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Abstract 

For n particles diffusing throughout R (or Rd), let Q&I), A E a, t 20, be the random mea- 
sure that counts the number of particles in A at time t. It is shown that for some basic models 
(Brownian particles with or without branching and diffusion with a simple interaction) the pro- 

cesses {(w(#J) - &~(4))lfi: t E [Wfl, 4 E C,“(R)), n E N, converge in law uniformly in 
(t, 4). Previous results consider only convergence in law uniform in t but not in 4. The methods 
used are from empirical process theory. @ 1997 Elsevier Science B.V. 

AMS class(fications: primary: 60F05, 60F17; secondary: 60565, 60570 

Keywords: Brownian motion; Distribution-valued processes; Central limit theorem; Empirical 
processes; Hiilder functions; Particle systems 

1. Introduction 

Consider n particles starting at random i.i.d. locations Yl, . . . , Y, and performing 
random motions (diffusion processes) Xl(t), . . . , X,,(t) in Rd, with or without branching, 
with or without interactions. Under certain conditions, the random measures 
P&4) := n-l CL, Gxct+4), A E S?, which give the proportion of particles present in 
region A at time t, stabilize at a (deterministic) measure p! (e.g. at pt(A) = Ed,,,,(A) 
if the processes Xi(t) are i.i.d.). Then, the limit in some weak sense of the random mea- 
sures v,,~ := n -1’2 C;=@x,ct, - PLt) as n-t CO measures, if it exists, the fluctuation of 
P,, about equilibrium when the number of particles is practically infinite (Martin-LGff, 
1976). Ito (1983) studies such a system for Xi(t) = Yi +&(t) where Bi are independent 
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Brownian motions, independent of 5. Other authors consider more complicated pro- 
cesses, with the initial distribution (Yi, . . . , Y,) replaced by the points of a point process 
with intensity 1, (Martin-LBff, 1976), where the particles may double or disappear at 
random branching times (Holley and Stroock, 1978, where they attribute such a model 
to Spitzer; Gorostiza, 1983; Walsh, 1986), and where interactions among the particles 
may be present (Holley and Stroock, 1979; Tanaka and Hitsuda, 1981; Adler, 1990). 
Usually, the weak convergence of the random measures v,,~ is not strong enough to 
produce a limiting random measure, and the above-mentioned authors circumvent this 
problem by restricting themselves, when passing to the limit, to the action of v,,~ only 
on the space Y of rapidly decreasing functions (with rapidly decreasing derivatives of 
all orders). They prove that the processes v,,~ converge weakly to a sample continuous 
distribution-valued Gaussian process G, in the sense of weak convergence of probability 
measures on C([O, l],Y’) or D([O, 11, y’), where Y’ is the dual of Y. By a theorem 
of Mitoma (1983), v,,~ converges to Gt in this sense (in the case of C([O, l],Y’)) if: 

(i) (~~,~,(~l),...,v,,~~(~k))~d(G~,(~l),..., Gtk(&)) for all k <CO, ti E [0, 11, 4i E 94~; 
and (ii) for each jixed 4 E 9, the sequence of processes {v&4) : t E [0, l]}g, is tight 
in C[O, 11, that is 

(1.1) 

for all E > 0. 
Motivated in part by modem empirical process theory, we may ask whether these 

limits in fact take place not only uniformly in t E [0, 11, but also uniformly in 4 E @ 
for some reasonably large set of functions @. That is, whether the tightness condition 
(1.1) can be replaced by the stronger condition 

lim lim sup Pr 
6-0 n-cc ( 

sup Ivfl,,(~) - %,(+)I > s 
1 

= 0 (1.2) 
d((s,~),(t,~))<a,s,t~[O,ll,~,~E~ 

for all E >O, or equivalently, whether the convergence v,,* --+dGI takes place in 
10°([O, l] x @). The type of distances we have in mind for (1.2) are e.g. d((s, +), (t, $))= 

It - 4 ” II4 - 9% or distances involving also the derivatives, and @ could be, for in- 
stance, the set of Holder functions of order a with Holder constant bounded by A4 <cc. 
The interest of results of this kind is that: (1) they extend convergence of v,,~ to larger 
classes of functions than Y, and the limit process is correspondingly extended too; 
(2) weak convergence of v&4) is uniform in both t and $J simultaneously (as op- 
posed to being uniform with respect to t only) and therefore we have convegence 
EH(v,) + EH(G) for more functionals H; and finally (3) this convergence implies 
stronger continuity properties on the limit process: G,(4) is then sample continuous 
with respect to the distance d in (1.2). 

We show in this article that such strengthening is indeed possible in three sim- 
ple cases; namely: Ito’s (1983) case of independent Brownian particles (Section 2), 
Spitzer’s case (Walsh, 1986) of independent branching Brownian particles (Section 3), 
and the example of McKean’s (1967) case of particles undergoing interacting diffusions 
considered by Tanaka and Hitsuda (1981) (Section 4). Our intent here is not to be 
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exhaustive, but to show that this program is possible by carrying it out in examples 
of show-case value. For simplicity of exposition we consider the diffusions to take 
values in R, but only trivial changes are required for diffusions in Rd, d > 1. In the first 
two cases considered, the class @ is the set of Holder functions C#J : R + R, [/$[[ o3 GM, 

My) - 9(x)1 <NY -do! f or some M<oo and a> 4; whereas in the third case, we 
also assume the functions 4’ to be uniformly bounded and have uniformly bounded 
&Holder constant for some 6 > 0. In the first two cases the distance d can be taken to 

be It - 4 v II4 - 1(1ll~~ and in the third, It -s] v 114 - $llm v 114’ - $‘llm. 
The methods, not surprisingly, are those of empirical processes. In each case the pro- 

cesses &(t), or their more complicated counterparts, can be defined as coordinates in a 
large probability space, and the class of functions % = {j&, : j&(x) = &xl), t E [0, 11, 
4 E @} (or its more complicated counterpart) can be shown to be P-Donsker for the 
law P of Xi by application of basic empirical process results. Similar schemes of proof 
apply to the three situations considered, although the details are different. The result 
for independent Brownian particles in Section 2 follows in fact from the limit theorem 
in Section 3 (it is the special case corresponding to z = 0); however its separate proof, 
short and simple, is the model for the other two proofs, which are necessarily more 
complicated as they deal with more complex processes. 

