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Beran (1968) and Giné (1975) have proposed several omnibus tests for uniformity on
the unit sphere in three dimensional Euclidean space. While several authors have
contributed to providing approximate percentage points for the limiting distributions,
no tables of the limiting distributions, percentage points thereof. or finite sample
distributions or percentage points have been available. In this paper we fill this gap
by: .
1) finding the exact distributions of the statistics of Beran and Giné for n=2;
2) presenting some percentage points for selected small and moderate sample sizes
obtained by Monte-Carlo methods:
3yevaluating numerically the cumulative distribution functions and significance
points of the limiting distributions via the Laguerre transform method (Keilson
and Nunn (1979), Keilson, Nunn and Sumita (1981). and Sumita (19813
KEY WORDS AND PHRASES: Small samples, Giné's statistics, Weighted sums of
independent Chi-square variates. convolution. the
Laguerre transform method.

1. INTRODUCTION

Beran (1968) and Giné (1975) have proposed several omnibus tests
for uniformity on the unit sphere S={xeR" x/=1] in three-

dimensional Euclidean space. These tests are consistent against all
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alternatives and are locally most powerful for specific alternatives.
Beran and Giné have shown that the limiting distributions of these
statistics, under the null hypothesis of uniformity. are those of
weighted sums of independent Chi-square variables. While Prentice
(1978) has applied the methods of Zolotarev (1961) and Hoeffding
(1964) to. provide approximate percentage points for the limiting
distributions, no tables of the limiting distributions. percentage
points theoreof, or finite sample distributions or percentage points
have been available.
Our purpose here is to fill this gap by

1) finding the exact distributions of the statistics of Beran and
Giné for n=2;

2) presenting some percentage points for selected small and
moderate sample sizes obtained by Monte-Carlo methods:

3) using the Laguerre transform method—Keilson and. Nunn
(1979), Keilson, Nunn and Sumita {1981%. and Sumita (1981} to
compute the cumulative distribution functions and significance
points of the limiting distributions.

In Section 2, we summarize the result on the limiting distributions
due to Beran and Giné and give the exact distributions for n=12.
Section 3 contains the Monte-Carlo results for finite sample sizes
and description of the methods used. We discuss, in Section 4. the
numerical procedure for evaluating the limiting distributions via the
Laguerre transform method. An application is given in Section 3
where we test uniformity of orientation of dendritic fields in the
retinas of cats subject to controlled visual environments. The
numerical results are summarized in Section 6 in tables and graphs.

2. THE STATISTICS: LIMITING DISTRIBUTIONS AND
EXACT DISTRIBUTIONS FOR n=2

Let X,,....X, be independent and identically distributed unit vectors
in R® with distribution v (so v(S)=1. where S=xeR% x =1]). Let
{)fjxﬁfﬁarccns{xi'){;}:the angle between X, and X, for
j=12...,n

For testing the null hypothesis that v is the uniform distribution
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on S, Beran (1968) and Giné (1975) have suggested that statistics

dedin o -ZI AZX (l I .—(217{){}”: (21)
i=1j=

yever=p! Z] Zl —(2/m)sinb,;) (2.2)
e

YHE Y:)ldd + Yrclvcn. (23)

Giné proposes Y;'*" and finds that yedd is simply Beran's form of
Ajne's statistic: Y9%4=4T, (Beran, 1968). It is also known that
Y44 =44, . (Prentice, 1978) and Y;*" =G, , (Prentice).

