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Asymptotic normality of the NPMLE
of linear functionals for interval
censored data, case 1

J. Huang and J. A. Wellner'

Department of Statistics GN-22, University of Washington, Seattle,
Washington 98195

We give a new proof of the asymptotic normality of a class of linear
functionals of the nonparametric maximum likelihood estimator
(NPMLE) of a distribution function with “case 1" interval censored
data. In particular our proof simplifies the proof of asymptotic normality
of the mean given in Groeneboom and Wellner (1992). The proof relies
strongly on a rate of convergence result due to van de Geer (1993), and
methods from empirical process theory.
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1 Introduction

Suppose that T~ F,, and Y ~G, T and Y are independent. Here T is the
variable of main interest, Y is a censoring variable. Suppose that the only observable
variables are

X =(Y,0)

where 6 =l y. Let (Y,4,),...,(Y,,d,) be i.id. random variables with the same
distribution as (Y, 8). The goal is to estimate F, or functionals of F;, such as the
mean.

It is shown in GROENEBOOM and WELLNER (1992) (hereafter referred to as “GW”)
that, although the Nonparametric Maximum Likelihood Estimator (NPMLE) E, of
F; only has n'’-convergence rate, the mean of F; can be estimated at \/ n rate.
Moreover, they show that the plug-in maximum likelihood estimator achieves the
asymptotic efficiency bound. Groeneboom’s proof given there (see pages 114-120)
depends on the uniform convergence rate of the NPMLE F,, which is derived via
a delicate exponential martingale argument. The main purpose here is to give a
different proof, which only uses the L, or the Hellinger convergence rate of E,
established by va~N DE GEER {1983).
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We begin with a discussion of the NPMLE £, of F for the interval censoring model,
including characterizations and computation thereof, and derive a key identity
needed for our asymptotic normality proof. Section 3 contains a brief review of
information bound theory for smooth functionals such as those which concern
us here. This section also contains a discussion of the relationship of our approach
with recent work of VAN DER LAAN (1993a), (1993b), (1994). Section 4 contains a
restatement of the useful rate of convergence result obtained by VAN DE GEER (1993).
The main theorem is stated and proved in section 5. Our hope is that the methods
developed here may also be of some help in treating the estimation of smooth
functionals in the much more difficult problem of interval centored data, case 2;
see e.g. GESKUS (1992) and Geskus and GROENEBOOM (1994).

2 Characterization, self-consistency and computation of the NPMLE
The NPMLE £, of F, is the distribution function that maximizes

L) = Y, {8l0g F(Y)+ (1 - ) log (1 — F(Y,)};

thus the maximization is carried out under a monotonicity constraint. £, can be
explicitly expressed via a min-max formula, or can be characterized via Fenchel’s
duality theorem and hence as the slope of the convex minorant of a particular sum
diagram. In the following, we first establish an identity (3) based on the character-
ization of F,. This identity is crucial to our proof of the asymptotic normality of the
NPMLE of the mean. Then we show that the self-consistency equation follows from
the characterization of £,. For a thorough treatment of the characterization of F,
and its asymptotic properties, see GW (1992), part II, chapter 1, pages 35-52.

Let us relabel the data (Y,,4,),... ,(¥,,0,) in terms of the ordered values of
Yi,....Y, as (Y,,4),..7, (Yuy> 6y), Where Y, <+ < Y,,. Write

LE)= 3. {3, Jog F(Y,) + (1 — 8,)log (1 — F(¥,, )} M

It is clear that F, is determined only up to its values at the censoring times
Yy, ..., Y. We will take the right continuous step function with possible jumps
at ¥/'s as the NPMLE. First suppose that 04y =1and d,, = 0. Then to maximize 1),
we must have 0 < £,(Y))  F,(¥,) <L Let Yy =ty <1, < <1, <7, = Y,, be
the jump points of F,, that is,