The type of convergence we will prove for our processes is as follows. Let T be an 
index set (usually a set of functions), and let Z,(t), Z(t), t E T, be processes indexed 
by t such that almost all their sample paths are bounded functions of t E T, and such 
that the finite-dimensional distributions of Z(t) are those of a Radon measure on the 
space (IYT), II . IL). n en we say that Z, converges weakly to Z in F’(T), and 
write 

Z,-+Z in Zm(T) 

if 

E*H(Z,) -EH(Z) 

for all H : Z”(T) + R bounded and continuous, where E* denotes outer expectation. 
This definition is due, at its final stage, to Hoffmann-Jorgensen, and we refer to Van der 
Vaart and Wellner (1996) for Cu-ther description and properties. Perhaps we should only 
mention that Z,, -+Z in lm(T) if and only if: (i) the finite dimensional distributions 
of Z, converge to those of Z, and (ii) there is a distance d on T for which (T,d) is 
totally bounded and such that 

lim lim sup Pr 
( 

sup [Z,(s) - Z,(t)1 > E = 0 
6-4 n-.&m d(s,t)<6 1 

for all E >O; see e.g. Van der Vaart and Wellner (1996, Theorem 1.5.7, p. 37). If this 
is the case, Z is sample continuous on T with respect to d. If Z is centered Gaussian, 
d2(s, t) = E(Z(s) - Z(t))2 is a choice that always works, and so does any distance d’ 
dominating d for which (T,d’) is totally bounded. 
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2. The central limit theorem for Ito’s model 

Let B,,Bz,... be independent standard Brownian motions, and let Yi, Y,, . . . be 
independent and identically distributed with distribution p on R, and independent of 
B,,Bz ,.... Then the processes Xi E {Xi(t) : 0 <t <cm}, i = 1,2,. . . , defined by 

Xi(t)=K+Bi(t), tB0, i=1,2 ,..., (2.1) 

are independent and identically distributed Brownian motion processes with initial dis- 
tribution p. Let @a E C;(R) be the collection of Holder functions of index a, 0 < CI < 1: 

@a={4:R+RI P(x)lGL IKY) - ~(~)I~I.Y-~~, x,y~R}. (2.2) 

For 4 E @,, and t E [0, 11, consider the processes 

(2.3) 

h,&> = 4(x(t)) for x E CW, 11, t E W, 11, 4 E %,, 

and G, is the empirical process of Xi,. . . ,Xn: 

(2.4) 

(2.5) 
i=l 

where P, a Bore1 probability measure 
process Xi. Let 

on C[O, 11, is the law of the sample continuous 

(2.6) 

and, for f, g E 6 let &f, g) = ~a~~(f(& ) - g(4 )I. 
We want to use Ossiander’s bracketing theorem to show that the class of func- 

tions & is P-Donsker. To this end, we will first use an observation of Van der 
Vaart (1994) (see also Van der Vaart and Wellner (1996), corollary 2.7.4, page 
158) to construct for every E > 0 a “small” set of brackets for @E of LZ(Q*)-size less 
than E for all the probability measures Qt = p * N(0, t) = 9(X1(t)), t E [0, 11. We re- 
call the definition of a bracket [b, II/] of a collection of functions YE c Lz(Q) for a 
law Q : [$, I)]= {f E Yu : C#I < f < t,b pointwise}, and the &(Q) size of the bracket is 
dm; see e.g. Dudley (1984) or Van der Vaart and Wellner (1996), page 83. 
This requires that the function f in !PE be in &(Q); in our case ‘y, = Fa consists of 
bounded functions, in particular showing that the finite dimensional distributions of G, 
converge in law to the Gaussian process Gp(j&) with the covariance of f&(X,). 

InVanderVaart’s(1994)notation,letZi=[j,j+l),j~{ . . . . -2,-1,0,1,2 ,... }-H, 
and let aj E (0, oo]. Let Cy(Zj) denote the collection of Holder functions of index CI > 0 
on Ij. Let fji,. . ,fjp, E Cf(Zj) be an saj-net of C;*(Zj) for the uniform norm, j E B. 
Van der Vaart (1994), example after Theorem 2.1 (or proof of Corollary 2.7.4 in Van 
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der Vaart and Wellner, 1996, p. 158), observes that, for each E > 0, the cardinal&y 
of the set of brackets 

2 (fj,i, -EU~)~I,, 2 (fi,i, +aaj)llj , iiE{l,...,pj} for each jEh, 
j=-m j=-00 1 (2 

satisfies 

51 

J, 

7) 

logJ,<K 1 0 
Y 

E 
c’ (2.8) 

j 
a! 

for any V 2 l/cr and a constant K depending on V, and that the L2(Qt) size of these 
brackets is (obviously) 

26 (~~~QtCZjI~> (2.9) 

assuming that the series in (2.8) and (2.9) are both finite. Fix 0~6~2 - l/a; we take 
V = 2 - 6 and aj = ]j]1/(2-26). Then 

c&m 
i J 

and 

C$QtC4) = C Ijl “(‘-‘)P( Y + B(t) E Zj) 
j j 

< EIY + B(t)p@ 

< 26/(1-b)(EIB(1)11/(1-6) +EIyp-@)<, 

if Ely11/(1-6) <co. We label the brackets in (2.7) as [C&L, &,,u], m E { 1,. . . , JE}. 
Suppose now we partition [0, l] into K, intervals [&,&+I] to be chosen later. For 