Let {Z,}7, be independent Chi-square random variables with
2j+1 degrees of freedom (s0 Zyy -y ~ X3k~ 1- Zon~ 73+ 1) Set

a3y =(2k=1) [k (2.4
ad=(2k =17 k=27 ) KD (2.3)

where (1), =4 (¢+1)...(3+k—1) and define

x
4 2
yodd= 2 A3k -1 Lk -1+ (2.6)
k=1
x‘
Y 3 -
cen= 3 anZy (2.7
K=
Y= Yodd g yeren, (2.8)

Tueorem 1 (Giné)  If v is the uniform distribution on S, then

lim PY* <)) =PLY"" <],

ner

Hm P[YS "<y ]=PLY "<

[ AmdiF S
and

lim P[Y,<y]=P[Y<y] forall yeR

nor
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Prentice (1978) uses the methods of Zolorarer (1961) and Hocettding
(1964) 1o procide approximate percentage points for these limiting
distributions. We will compute the distributions swith precision via the
Laguerre transform method [Keilson and Nunn (1979). Keilson, Nunn
and Sumita (1981). and Swmita (1981 U1 in Section 4 and present tables
and graphs in Section 6.

We now consider the distributions of YR Y and Y, for n=2

THEOREM 20 If v is the uniform distribution on S. then

Pf_}"dd‘(\]""w{l%ﬂ.ox[ ) j’

i
PIYSo < ;J~c05{arusm 1(! -y J

L2

|

P[Ylg_y]:é{ +u7\[ 'l(§(3~j‘}z)‘}>. Oyl
-1 \ = /]

where glity=t+sint, 0Se<n and ¢4 denotes the inverse of .

Proof  First note that under uniformity

¥

P[(}”gﬂ:(%)”li sin ?d(7d®~: ~cosyl. Ogy<nm
Then, writing
Y94l = jil +1 (1~ ,’7)033)”2-(:1 ““%):1\)?\5’“‘2 4{\;\}!}_
yegen i}é+i+(§ *;sin@p)f‘(——*%sm Uy ):ff
. ~§:~2 sind, -

and
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the stated distributions are casily obtained by straightforward
computation. [

For future reference, we record some moments in the following
Proposition:

Proposimion 3 Under uniformity we have

E( Yf:dd) — E( Yodd\) — 1

i
E( }/ivén): E( Yeveﬂ):;
3
E(Y)=E(Y)==
2
while
/ N/ 16\ n— 16"
Var(Y::dd)-—:( 1——)(2—~;)———+(2-—~;)=0,37886... =Var[ Y°¢].
N n/ \ " AN ﬁ“/

/ 1 / n-e / 1 3
Var( Y:;"““):( I ——)(—I‘i—q—-ﬁ(——i—i):o.(“)ato‘%s ..

n/\3x* 2 3x
::\/'ar[)'k’\cx‘l}‘
and
Var(Y,) gi 1)/3 e (332 0.41924 VarlY
e R [ e AL

Furthermore, the third and fourth cumulants of Y and Y are
given by

KV =0375219..., K, (Y*¥)=0.56252....

KoY =00098016.... K (Y =0.00366374...

Proof  The finite sample means and variances are casily obtained
by elementary methods upon noting that ¢;; and 6,; are independent
for j#j'; the asymptotic means and variances follow immediately by

H : H - 1. . £ oyredd FEVERY e s erbe vead
letting n— . The cumulants of V™% and Y% are easily computed
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using the following casily derived formula for the mth cumulant A,
¥ » 2
of 3/, Bt

K, =2""Ym—1 Zivf}/i’[”. O

mT =
4=

3. MONTE-CARLO SIMULATIONS

In our simulations, a function subprogram cualled RAND (University
of Rochester file No. 311.7.500, Computer Center) and the 1BM 360
computer are used to generate uniformly distributed random
numbers. The method of Marsaglia (1972) is then employed to
generate points from a distribution on the unit 3-sphere. Using #
such random points, the statistics Y2, Y&" and Y, defined in
Section 2 are computed. With Monte-Carlo samples of size 5.000 for
n=100, and 20,000 for n=35, 10, 20 and 40, the percent points of the
above statistics are estimated for the significance levels x=0.20. 0.10.
0.05, 0.025, 0.01 and 0.001. Those empirical finite sample percentage
points are further smoothed in the following manner. For cach level
x and sample size n. let a smooth function Y, , be defined by