- 0 ifs<rz
E(s)=1 : ’ .
Foplt) ifru<s<t,, j=0,1,...,m
Notice that in this case, £, is actually a subdistribution function. The likelihood
does not tell us how to locate the remaining mass beyond Y,,. We will leave it

unspecified.
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From Propositions 1.1 and 1.2 of GW (1992), for j =0,1,...,m, Fenchel duality
implies that x = F, (r;) solves the “‘score” equation

5(5} l_éii)}
i:rjs)’(,zﬁrj“{x l—x )

see GW (1992), pages 41-43 and especially (1.19), page 43. This implies
z (t} F (Y(z))} 0

xt,&)',)<x“,;

This in turn implies for any function v,

Z {5(i)‘“Fn(Y(;'))}V(Fn(Y(z;)) = Y(Fn (Tj)) Z {50) - ﬁn(Ym)} = 0.

LYy <t 4 GIERGAVES

Summing up the above equations over j =0, 1,...,m, we obtain

Z {(5(5) - Fn(Y(.‘)))'}’ (Fn(Y(:)))} =0, 3
i=1
or, equivalently,
J{é — F, (0 (E,(») dP,(y,8) =0 “
where P, is the empirical measure of the observed (Y;,4,), i=1,...,n.

If for some 1 <k <n, 8y =" =04 =0and dy,,, =1, thento maximize (1) thh-
out wolatmg the monotonicity constraint, we must have F (Yy)="= F (YY) =
and F (Y s 1) >0. In this case, define 7 = Y .1y Iféu) =0and ;=" =0p= 1
we must have F, W(Yiany) == E, (Y,))=1 and F .(Y,,) < 1. In this case, define

Y,;, and 7,1y = Y. [t is clear that in either or both of these two cases, (3)
and (4) still hold.

We remark here that equation (2) is useless in computing F,, because we do not
know the jump points in the first place. F, can actually be explicitly expressed by
the “max-min” formula, i.e.,

> 0y
ssj=t j =1,

FK(YM) = max min

(N
s<i ami t"'S“f’l

Our experience is that this formula is quite fast in computing F, with large sample
sizes.
We now show that (4) also implies the self-consistency equations, which are

Es)=E: (F,OIY,,.... Y, 8,,....3,}, 0<s<M,
or
. v o F(YAs) Es)y=FE (Y. rs)
Ffs)=- 5 P(l—g) 2l ST s <M (S
=BT Ry TSR focscu @
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where F, is the empirical distribution function of the unobservable random variables
Ti,...,T,. See GW (1992), equation (1.6), page 38. Thus F, is the conditional
expectation of the empirical distribution function F, given the observable data
{Y,,6,), i=1,...,n under the seif-induced probability measure P . Starting from
an initial value for F, and updating it via (2.5) yields the familiar EM algorithm.
However, when the sampic size is moderate or large, the EM algorithm is painfully
slow for computing F,, and may converge to solutions of the self-consistency
equation other than the NPMLE.

We conclude this section by showing that the self-consistency equation (5) is
satisfied by the NPMLE £, as a consequence of its characterization via Fenchel
duality and the resulting identity (3). Equation (5) can be rewritten as

- d; 11—
,-;{[ﬁ,(x)_l F(y)](F(Y’\S) F(Y)F(s))}

or, equivalently, since F,(Y,As) = F, (YD) AF(s), as
| (E(Y) A F(s) — ”Y)F‘s))}_o.

1; {(é‘_F”(Y"» EX)(1—E(7))

But this follows from (3) by choosing the function y to be

unkF(s)— uF (s)
u(l —u) ’

y(u) =

3 Review of information bound calculations

Now let i be a fixed measurable function, and, for distribution functions F on
I =[0, M], consider functionals of the form

v(F)= | (I =F()(x)dx. : ©)

o

By Fubini’s theorem we have

V(F) = [ ‘P(x) dF(x) ' N

where ¥ (x) = [¥y(¢) dt, and hence v is a linear functional. Such a functional v(F)
defined in terms of the unknown distribution function F is an “implicitly defined”
functional since the observations (Y,,4,),. -, (Y,,8,) are from P.;=2L(Y,5)
rather than directly from F. If G has densny g, then it is easily seen that P has
density

Prc(1,0) =F(y)(1 — F(p)) “’g(y), 0<y<M,5¢{0,1}.

