Euclidean spaces, [llinois J. Marh.. Vol. 10, 1966, pp. 109-126.

R. M. DupLEey, Fréchet differentiability, p-variation and universal Donsker classes. Ann. Prob.
Vol. 20, 1991, pp. 1968-1983.

Annales de Ulnsiing Henri Poincaré - Probabilités et Statistiques




INEFFICIENT ESTIMATORS OF THE BIVARIATE SURVIVAL 597

R. M. DupLey, Empirical processes, p-variation for p < 2 and the quantile and | FdG

operator, unpublished manuscript 1992.

R. D. GiLi, Non- and Semi-parametric Maximum Likelihood Estimators and the von Mises
Method (Part 1), Scand. J. Statist., Vol. 16, 1989, pp. 97-128.

R.D. GiL and S. JOHANSEN, A survey of product integration with a view towards application
in survival analysis, Ann. Starist., Vol. 18, 1990, pp. 1501-1555.

R. D. GiL, Multivariate survival analysis, Theory Prob. Appl., Vol. 37, 1992, pp. 18-31 and
307-328 (in Russian; English translation to appear).

E. Ging and J. ZiNN, Bootstrapping general empirical measures, Ann. Probability, Vol. 18, 1990,
pp. 284-301.

J. HOFFMANN-JORGENSEN, Stochastic Processes on Polish Spaces, unpublished manuscript, 1984.

L. V. Kanrorovice and G. P. AKILov, Functional Analysis, translated by Howard L. Silcock,
New York, Permagon Press, 1982.

M. J. van der Laan, Dabrowska’s multivariate product limit estimator and the delta-method,
Master’s Thesis, Dept. of Math., Utrecht Univ., 1990,

M. J. van der Laan, Analysis of Pruitt’s estimator of the bivariate survival Sfunction, preprint
No. 648, Dept of Math., Utrecht Univ., 1991.

M. J. van der LaaN, Efficient Estimator of the Bivariate Survival Function for Right Censored
Data, Technical Report No. 337, Department of Statistics, University of California, Berkeley,
1992.

M. LokvVE, Probability Theory, van Nostrand, New York, 1955.

G. NeuHaus, On weak convergence of stochastic processes with multidimensional time
parameter, Ann. Math. Statist., Vol. 42, 1971, pp. 1285-1295.

D. PoLLaRD, Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.

R. L. Prentice and J. Car, Covariance and survivor function estimation using censored
multivariate failure time data, Biometrika, Vol. 79, 1992a, pp. 495-512.

R. L. PrentiCE and J. Cal, Marginal and conditional models for the analysis of multivariate
failure time data. Klein J. P. and Goel P. K., Eds., Survival Analysis State of the Art, Kluwer,
Dordrecht, 1992b.

R. C. Prurrt, On negative mass assigned by the bivariate Kaplan-Meier estimator, Ann. Stat.,
Vol. 19, 1991a, pp. 443-453.

R. C. Prurrt, Small sample comparisons of five bivariate survival curve estimators, Technical
Report No. 559, University of Minnesota, 1991a.

R. C. PRUITT, Strong consistency of self-consistent estimators: general theory and an application
to bivariate survival analysis, Technical Report No. 543, University of Minnesota, 19915.

J. A. ReeDs, On the definition of von Mises functionals, Ph. D. thesis, Dept. of Statistics,
Harvard University, Research Report S-44, 1976.

A. Sueeny and J. A. WELLNER, Uniformity in P of some limit theorems for empirical measures
and processes, Technical Report No. 134, Dept. of Statistics, Univ. of Washington, 1988.
A. SHeenY and J. A. WELLNER, Uniform Donsker Classes of Functions, Ann. Probability,

Vol. 20, 1992, pp. 1983-2030.

G. R. SHorack and J. A. WELLNER, Empirical Processes. Wiley, New York, 1986.

A. W. VaN der Vaarr and J. A. WELLNER, Prohorov and continuous mapping theorems
in the Hoffmann-Jgrgensen weak convergence theory, with application to convolution and
asymptotic minimax theorems, Tech. Report No. 157. Dept. of Statistics, University of
Washington, Seattle, 1989.

A. W. VaN der Vaarr and J. A. WELLNER, Weak Convergence and Empirical Processes,
Springer Verlag, New York, to appear 1995.

J. A. WELLNER, Covariance formulas via marginal martingales, Staristica Neerlandica, Vol. 48,
1994,

(Manuscript received February 22, 1993;
revised version received February 28, 1994.}

Vol. 31, 0" 3-1595.