4 E L&L, &uI and t E [k &+I 1 we have 

4@(t) + u = w(tk) + Y) + W(t) + Y) - d@(tk) + y> 

d d’mU(~(tk) + y) + Is(t) - B(tk)la 

< dhU(&tk) + y) + Ak = ‘%k, (2.10) 

where 

dk = SUP IB(t) - B(tk)la. 
E[t,4+11 

(2.11) 

(2.12) 

Similarly, a lower bound is given by 

4@(t) + y) 2 &L(B(tk) + y) - Ak =Lmk. 
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Note that by Levy’s inequality 

Ed; = E sup ]B(t) - B(t/J2” 
fE[k&+11 

=E sup lB(s)12’ Q2EIB(tk+1 - &)I*’ 
SE[O.OC+l --I!4 

= 2Ma(&+i - tk)G( = E2 

if the partition [t&,&+1] of [0, l] is chosen with tk = k(~~/2A4~)“~. Thus, we have at 
most 

K=K,<(3AQiu ; 
2/u 

0 

such intervals for every 0 <ad 1. Furthermore, we have 

Umk - &,k = 2s 1 ajl@(tk) + y) + 241,) 

so that 

{E(Umk -L1k)~)1'~ < E(2~Cajl1,(B(tk)+ Y))2 

i 

w 

i I + 2{EA;}“’ 

= 4E2 c Ijl 1’(1-%% { Yl + Bl(tk) E Ii} + 2{EA;}“* 
i 

< 28{26/(1-s)(EIB(1)11’(1-s) + EIY11’(1-S))}1’2 + 2~ 

= KE 

for a fixed constant K < CO. Hence, the L,(P) size of the brackets [Lmk, Umk] does not 
exceed KE, whereas their number is at most 

J,K, < exp(K( l/a)‘)K’ i 
0 

2/a 
, 

that is 
V 

logN,,(G%,L,(P))<K f . 
0 

(2.13) 

Finite-dimensional convergence follows from the fact that our bracketing argument 
implies that the collection PE has an envelope F which is square integrable, or, alter- 
natively from Ito (1983, Theorem 6.1, part (i), p. 27). Since the bound (2.13) together 
with finite-dimensional convergence imply the hypotheses of Ossiander’s (1987) brack- 
eting CLT for the empirical processes G, (also see Van der Vaart and Wellner 1996, 
Section 2.5.2, pp. 129-133), we have proved the following theorem. 

Theorem 1. Suppose that El Y(’ <co for some r > 1, and a > i. Then Z, -M Z in 
l”(6) where Z(t, 6) = GP(&~) is a P-Brownian bridge process, uniformly contin- 
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uous with respect to pp, indexed by the collection FU: i.e. a mean zero Gaussian 
process with covariance function 

Covt~(s, 4),Z(t, $1) = aw(s) + w(~(t) + Y)) 

-~(W(s) + Y))E(W(t) + Y)). 

Remark. (1) [0, l] and C;(R) can be replaced, in the definition of FN, by [O,M] and 
C;(R) for any A4 and L finite. 

(2) It is easy to see that p~(f,,~,f,,~)Q2lt-sl+211~-~11~. Hence, the limit process 
Z(t, 4), defined for all t E R+ U (0) and 4 E P(R), has a version whose sample paths 
are d-uniformly continuous on every set [O,M] x C:(R), A4,L < 00, for the distance 

d((s,$),(t,II/))= It --I v II4 - IclllcQ. 
(3) The integrability condition in the previous theorem is not far from best possible: 

as shown in Arcones (1994) - see also GinC and Zinn (1986) for c( = 1 - the condition 
ci P( Y E [i,j + 1))‘j2 <cc is necessary and sufficient for C;X(R) to be _$F( Y)-Donsker, 
1/2<a<l; this condition is implied by E]Y]?oc if r>l, and implies E]Yl<cc if 
moreover the sequence P( ]YI E [j,j + 1)) is eventually non-increasing. 

3. A limit theorem for branching Brownian motion particles 

Suppose a particle starts at a random position at time t = 0, performs a Brownian 
motion path during an exponentially distributed time, and then either dies or splits into 
two (with probability $ for each possibility); if it splits into two, these two particles in 
turn perform Brownian paths again during exponentially distributed times after which 
they either split into two or die, and so on. We assume no interaction, i.e. the initial 
positions, Brownian motion paths, lifetimes, are all independent. We are interested 
in the asymptotic distribution (as n + co) of the total number of descendents of n 
independent such particles that are alive and in A c R at time t, $(A). Typically the 
literature (Walsh, 1986, Ch. 8 and references therein) considers the limit in distribution 
of the action of the random measures # on smooth rapidly decreasing functions, 

(3.1) 

(where ~(4) = s 4 dy) as processes in t E [0, l] for a fixed function 4. The model we 
consider differs from Walsh’s in that we start with n particles at i.i.d. positions Yi::, 
i=l , . . . , n, instead of with infinitely many according to a Poisson point process, and 
that the exponential times for our processes do not vary with n. We show that, for 
this model, the processes (3.1) converge in law uniformly in t and 4 (as opposed to 
just uniformly in t), for 4 in the unit ball of Cl(R) for some y > i (as opposed to 
C”, rapidly decreasing 4) if the common initial distribution of the particles satisfies 
the moment condition E( Y I7 < 00 for some r > 1. 