Information bounds for implicitly defined functionals such as v were nicely treated

by VAN DER VAART (1991); for further discussions of van der Vaart’s theorem, see GW
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(1992), part 1, section 3, pages 23-32, and BICKEL, KLAASSEN, RiTOV, and WELLNER
(1993), section 5.4, pages 201-210. In fact, the mean functional v(F) corresponding
to the choice =1 was treated in all three of these references: see VAN DER VAART
(1991), pages 196-197; GW (1992), pages 28-30; and BKRW (1993), pages 207-210.
Extending those calculations to the case of a general function y is straightforward
and the result is as follows: if 7' defined in (9) is finite, then x(P;) = v(F) is
pathwise differentiable and the efficient influence function is

[(3,6)=1(y,8,F,G)=—{5 —Fo(y)}%)zlfg(ypop ®)

and hence the information bound for estimation of k(P ) = v(F) is

M Fy(y)(1 = Fy(y))

2(y) dy. |
. 20 Yyi(y)dy )

I7'=EN(Y,6) =
Furthermore, general theory suggests that (under modest regularity conditions) an
efficient estimator will be asymptotically linear with efficient influence function I ; see
e.g. BKRW (1993), theorem 3.3.2(B), pages 6364 and theorem 5.2.3, page 183. Thus
we expect to be able to show that

JnO(E) = v(F) = /n(P, — PYI(; Fy, G)) + 0,(1). (10)

with [, as given in (8). This is one of the principal motivations in the proof of our
main theorem in section 5.

Our proofs in section 5 are also somewhat related to the recent work of VAN DER
LaaN (1993a), (1993b), (1994). Suppose that:

(i) @ is convex.
(il 6 — P, is linear. ;
(iii) 6 — v(6) is linear.
(iv) fsatisfies P,I.(-; §,) = 0 where L is the efficient influence function for estimation

AN

of k(P,) = v(6).
Then vaN DER LaaN (1993a, b) shows that
v(6,) —v(6) = (P, — P)(.(;6,). an
Of course (11) implies that
S 0,) = v(0) = /n®,— PYT(:0) + /n(®, — PYL(: 6,) — [.(-:0)

where we expect the second term to be o,(1) under some modest continuity
' assumptions on the map § —7.(+; #). Extensions of the identity (11) to problems
involving a nuisance parameter are given in VAN DER LAAN (1994). In the present
interval censoring model, the distribution function G is a nuisance parameter for

estimation of F, and the efficient influence function 7, for estimation of K{Pps)=v(F)
O ¥VS, 1993
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depends on the density g = G’ of G. It turns out in our case that one ingredient of
van der Laan’s identity does hold; namely
V(Fn) - V(Fg) = _PF(),GZC(-; F}t? G)

does hold, as may be verified directly. However, the other key ingredient, the
analogue of (iv) above, does not hold: that is,

2 A [6-FE» )
Pl ( ,F,,,G)—j———————g(y) Y(y)dP,(y,8) #0. (12)

One part of our proof in section S can be viewed as using the key identity (4) together
with empirical process theory to show that

P.L( 5 F G)=0,(n7'?).

In fact, this is the hardest part of our proof, as it is the hard part of a corresponding
step in the proof in HUANG (1994b), where a similar argument is used.