A 4 7120 1
Yz.n:ﬁz.a T "‘i(axvl —dy, 1)-“—172.12( T ) ta L
n- nont/

N

Here ¥, , is the estimated Y value for each n at level % a, » and «, |
are the Y values at level x for n=2 and n= x. respectively. a, - is
found from Theorem 2, and a, ., from the Laguerre transform
method to be described in Section 4. b, is the estimated slope
obtained from the original Monte-Carlo results  via  the
straightforward lnear regression. It should be noted that the smooth
function (3.1 coincides with the known values of ¥ when n=2 or
fi= .

The estimated smoothed percentage points of the three statistics
are presented in Tabie [II of Section 6.

4. EVALUATION OF THE LIMITING DISTRIBUTIONS VIA
THE LAGUERRE TRANSFORM

5 ; T IY }oth Ioran e ar Tire e Byt - Loty
We have seen in Scetion 2 that Beran's and Ging's limiting statistics
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under the null hypothesis of uniformity are infinite sums of
independent and scaled Chi-square variates. Le. Y% Y% qnd Y as
given in (2.6), (2.7) and (2.8). In this section, we discuss numerical
evaluation of Y%/, Y and Y and propose a Laguerre transform
approach to be described.

It is natural to decompose the infinite sum Y=Y aZ, in (2.8)
into two parts, the sum of the first N variates and the remainder. i.c..

N x
Y:S,V+ V;’V: SN: Z aij; V\f: Z (leJu (4”
j=1 j=N+1
Correspondingly, let
Yodd: S 1’)\dd + Vf{;id; chcn: SR}'cn + l,,'i}'cn (43}

where S¥¢ and V' are the sums of odd index terms of Sy and Vi,
respectively. The variates S{*" and V§*" are defined similarly for
even index terms. Sy is the finite sum of independent scaled Chi-
square variates and such linear combinations may be regarded as
positive-definite quadratic forms in normal variables. Many papers
have been published on the distribution of such quadratic forms, and
the reader is referred to Johnson and Kotz (1970. Ch. 29) for a
comprehensive survey of the literature. An excellent approach to the
numerical evaluation of such distributions is that of Johnson, Kotz
and Boyd (1967). They expand the distribution function in a series of
generalized Laguerre functions and evaluate it efficiently by taking
advantage of the recurrence relation of the Laguerre functions. When
this procedure is applied directly to the distribution of Sy. however.
one encounters numerical difficulty. The coefficients a} decreases
rapidly and the distributions of a’Z; become very concentrated,
resulting in quite slow convergence of the corresponding Laguerre
series. Our procedure restructures the method of Johnson. Kotz and
Boyd and overcomes this numerical difficulty.

The Laguerre transform method for convolving functions has been
introduced by Keilson and Nunn {1979), Keilson. Nunn and Sumita
(1981}, and further studied by Sumita (1981). The method has
advantages of accuracy and speed which make it an attractive
andidate for problems of this type. The Laguerre transform method

c
has peculiarities and limitations, however, which require careful
refinement for particular contexts. such as that here. The reader is

)
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referred to three basic papers for the underlving theory. A brief
summary is given in Appendix A for the convenience of the reader.
Our basic strategy is to approximate Y°% and Y*'*" by

Yo\éd“:Si{dd + V_O\-dd*: Y’i}‘cn*:Si}'en + ;/,'i}'en‘ (4'%?
where V4" and Ve are the Gamma variates having the same first
two moments of V8¢ and V", respectively. Correspondingly, Y is
approximated by

YE= Y 4+ Y =S+ Vi (4.4
In the subsections to follow, the Laguerre transform procedure is

described for evaluating the distribution of Y™, Y% and Y¥%. The
validity of the results is also examined.