We essentially follow Walsh for the description of the Branching Brownian motion 
process. Let d be the set of multiindices 

&&={a=(ai,..*, ap):pE~,alE~,arE{1,2} for r>2}. 
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We define lal=p if a=(~r,...,a~), and CI<CI’ if lal<lcr’l and ~(1 =cI~,...,c+~ =c$,,. 
For c1 E d, define the “predecessors” of a by cc-1 =(dr,. . . ,ctp_l), a-2=(ar,. . . ,up_2), 
. . . , c( - (1~1 - 1) = al (e.g. if IX= (4,1,2), then a - 1 = (4, l), and c1- 2 = 4). (Walsh 
(1986) seems to contain a slight error in the description of the set d, allowing Nj E N 
for 2 <j d p). We also set 

and note that Card(&k,,) = 2J’-l, p E N. Define now the following independent col- 
lections of random variables and processes: 

{Yk:kEN}, i.i.d. real random variables with law p, 

{B,a:tE[O,l],aE&}, i.i.d. standard one-dimensional Brownian motions 

starting at 0, 

{SE : u E d}, i.i.d. exponential r random variables, and 

{IV’ : c1 E d}, i.i.d. with P(N” = 0) =P(N” = 2) = i. 

These variables, all independent, are the building blocks of our branching Brownian 
motions. The birth time of the a-th particle is defined as P(a) = 0 if Ial = 1, and, for 

lal> 1, 

/?(a)= 
cl~-‘s*-j ifW-j=2 

J l 
forj=l . 1~1-1, 

2. , 

00 otherwise, 

and its death time by 

i(a) = P(a) + P. 

We also set h”(t)= lcp(a),c(a))(t). Then, letting 8 be the cemetery (or, more accurately, 
limbo) we set 

where 

14-l 

(3.2) 

(3.3) 
i=l 

With the convention that for all functions 4 and sets A c R, 4(d) = 0 = l,(a), the 
random measure $ is defined as 

nEN, tE[O,l]. 
k=l UE_S$ 
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That is, 

In particular, #(A) is the number of particles (starting from IZ particles at the positions 

Yl,..., Y,, at time t = 0) that are alive and in A at time f. 
Next, we translate this setup into the language of empirical process theory. We define 

(G&Q) as 

a:= fin,:= fi(RXC[0,1]4 xR4 x {OJy% 
k=l k=l 

with o-algebra C equal to the product of the corresponding Bore1 a-algebras and with 
Q the product measure induced by the laws of yk, B’, S”, N”, k E IV, a E d. We let T 
be the set of functions f : [0, l] + R U {a} f or which there exist 0 Q j3 < 5 < 1 such that 
f(x) = 8 if 0 <x < fl or [<x < 1, and f(x) is a continuous real function on [/I, 5). We 
set d’={1,2}~{1,2}~~~~~~{1,2}J’~ ..= and S=T x Td’, and equip S with the 
a-algebra that makes the maps (one sufices) 

&:&-+S=TX Td’, 

x&k, by,.?, n”) = (X; : a E k u {(k, a’) : Q’ E cd}, t E [0, 11) 

measurable, where xp is defined as in (3.2) and (3.3) with Yk, By,.. . replaced by 

yk, by,... . We also equip S with the law of &, P = Q o X,’ . Then, obviously, the 
S-valued random variables & may be considered as the coordinate functions on a 
product probability space, each with law P. Next we define the following class of 
functions 9 on S: 

~={f*,~:~EWl, eq 

for some y > $, where 

ft&)= C4($)9 XCS. 
OL 

For instance, 

fi,f$(%) = c 4GCYY 
a>j 

and therefore, 

is the empirical process for the i.i.d. sequence {Xi} indexed by the class of functions 
9. For ease of notation we will write 

K:(4)=ft,$(xj), j E N, t E P, 11, 4 E C,yW, 

and, if 2(X> = g(xj), ~(4) = ft,dX). 
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Theorem 2. Suppose that El YI” < CQ for some A> 1, and y > i. Then Z, -+ Z in 
I”(p) where Z(t, 4) = Wff$) is a P-Brownian bridge process, uniformly continu- 
ous with respect to pp, indexed by the collection F, i.e. a mean zero Gaussian process 
with covariance function 

Cov@(s, 4), z(t, ti)) =E(lcs(4)Q$)) - E(+(B(s) + Y))E($(B(t) + Y)) 

for 4, $ E C:(R). 

An upper bound for the &-distance between Z(t, 4) and Z(s, $) is given at the end 
of this section. Computing its exact value requires cumbersome computations which 
we omit. 

Proof. As in the simpler case considered in the previous section, we will deduce the 
central limit theorem for the processes q:(4) from the bracketing CLT for empir- 
ical processes. To verify the hypotheses of the bracketing CLT for 9 and P, we 
proceed by analogy with Ito’s case. First we must show that E(q($))’ <oo for all 
t E [0, 11, 4 E C:(R). Note that, since X?(t) # a only if h”(t) # 0, 

~E42WN + c W(~aWM~a’W) 
Et1 ci#or’ 2 1 

c EhOL(t) + c Eha(t)hU’(t) 
U>l a#d B 1 

c Eh@(t) + c {Eh”(t)Eh”‘(t))1’2 

and we show below (see also Walsh, 1986), that c,> 1 Eh’(t) = 1 and cab 1 {Eha(t)}1’2 
<w. With the same notation as in the last section, we have the following analogues 
of (1.10) and (1.12): 

(for the first inequality, note that xt, is monotone in 4) and 

G(~J)~Q(&L) - Ai. 