4 A convergence rate result

As demonstrated in WONG and SEVERINI (1991), BIRGE and MASSART (1993), VAN DE
GerR (1993), and vAN DER VAART and WELLNER (1994), the convergence rate of a
NPMLE in the L, or Hellinger distance is determined by the smoothness of the model
and the entropy of the collection of likelihood functions. In many nonparametric
estimation problems, methods are available for determining the convergence rate of
the NPMLE (assuming that it exists and is unique). The interval censoring problem
considered here is one of the examples considered by vAN DE GEER (1993); in example
4.8(a) she proved the following n'’-convergence rate of F, in terms of Hellinger
distance.

LemMA 4.1. (VAN DE GEER, 1993). If F, is a distribution function on I = [0, M] with
M >0, then

= e Y
E =V Foll Loy = 0,(n 7).

Since

f for.ul e —
y&—&ﬁW=fwﬂ—Jaﬂ¢ﬁ+¢@ww<4ﬂ¢ﬁ

~JF,)dG,
it follows that
|F,—F,| e = 0,(n 7). ‘ (13)

This holds without any assumptions on the relationship of the support of F to the
support of the observation distribution G. If we assume that F; <€ G, then (13) implies

pointwise convergence of £, to F, on the support of G, and hence on the support
VS, 1995
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of Fy. Since the functionals v(F) of interest here involve Fy(x) for all x in the
support of F;, the domination condition F; € G, will be needed in our asymptotic
normality theorem in the next section.

5 Asymptotic normality of the NPMLE’s of the functionals v

Consider estimation of the linear functional v(F) as given in (6) and (7). A natural

estimator of v(F,) is just v(F,). Here is our main asymptotic normality result for
v(F,).

THEOREM 5.1. Suppose that:

(i) The support of Fy is a bounded interval I =[0, M}, G < F,, F, < G, and G has
density g with respect to Lebesgue measure,

(i) Fy, g, and  satisfy

Fy(y)(1 = Fy(y))
g(y)

(iii) (Y/g)° Fy' is bounded and is a Lipschitz function on [0, 1]. Then
nE) = v(E) > NO, I,

Perhaps the most important special cases of the theorem are the moments of F:
with Y(x)=rx""" for r >0,

I'= ;’(Fo,g,t//)iﬁ Y (y)dy < .

V(F) = jM rx"" (1 = F(x))dx = E X" = v,(F).
0

Of course the mean is just the further special case r = 1.
COROLLARY 5.1. If the hypotheses of theorem 5.1 are satisfied with yr(x) = rx’ ", then
VnOHE) =, (F) = N, 1)

where

i | BOA=FG) oy )
& "f, 0 e

PrROOF. Letting P = P, ;= Z(Y,9), write

A = (F) = /n j [(1 = £ = (1 = OO () dy
/

~ [1=F(y)—(1-9)
= y(y)dP(y. 5
Vn} ") Y{y)dpP(y.5)

T VVS, 1995
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g(F5'(F,(»))

) SESEG)
+/m J - )}(g(y) g(Fa‘(ﬁ,,(y»)) 4P(3.9)

5—F A
s f D)y (FE, () 4P (3, 8)

~F .
e f 2By poit ) 4P, 8)

g(F5 ' (F, () (}’)))

) SESEG)
*ﬁj(‘r"(”) F”(”)(g(y) g(Fa*(F,,(y)»)dG(y)

= —d),+ 4y,
We prove that
5 —F
4= /n f S 0) 4P, = PY.6) + 0,1 (14
= —/n®,—P)(L)+0,(1) (15)

and 4,, = 0,(1). Then the result follows from the central limit theorem.

Let F5' be the left-continuous inverse of Fy: Fy'(u) = inf {x: Fy(x) > u}. Then
define y,= (¥ /g) - F;'', the composition of ¢ divided by g with the inverse F;' of
F,. By the key identity (4) established in section 2 we have

J(5 — B, (»)o(F,(») dP,(y,8) =0.