(A) The Laguerre sharp coefficients of the Gamma variate
I« 28)

Let T(x2f), x. >0, be the Gamma variate with p.d.f.
2(x) = s NPTl I < x < x, (4.5)

i
i

It is clear that the variates ¢7Z; belong to this family with x=/+3
and f=a;. Hence the Laguerre sharp coefficients (g5 of gix)
provides a basic tool for the procedure. From the Laplace transform

i

~{s) = j e Fg(xydx=(1+20s)""
5

and the identity

I}

those coefficients are found by (cf. Sumita (1981). Section 6.2}

no-omS o
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b,= ﬁ (I—E:—y) nzl,by=1

r=10\ l /
4.7
(M—p\" [ 1_1)
Cp= (_Ii{——[},) rU{( 1 —‘*’“r"“/'. H ]"‘(}: 1.

The accuracy and efficiency of the Laguerre transform method
depend heavily on one’s ability to represent the functions present
with a sequence of Laguerre coefficients of reasonable length (say. at
most around 500 coefficients to attain 5 digits accuracy). As studied
theoretically in Keilson, Nunn and Sumita (1981) and Sumita (1981).
the Laguerre transform method, when applied in a straightforward
manner, cannot tolerate functions too closely concentrated at zero or
functions too great in extent. For the Gamma variate. this point can
be observed explicitly in (4.6) and (4.7). When x is extremely large. b,
and ¢, become so large in absolute value that the computer may not
tolerate them. The other numerical difficulty arises when f is
extremely small or large. In this case. the ratio I=p+p)
becomes very close to 1, and one would expect (¢,) to have a long
tail. This. in turn, implies a long tail of g;. Fortunately. these
numerical difficulties can be avoided by taking advantage of the
divisibility of the Gamma variates and employing scaling. In brief,
the first difficulty can be solved through the identity 7(s)=[7yl (517,
where M >0 and - (s)=(1+28s)"** corresponding to the Gamma
variate T(x/M, 2. By an appropriate choice of positive integer M,
the Laguerre sharp coefficients of T'(x’M, 2f) are obtained with

“reasonable length. We then convolve them M times on the lattice to

recover the Laguerre sharp coefficients of the original Gamma
variate (%, 2f). For the second numerical difficulty, we replace 5 by
¢f so that the ratio [(1—c¢f)/(1+¢f) becomes well below 1. Then (¢ )
in {4.7) decreases rapidly in abso;uic value and therefore g
decreases rapidly. After the inversion of the Laguerre sharp
represemahon the proper scale factor for the probability density

function is restored.

(B) Algorithms for finding the sharp coefficients of Y,

YW“‘ and YV

1) For a desired small variance of Vy. select N for Sy and V.
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Then choose the dividing factor M for V.. and the scale factor ¢ in
keeping with the conditions of (A). The number L of Laguerre
coefficients before truncation will be discussed in (C} below.

2) Using (4.6) and (4.7) with x=j+4 and f=ca?. calculate (g(j)7 )5
of ca}Z, for I<jEN.

3) Obtain (g¥3*)6 of ¢S3* by convolving (g(j)7)5 for | odd,
I <jSN. Obtain (g5 7)5 of ¢Sy similarly.

4) Calculate the means 7% and 18" and the variances ¢3°¢* and
o™t of V' and V9" respectively. from (2.6). (2.7) and Proposition
3. Using (4.6) and (4.7) with x = (%8 i) M and /f—c aidt 2use,
caleulate (h°47 (M, N),)5. By convolving (h°¢= (M. N),)5 M times with
itself, find (4%%57)5 of V'3, Obtain (h"* )k of ¢1'{*™ similarly.