Hence, as in Section 2, in order to prove that 

logN[](E,~",L,(P))~~ f 

V 

0 
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with V = 2 - 6, 0 < 6 < 2 - l/y, it s&ices to show 

Ed; <Kit/+, - tlIY 

and 

(3.4) 

E{Q(~,u) - ~,(4rn~))~ Se2 (3.5) 

for fixed constants K. To ease notation, set tl := to, tl+l := to +h. We first observe that, 
since 4(a) = 0, 

SUP I%(4) - %(4)l 
&C;(R) 

Hence, 

Note that 

E [ (Isu%+*dj)2] 

IXP’ - XJ’lXf - ~~‘IYh*(t)h”(to)h~‘(t)h”‘(to) 

E I + II. 

Now we note that 

IX,” - X$vlyt)h”(to) = IL hYs)dB:r ha(t 

= IB”(i(a) A t) - Ba(fi(a) v to)12yh”(t)h”(to) 

= IB”(t) - Ba(to)12yh”(t)h”(to) 
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and therefore, by independence of Ba and h’, and by the properties of Brownian motion, 

I<xE sup /B’(t) - B”(to)12yEh”(to) 
or>k fO<tdtO+h 

= c,hY c EhYto) 
a>k 

for some constant c7 <CO. Now 

cEh”(to)= 2 c Eha(to) 
u>k p=l ixE.dk,, 

and, if N1 is a Poisson process with intensity z, then for a E &T&p, 

EhQ(to) = &P(S’-(P-I) +...+~~-‘<to<~~--(P-‘)+...+~~-‘+~~) 

(zto)P-’ 
=&P(Nf,,=p- 1)=&e-7”---- 

(p - l)!’ (3.6) 

which, since Card (dk,p) = zpA1, gives 

cEha(to)= ~eeTto~ = 1. 

a>k p=l 

We thus conclude that I <c,h’. To bound II, note that independence of {B’} and {h”} 
yields 

II f c E sup IBy - B;lYE sup IB;’ - B$‘Eh”(to)h”(to) 
u#a’>k tO<t<tO+h fO<t<tO+h 

< CyhY c Eha(to)h”(to) 
a#~’ B k 

< CyhY c dEha(to)EhOL’(to) by Cauchy-Schwarz 

But for a E L&p, Eh’(to) is given by (3.6). Hence 

CJi%(Q = 2 C { &ee7to~}111 
u2k p=l IEsdk.P 

= Fe-’ 
( lo)/2 wm1p-’ 

p=l &Fm 
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This yields ZZ <chY, and hence we have shown that 

(3.7) 

for some c<oc. 
Next we bound the Cj component of A,: 

= E sup 
tOCt<tO+h 

c 1[0,8(~x))(to)l[g(a),~(~))(t) 
a>k 

+ c E(l[,<B(a)Qto+hll[to<B(a’)~Io+h]) 

d ~[Pr(to<j?(ct)<t0 + h)]1’2 
a$k 

by Cauchy-Schwarz and rearranging. Although it is possible to simply bound this last 
sum, it will probably be easier for the reader to follow the arguments if we proceed 
by first bounding the sum of the diagonal terms and then the sum of the off-diagonal 
terms. Now 

ubk p=l aE4,p 

00 

= C( Pr to<& +... + S,-, <to + h) 
p=2 

where Si are i.i.d. exponential(r). Setting Y = p - 1, and letting N1 be the Poisson 
process with intensity r, we can write these probabilities as follows: 

m r 

= 

+ 

PI-(&,+/, - Nto =s, r - s<Nt,, <r) 
r=l s=l 

+ 2 Pr(N,,+h - Nto = s, Nto <r - s) 
s=r+ 1 
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+ C C Pr(Nh = s) 
s=l r=l 

< F Pr(Nh = s) 2 Pr(r - SdN,) + &Pr(Nh =s) 
s=l ?-=S s=l 

= Pr(Nh 3 1 )EN, + ENh = (1 - eCTh)toz + zh 

d (z2to + z)h. 

Along these same lines, 

CPr(to <P(ol> d to + h)]1/2 
a2k 

= 2 C W(t0<P(a)6to +h)]‘12 
p=2 UEd~,, 

=F 

P--l 
2(P-I)/2 xPr(N,+h-N,,=s,p- 1 -s<N,<p- 1) 