Hence the first term
4y, = «fn_ j(5 — F, (0o, (») d®, — P)(p,6)

r Y 7 Y ™ 7 RN 170 ny s Y
v J (0 — Fo(y o (Fo(y)) d(P, — P)(y,0)

+/n f(a Fy(0) B (1)) = 70 (Fo(3)) d(P, — P)(p, 8)

—Jn J(Fn(y) — F(y)0(£,(») d(P, — P)(, 6)

=l,+1L,+L,.
Let M > 0 be fixed, and let
F = {F: Fis a distribution function on [0, M]}. {16}
Consider the class of functions

H = {(F(y)— F(3)y(F(y): Fe F},

©VVS, 1995
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where # is defined in (16). First, the uniform covering entropy for .# is bounded
by K(1/¢)'** for every t >0, this follows from DUDLEY (1987), theorem 5.1, page
1318, since & is contained in the convex hull of the VC graph class B of indicator
function of right half lines with D(¢, B) < Ke "% see also DUDLEY (1987), example 5.9,
page 1321. Although we did not need the refinement here, this bound actually
remains true with T =0 in view of a result of BALL and Pajor (1990). This
corresponds to the bracketing entropy bound for uniformly bounded monotone
functions obtained by VAN DE GEER (1991); see VAN DE GEER (1993), corollary 2.3,
page 19, for a statement. Moreover, by assumption (iii) 7, is bounded and Lipschitz
on [0, 1]: in particular, there exists a finite constant K such that

[o(uy) — 9o (u)l < Kluy — u]
for all u,,u, €[0, 1]. Therefore, for any F,, F,e #,

I(F(») = o (Do (Fy(0)) — (B () = Fo (0o (B () < CIF (y) = ()l

for some constant C. It follows that the uniform entropy for # is also bounded by
K(1/e)'*%, © > 0. So A is a P-Donsker class by Pollard’s theorem (POLLARD, 1982;
see DUDLEY, 1984, theorem 11.31, page 117 and DUDLEY, 1987). Furthermore, since

j[ﬁn(y) ~F()FdP(y,8) = J{ﬁn(y) - F,(»)FdG(»)—,0,

it follows (from the fact that # satisfying the Donsker property implies uniform
asymptotic equicontinuity of the empirical process over #, see e.g. DUDLEY (1984),
theorem 4.1.1, page 27; or SHEEHY and WELLNER (1992), theorem 1.1; or VAN DER
VAART and WELLNER (1994), theorem 1.4.6) that, I, = 0,(1). To show that L, = 0,(1),
consider the class of functions

F ={(6 — F()GeF) = (Fo(»): FeF},

where & is defined in (16). Now the uniform entropy for A is bounded by K(1/¢)' *7,
again using the Lipschitz property of ., and it follows that # is P-Donsker, and in
view of the L,(P) consistency of F,, this implies that I, = 0,(1). Thus (14) is proved.

To handle 4,,, recall that F5'  Fy(x) = x a.e. F, (see e.g. SCHORACK and WELLNER,
1986, proposition 1.1.3, page 6). Since G < F;, this implies that F Tlo Fy(x)=x ae.
G. Therefore it follows that

|40 = /7

j E(y) = Fo(0) (o (Fo(3)) = 7(E, (1)) 4G ()
< \/;316" = Foll 1,0 % 702 E.—v° Fllne
< K\//E giﬁn - FQ %? Z’Q{G)

. 05{11 ~§56>

t

by van de Geer’s rate result lemma 4.1.
o VVS, 1955
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REMARK. It is possible to consider a wider class of functionals v(F) satisfying

V(F) —v(F) = j.; Ve, (¥) d(F — Fo)(x) + O(IIF — Fy i) (17

for some function Vg € Li(F,); for the v of (3.7) this holds with Vg, (X) = ¥ (x)
—{,¥ dF; and no remainder (or O) term. Further hypotheses on v, are needed to
handle these functionals in general.

The methods used in the proof of theorem 2.1 have been used by HUANG (1994)
to prove the asymptotic normality of the maximum likelihood estimator of the
regression parameters 6 in the case of the Cox proportional hazards model with
interval censoring. Similar methods are likely to be useful in other related problems.
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