5) Caleulate (/37)5 of ¢ Y™ by convolving (¢3%7 )k and (h#¢ ™)L,
Obtain (f50%)5 of Y™ similarly.
6) Finally, calculate J6 of ¢¥Y% by convolving (£$¢*); and
\ n ') Non

reven #\L
(. Non )0'

Remark  When one has the Laguerre sharp Loemugm\ (7 ofa
p.df fix) on (0, =), the inversion of (/) o the values of fix) and
its survival function Fix)={/ f(x)dx can be done in the following
manner {cf. Keilson and Nunn (1980}

(R.1)  Caleulate (I(x))g for 0Sx <« by

1
ly s 1 (X) = s U’n—tl——\)!( J—nl, o (xil o n=l

where [j(x)=¢ (1 21%

B

{R2} Obtain /] E fn and caleulate flx)= Y [l (v

/
m =G (3

(R3) Caleulate /7= ~2 Y (—1yf7 ., and F(x) PN

P
in = G 5l

We note that the Lo g werre transform bypasses numerical integration.
Wc a%m zw@c that t rithm with (R (R.2) and (R.3} produces

‘,
348
F¥(x ¢} where Fix)= !}{?’{:» o).
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(C) Validation of the results

For the calculation of the distributions needed. the scaling factor is
taken to be ¢=40. The two values N=2 and N =4 are used and the
dividing factor M =12 is chosen for 1'% and M=25 for 1';. The
length of the Laguerre sharp coefficients is L=23502, which provides
2 digits accuracy of the p.d.f of a7 Z; for 1 74,

There arc two different factors which introduce numerical errors.
the truncation of the Laguerre sharp coefficients and the Gamma
approximation of Vy. In general. it is quite hard to guanufy
truncation error of the Laguerre coefficients. (Such error bounding
has its counterpart in Fourier series theory, where error bounding is
known to be extremely difficult.y Theoretical error bounds are
available, so far, only for a certain family of functions (cf. Keilson
and Sumita (1981) and Sumita (1981)). Extensive numerical evidence.
however, suggests that when one chooses L large enough to attain a
given accuracy for the following identities. then the function values
are likely to satisfy the same accuracy.

10+4)=— 3 n? (4.8)
n=0
[fyde= Y (=17 (4.9)
O n=0 )
[ xf(x)dx=4- Z Ly (4.10)
o] n=
[ x*f(x)dx=16" Y (—1rnifr (410
] n=0

For N=4, (/7,3 of Y% provides 10 digits accuracy for all
equations (4.8) through (4.10) and the truncation error seems to be
negligible. Even though we may expect the Gamma approximations
for the remainders V3% V", and Vy to introduce little error since
Var[ V4] drops rapidly (e.g. Var[¥,]J=6.6x10"". no analytical

justification is available. and we are forced to take indirect means for

testing the validity of the approximation. To test this validity we
note that Y5 Y as N— . The c.d.f’s of Y¥ and Y3 are calculated

and compared. The absolute difference of the two uj.%.s is found
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numerically to be bounded by 1 x 1077, For a second accuracy check
of the Gamma approximation, the third and the fourth cumulants of
Y54 and Y§" are calculated using the Laguerre sharp coefficients
and compared with exact values. The higher moments of Y and
Y can be found from (4.10), (4.11) and (R.3)y of (B) with the
identity f7=f1—f7_ .. nz1, and f7 =/{. The cumulants needed are
then obtained by

Ky=py=3p 0+ 2
(4.12)
K=y =303 =4 s + 1 200 10, — 6413

where y;=E[X']. The corresponding exact values are given in
Proposition 3. The computations are shown in Table 1. The absolute
difference is bounded by 3 x 107 °.

Finally, we study the asymptotic behavior of the survival function
of Y, and compare it with the values computed via the Luaguerre
transform method. From the Laplace transform of Y. one finds
through asymptotic analysis that

- Lk fi N1
FY(.\‘);:P[Y>.\‘]~‘) [ ~/; BA 2 }ww:: E (4.13)
¥ .

as x— + 1. where 4, x4.95221 and /, >~ —4.27140. Details are given
in Appendix B. In Figure 1, the asymptotic expansion of Fy(x} in
{4.13) is plotted with the survival function of Y% derived via the
Laguerre transform method. Their absolute difference is found to be
bounded by 1 x 10" F for x>3.5.