p=2 s=l 

cc 112 

+CPr(N~~+h-N,=s,N,<p-1-s) 
s=p 

P-l 

2(p-‘)‘2xPr(Nh=~)112Pr(p- 1 -s<N,<p- l)“* 
p=2 s=l 

+ fy2(P-I)/2 2 Pr(Nh=s)‘/’ Pr(N,, < p-l --s)l12 
p=2 s=p 

s=l p=2 

~~~p-l,2’R-1’“{e-‘D~}1’2pr(N~~>p_s_ 1)1/2 

+ 9 5 1,,,,,2(p-1)~2 
s=l p=2 
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for some constant C depending on z. Hence, for some constant CT 

E[ (,,:z+$,‘] <CA* 
(3.8) 

Finally, the 0: component of Al can be similarly bounded as follows: 

E [ (,,2~+*~~~] =Es$:!O+h ( Zha(to)(l - h’(O) 

= E sup c ha(to)( 1 - h’(t)) 
to<t<to+h,>k 

+E sup c h”(to)( 1 - h”(t))h”‘(to)( 1 - h”‘(t)). 
toQt<to+hmp,,>k 

Since to <t <to + h, we have 

hYto)(l - ha(O) = l[g(or),i(cc))(to)l[y(,),,)(t) 

G l[g(cl),i(a))(to)l[y(~o,,)(to + h), 

and hence the diagonal terms above are bounded by 

E SUP xh”(to)(l -h”(t)) = ~Pr(j?(a)<to<[(a)<to + h) 
ta<tbto+h,>k a,k 

= gPr(%=p- 1, &,+h>p) 
p=2 

< ~Pr(~t~+k-~t~~l)Pr(~~~=p- 1) 

p=2 

= 1 -eCh<zh. 

Similarly, 

E sup 
to<t<to+h 

c h”(to)(l - ha(t))ha’(tO)(l - h”(t)) 
~#a > k 

< c E1[B(a)~to<i(a)~to+h]l[B(cll)Qto<i(~l)bto+h] 
a#a’>k 

G C [Pr@( ) a Gto<i(a)<to + h)Pr(j(a’)<to<[(a’)<to + h)]1/2 

~[Pr(/3(a)<to<5(a)<h + h)11’2 
orak 

where 

= c c [Pr(fl(a)<tocQa)<to + h)1”2 
p=l aE.5& 
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cc 

c ( 
‘12 

= 2P-1 

p=l 
&W%=~- LN,,+ha~) 

> 

=F 2(p-1)‘2 Pr(N,+h - Nt, > l)l/‘Pr(N, = p - 1)“’ 
p=l 

42 ( dmp- l 

+e- &qi 

<c&L 

for some C,<co. The bounds (3.7)-(3.9), in combination with (3.6), prove the 
inequality (3.4). 

Finally, we prove (3.5). We replace tl by tl and k by 1. First note that from 
the definition of XF the independence of the variables N, S, Y, B, and our previous 
calculations 

J%,j+l)(A? = 
1 

2161_1 El[_/,j+l)(B, f Y)Pr(Sl + ’ . . + Slorl-l <l<Sl + . . . + Slal) 

=e 
_-Tf (zt/2)la’-1 

(IA - 
vPr(Br+YElj). 

Then 
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= 4s2 ( 
2 

2e-W O” (2rt)(P-1U2 
c @ ((P - l)W2 ) 2 a; pr(B,+y E lj) 

j=-00 

<C,4&2 2 ajPr(Bt + Y Elj) 

j=-m 

which, under the same assumption on Y as in Section 1, and for aj = lj1’/(2-26), is 
dominated by a constant times .s2, proving (3.5). 

Finite-dimensional convergence follows from the fact that E(Q(~))~ <co for all 
t E [O, 11, 4 E C:(R). 0 

The limiting Gaussian process {Z(t, 4) : t E [0, 1],4 E C:(R)} is sample continuous 
with respect to its covariance structure 

&(t, 6) (A II/)) =W(t, 4) - WV ik))2 = var(&#)) - 5W). 

In order to determine the meaning of “continuity of Z with respect to pp”, and of 
the “tightness” condition on (the centered version of) the process q:(4) associated to 
the convergence in law given in Theorem 2 (see the introduction), we should have 
a sensible upper estimate on pp. This will allow us to compare with the type of 
convergence and with the limit continuity properties implied by weak convergence in 
D([O, 1],9”). For 0 <s < t < 1 and 4, tj E C:(R), we have 

PP(ff,~,fs,~)~PP(ft~,fs,~) + PPu%~~_f%JI). 

The first term is bounded by Clt - SI Y12 by A, C, and D in the previous proof. For the 
second term, we proceed as in the proof of (3.5): 

The conclusion is 

~P((t~4)~(~~1C/))~~{lt -4y’2 + II4 - 4%~ 
with a considerable error made in the replacement of s~p,,l,,~l{E(~ - $)2(Bs + Y)}‘j2 

by IM-Nlm. H ence, Z(t, 4) is sample continuous with respect to the distance 

d((t,~),(%+))= It --I” II4 -won 
and therefore, [0, l] x C:(R) being compact for d, there is a version of Z all of whose 
sample paths are uniformly continuous for the distance d on [0, l] x C:(R) (this can be 
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extended to [0, T] x C&(R) for all finite T and M). The condition that a version of Z 
be in C([O, 11, 9’) is much weaker. Likewise, the asymptotic equicontinuity condition 
for the process $‘, even with pp replaced by d, is much stronger than the tightness 
given by Mitoma’s (1983) theorem. 

4. A limit theorem for interacting diffwion processes 

Our goal in this section is to provide a strengthening of a central limit theorem 
of Tanaka and Hitsuda (198 1) similar to the way Theorems 1 and 2 in the previous 
sections strengthen the theorems of Ito (1983) and Walsh (1986). The main difference 
in this section is that the particles interact. 

Here is a description of the particle system considered by Tanaka and Hitsuda 
( 198 1). Consider the diffusion process {X(“)(t) : t B 0) = {(X,‘“‘(t), . . . ,X,‘“‘(t)) : t 2 0) 
in R” with generator 

and initial positions X(“)(O) = (Yi,. . . , Y,) where Yi, Y,, . . . are i.i.d. with distribution 
p on R. As in Tanaka and Hitsuda (1981), we will focus on the case in which the 
interaction function b is given by b(x, y) =-1(x - y) with A>O. Then X(“)(t) can be 
obtained as the solution of the stochastic integral equations 

X’“‘(t) = Yk + &(t) - k (4.1) 

for ta0, k~{l,..., n}, where Yi,Y, ,... are i.i.d. ~1 and Bi,& ,... are i.i.d. standard 
Brownian motions starting at 0 independent of the Y’s. Intuitively, as n + 00, the 
averages n-l C:= X!“‘(s) should Ji I converge to the mean v of the initial distribution, 
v= Jxp(d_x), and the system of equations (4.1) should converge to the (non-interacting) 
system of equations 

&(t)=Yk+&(t)-2 
J 

‘(x,(+v)ds, t>O, kE{l,...,n} (4.2) 
0 

for the same initial positions and Brownian motions. As in Tanaka and Hitsuda (1981), 
we will assume, without loss of generality, that v = 0. Then Eqs. (4.2) are those govem- 
ing a system of independent Omstein-Uhlenbeck processes &(t) with initial positions 
&(O) = Yk. It is well-known that Eqs. (4.2) (with v = 0) have the solutions 

&(t) = emitYk + 
s 

t e-Y’-S)d&(s), t>O; (4.3) 
0 

see Tanaka and Hitsuda (1981, (2.8) p. 418) or Breiman (1968, Section 16.1, pp. 
347-350), and especially (16.6) on p. 349 with Breiman’s (y, tl, Vi(O)) taken to be our 
(l,& Yk). Note that&(t) = e-“Yk+Vk(t) where Vk(t) = $ e-“(‘-S)dBk(s) -N(O, a;(t)) 
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and o:(t) =(l - em2&))/2A. Hence, the marginal distribution of &(t) is 9(X,)= 
9(eeA’Y) * N(O,ai(t)). Note that as 3, -+O it follows that 

in agreement with Section 2. On the other hand, A?(&) + N(O,1/(2A)) as t + 00. 
Now consider the processes 

for t E [0, 11, 4 E C:(R), y> 1. Motivated by (4.1) and (4.2), our strategy will be to 
decompose h, as 

E Z(‘)(t r#J) + P2)(t 4) n 9 n 3 . 

Note that Zp’ is a process with i.i.d. summands 

_($)(%k) - pJ;!$,’ = &Xk(t)) - E&Xk(t)) 

where xk E {&(t) : 0 <t < 1) are the i.i.d. Omstein-Uhlenbeck processes given by 
(4.3), and P denotes the law of X1 on C[O, 11. Thus 

TP(t 4) = S,(f,$)) n 9 

where P,, = F’ Ci=l 6x,, G, = fi( P, - P) and 

Fc2) = {J,#(x) = +(x(t)) : q5 E C:(R),t E [0, 11). 

On the other hand, the process Z$‘) . mvolves the interactions between the particles in 
X(“)(t). It will turn out that the interaction term Z!$’ . is asymptotically equivalent to 
Hc3) where n 

P’(t $J) = S,(j$‘), n 3 f,‘y E 9-C3) 

and 

We therefore set 

A&)= 4(x(t)) + n(s~~(~~(t)))~ix(s)dS 
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and consider the collection of functions 

where Cl(R), 1 <y<2, is defined as follows: 4 E Cl(R) if I@(x)-@(y)] dL]x-yly-’ 

for all X,Y ER, 11411m <L, 114’11 m <L. Thus our goal is to prove the following theorem: 

Theorem 3. Suppose that y> 1, EY, = 0, and EYf coo. Then Z, -+ Z in E”(F) 
where Z~{Z(t,~):tE[O,l],~~C~(R)}={~p(J;,~):ft,~E9} is a mean 0 Gaus- 
sian process, uniformly continuous with respect to pp, indexed by the collection 
[0, l] x C:(R), and with couariance function 

CM%, 4), m(t, $)) = Cov (&6(s)) + W$‘(X~(s))) ~k(u)du, 

WI(t)) + Wi’(x,(t)))~ku)du), 

XI as dejned by (4.3) for s, t E [0, 11, and 4, $ E C:(R). 

Proof. Our proof will rely heavily on Lemma 2.1 of Tanaka and Hitsuda (1981, 
p. 417), which shows that 

X’“‘(t) =X#(t) + n-1/2Y(n) t) k k ( ’ 

where 

Y,‘“‘(t) = 1 J ‘Z(“)(s) ds + 
0 

& lexp { -nTrf)} Z(“)(s)ds 

- 5 leap { -“An(y-f)}&(S)ds 

and 

ZW) = + p,,,. 

Define a new sequence of processes Zi3’ by 

where 2&(t)-n-l xy=,Xj(t). We first show that 

R,(t, 4) = H(‘)(t 4) - Ec3’(t 4) n 9 n 3 

satisfies 

sup 
EP,Il,&C:(R) 

I&(t,+)l=o;(l). (4.4) 
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To prove (4.4), we further decompose R,. Let F&(f)- ASi J;;X&>ds. Then we can 
rewrite R, as 

n 

R,(c 4) = + ~{Wi(t) + n -“*YR(n)(t)) - gq&(t) + n-“2~(t))} 

“*K(t)) - &Kk(t)) - ~‘(&(~))~-1’2W,@)~ 

+ -$ ${#(&(~))?+*w,(r) - [E~‘(Xl(t))ln-“2W,(t)} 
k-l 

Now it follows from (4.4), since C$ E C!(R) implies that I&y) - $(x)1 < ly - xl, that 
we have 

where, by Doob’s inequality, 

E sup I&(s)1 ,< E(YII +E sup 
OdSdl 
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Hence, it follows that 

(4.5) 

To handle C,, we first use 4(y) - 4(x) = #(.Z)(y - x) for some point E with 12 - 
xl d ]y -xl to rewrite C, as 

Cn(f,4) = 5 @#dk@,, - +‘(Xk(t)))n-1’2@z(t) 
k-l 

= @i(t); ‘&&(x,(l)) - d&%(t))). 
k=l 

Hence, using I@(Z) - 4’(x)] < ]I - xIY_’ < ]y - xl?--l, it follows that 

The process Wn(t) has the same law as the process 