A similar approximation for the remainder of an infinite sum of
independent variates is employed in Sumita (1980} to evaluate the

TABLE I

The cumulants: ¥ and Y vs. Y9 and ¥

K Yo 0.3782193777 K, (Y%

K Yo 0.3752164153 K, Y9

Ahsolute Difference 0.0000029624
00098016768
0.0098007718

o

sofute Difference
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FIGURE L.

multiple convolutions of the Logistic variates. There a direct
accuracy check is possible and accuracy to seven decimal places is
attained.

All calculations were carried out on a DECI10 computer, in a time-
sharing mode using APL as the programming language. Relevant
formulae are coded in a straightforward manner, with no attempt to
optimize the subroutines for speed and accuracy. In spite of this. the
results displayed here were obtained with CPU times in seconds with
no evidence of numerical problems.

5. APPLICATION

In an experiment to determine the effect of different visual stimuli
six cats were divided into three groups of two, and each group wuas
subiected to a different visuval stimulus: horizontally polarized light
(H), vertically polarized light (V). and unpolarized or “normal” light
(N} Orientations of the dendritic fields were then measured at 15 1o
16 sites in the retinas of each of the six cats. The complete data sot
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in coordinates described by Figure 2 below. is given in Appendix
C.

The orientation of the dendritic ficlds of the two cats exposed w0
normal light is, presumably. uniform. with no preferred orientation.
and the question is: what is the effect of polarized light” Hence we
wish to test the null hypothesis of uni ormm of orientation {on the
unit hemisphere) of the dendritic fields of the H and 1~ groups. To

test this hypothesis., we usc Giné's statistic

/N AN

Y:wn:” 1‘% ?Il:( —(;g‘alﬂ\ X )

as
where XX, is the angle between the observations X, and X, Sinee

(Rl
Y, 15 repres cnud by a vector X, _[Low«sin g. sinosind, cosii]
1. one casily finds that cos X, \j::\:'\' and therefore

with x/,=

Rt

XX =arccos| scosty, =00 T+ costd =,

J

+3 cost =111 T —=costg, — 1)

©

I
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As the table shows, the test of uniformity is not significant for any
individual cat. Grouping H, and H, or V| and },. however. does
give significant results, whereas grouping N, and N, is still not
significant.

TABLE 11
A summary table of the P-values using Table I1I is given below.

Cats n Yy P-value Cats n Yy P-value
H, 15 0.4508 »0.20 H +H, 31 0.9181 2 0.040
H, 16 0.7321 ~0.120 ’
v, 16 0.4923 »0.20 .
Vi+ 1, 32 0.8603 3 (0.056

V, 16 0.6239 >0.20
N, 15 0.6260 >0.20

NoEN, 3 0 »0.20
N, 16 0.6076 >0.20

6. GRAPHS AND TABLES

In Table 111, the estimated smoothed percentage points for various
values of n and significance levels x are presented. using the method
described in Section 3. For n=2 and n= x. the values are taken
from the formulae in Theorem 2 and Table IV, respectively. For
comparison purposes, we record the approximate significance points
of Prentice (1978). The quantiles of the limiting distributions of Y%,
Ye'*® and Y are given in Table IV. where z=P[Y >1]. ctc. More
detailed values of the distributions are presented in Table V. with
step size 0.05. Figure 3 and Figure 4 show the graphs of the c.df
and the p.d.f of Y°¢, Y*** and Y. All the values associated with the
limiting distributions are calculated by the Laguerre transform
method described in Section 4.
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.