which is sample bounded on [0, 11, and therefore its 
supremum over [0, 11. Hence 

sup 
tEfO> 11,4G;W) 

ICn(t,+)I =0,*(l). 

absolute value has an a.s. finite 

(4.6) 

Finally, to show that D, is op( 1) uniformly in t and 4 E C:(R), note that 

DA& 6) = K(t) 
{ 

; 2 #(Xk(f)) - E#(Xl(f)) 

k=l 1 

and hence 

sup l&(&6)1< SUP Iw,(~)llI~,--Pll~=~~(l) (4.7) 
tE[O, 11, &C;(R) o<t<1 

since supo4tQ1 IK(Ol=O,U) as argued immediately above, and, as we will argue 
below, the class of functions ‘3 defined by 

s={qY(x(t)):q%qR), O<t<l} 

is a P-GlivenkoCantelli class of functions. Once we have shown that ‘3 is Glivenko 
Cantelli, then it follows from (4.4) that 

&I(& 4) = z:3)(r, 4) + z$*)(& 4) + &I(& 4) 

= W&) + o,*(l) 
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where 

j&(x) = &x(t)) + ~{%‘(x(0)] l’x(s) ds = &$‘(x) + fr,(;)(n). (4.8) 

Thus, it remains to show that B is GlivenkcKantelli, and that the class of functions 

~={(ft,~:~EC:(R),O~t~l}, 

with f;,g as defined by (4.8), is P-Donsker. 
To show that 9 is P-Donsker it suffices to separately show that F(2) and F(3) are 

P-Donsker (see Van der Vaart and Wellner, 1996, Example 2.10.7, p. 192). For the 
first, let X =d X1 and write X = {X(t) = e@Y + 1: e-‘(t-s) U(s) : t E [0, 11) where 
Y N p and B is a standard Brownian motion independent of Y. As in Sections 2 and 
3, let the brackets for C:(R) be denoted by [&J, &,u], m E { 1,. . . J,}. Then, with 
O<tt < .*. < ~K(Q < 1, we have, for do E [&,L, &, ~1 and tk d t < tk+l, 

&x(t)) = &x(tk)) +(6(x(t)) - d@(a))) 

d hn,d~(fk>) + Ak 

where 

dk3 SUP SUP i&‘(x(t)) - 4(x(tk))i, 
fE[Wk+~l #EC:(R) 

and similarly 

$(x(t)) 2 bn,L(X(tk)) - Ak. 

Much as in Sections 2 and 3, in order to show that 

logN[](&,~(2),L2(P))~K ; 
V 

0 (4.9) 

with V=2 - 6, 0<6<3, it suffices to show 

Ed; <K]tk+l - tk] (4.10) 

and 

~{htd~(~k)) - ‘hL~~(~k))}2 <Kc2 (4.11) 

for fixed COnStaMS K. Again to ease notation, set tk := to, tk+l := ts+h. To prove (4.10) 
we will bound A h,h = wtoGtbro+h suP&C;(R) Id(X,) - WGo)I. NOW, since 4 EC:(R), 

A rcJl G sup lx, -&I h34t<t,+h 

= sup (e-lt _ e-"'O)y + ‘e-“(‘-“)&qs)_ 
to<t<to+h J 

G sup (e-If - e-“‘O)(Y + ir e”dB(s))i 

J 

O 
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Since {sd eb U(s) : t E [0, 11) and {Sri eb d&s) : I E [to, to + h]} are martingales, it fol- 
lows by Doob’s inequality that 

< 4E (bhihehdB(r))) 

J to+h = 4 
0 

c2h ds = $e2%to+h) _ 1) 

and 

< 4E ([+heudB(s))) 

J to+h 
=4 

to 
e2h ds = f {,Wo+W _ e”&}. 

Hence, we find that 

E(dto,h)’ < 2A2e- 2ntoh2E{ 1 Y 1 + $}2 + 2e-2’toE{S2}2 

< 4A2e_ZAtohZ{EY2 + I!(eWta+h) _ 1)) 

+ 2e-2&I 2 n {eWto+h) _ e2,Qo} 

d Knh, 

proving that (4.10) holds. 
To show that (4.11) holds, we compute, using {BW’}“’ < {EWS}“s for 0 <r <s < cc 

in the second inequality, 
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= 4E2 2 uj2P(X(S) E Ij) 
j=-00 

$ GENE IX(tk)l”(1-6) 

< 4c2{E IX(tk)[2}1’2(1-s) 

< 4{E(Y2) + (1 - e-2A’k)/(21))}“2(‘-6)~2 

< 4{E( Y2) + (1 - e-2”)/(21))}112(1-a)&2 

= KEY, 

completing the proof of (4.11). Hence PC’) is P-Donsker. 
To show that T--(31 is P-Donsker, we again invoke the bracketing theorem. For 

O<h<l,lettk=kh,k=O,l,..., [l/h]+l,andletZE{-[l/h]-l,..., -l,O,l,..., [l/h]}. 
Given t E [0, 11, let k be such that tk < t < tk+l, and let 1 be such that Ih <E&(-Xl(t)) < 
(l+ 1)h. Then 

so that we can take the upper and lower bounding functions as defining the brackets. 
Thus, we have at most ((2/h)+ 1)2 brackets whose &-size is dominated by the square 
root of 

by previous computations. This shows that the class F(3) satisfies the hypotheses of 
the bracketing CLT for P and is therefore P-Donsker. 

Finally, to prove that the class 3 is P-Glivenko-Cantelli, we use the Blum-Dehardt 
law of large numbers (e.g. Van der Vaart and Wellner, 1996, Theorem 2.4.1, p. 122). 
We must show that 

log~[]tE,~Jl(p))<~ (4.12) 

for all E > 0. If y = 1 + 6, then B c C:(R), and the arguments and estimates necessary 
to prove (4.12) are not too different from those in the proof of (4.9) for Sc2). Thus 
we omit them. 0 

Remark. It is easy to see, from estimates in the previous proof, that the distance pp 
associated to the limiting Gaussian process of Theorem 3 satisfies 

P;(fs.bYJ;,JI)~C{lt - 4 + II4 - acl + IIV - Mob 
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and therefore, the process Z(t, 4) is sample continuous for the distance d((s, 4), (t, +)) = 

Is - 4 V II4 - 1c/llcO V 114’ - fllco. 
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