: § TABLE IV

o The quantiles of the limiting distributions

b1 YiODD) YIEVEN) Y

0.999 0.18363 0.16003 0.47887
0.995 0.22343 0.18567 0.55003
0.990 0.24414 0.20184 0.589%84
0.975 0.28309 0.22380 0.63944
0.930 0.32630 0.24992 0.73038
0.900 0.36123 0.28234 0.82748

/ ’ 0.850 0.44743 0.30846 0.90397
0.800 0.50073 0.33171 097212
0.750 0.558346 0.33351 103633
0.700 0.60686 0.37460 1.09897
0.650 0.66181 0.39553 1.16151
0.600 0.71904 041674 1.22509
0.550 0.77939 043850 1.29091
0.500 0.84376 046113 1.35992
0.450 091324 048501 143340
0.400 0.9892] 0.51060 1.51289
0.350 1.07352 0.53849 1.60028
0.300 1.16916 0.56940 1.69861
0.2350 1.28015 0.60472 1.81215
0.200 141363 0.64643 1.94776
0.150 1.58259 0.69823 211887
0.100 1.81631 0.76879 2.35459
0.050 220727 0.88384 274772
0.025 2.59079 (0.99413 313268
0.010 3.09000 1.13534 3.63309
0.003 3.46337 1.23944 $.00709
0.001 432040 147452 4.86322

fe.g. PLY> 0478877 = G099

TABLE V

The cumulative distribution functions of Y, Y and ¥

X F-ODDix) Fix} X F-ODD(x) F-EVEN(x) Fix

0.00000 0.0 255 097308
0.60000 0.00606 260 097342
0.00000 265 097736
000000 270 0.97952
600000 2 095131

098295
0.98444

(.95581
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J.even
(x

FIGURE 3. The cumulative distribution functions of yodd yeet and Y
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UNIFORMITY ON THE SPHERE
Appendix A

The Laguerre Transform

The Laguerre polynomials L,(x), defined by the Rodrigues formula

t [dY
Lag= e e

nt o \dx

form a set of orthonormal polynomials with weighting function
w(x)=¢ " on (0, x) (see, e.g., Szego (1975)). The associated Laguerre
functions [(x)=e¢ ¥*L,(x) then provide an orthonormal basis in
L,(0,oc). For any f(x)eLy(0,x). one has the Fourier-Laguerre
expansion

f(x)*"Zf Z=51(\) v)dx. (A1)
Let
THu)= ) V /,,u
and
Z e E(i—wTh
Since

ke 1
Y Lowt=(1—u)” ! exp{-—ix(l +u)(l—u)” ‘}

n=0
one has, when f(x) is integrable on (0, ).
THw=(1—u V’/ u ~(I—u)2u fl\ (x)dx
2
{

x ( %
= [ fix)yexp —5x(1+ufl—uw) dv. 0<u<l,
o [ j

ot R0

e
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where @ls)=[J ¢ *f(x)dx s the Laplace transform of fixi Let
Flx)*gle) = f5f (x — 1)gy) dy. Since §yfs) = NP5,

T7. (u)= TF(u}T;(u) (A3

for functions f(x), g(x) that are both in L,(0. =) and Ly(0.%). From
{A.3) one obtains

n
F*)F =2 fr-mgm- (A

m=0
The transformation via (A.3) maps functions f{x), gix) into
sequences (f7)g; ), and their continuum convolution flx)*g(x) is
mapped into a lattice convolution and then back onto the
continuum via fi=Yn_ofn and the representation {A.1). This
transformation procedure was introduced originally in Keilson and
Nunn (1980}, The Laguerre transform was extended subsequently in
Keilson, Nunn and Sumita {1981} to handle functions on the full

continuum, and further studied by Sumita (1981).

Appendix B

Asymptotic behavior of Fy(x)=P[Y>x] as x>+

In this appendix, we derive the asymptotic expression of Fyix) as
x— + 7. The Laplace transform of the p.d.f. of ¥’ is given by

% 7 9;‘ )j*,{l 2) i B
= () e B
oS jUI b+ b Ja;
Let
V Hi %302 v/ 81 NjREE 2y
) {\\8, «i»s/,) Ho=11 (\aﬁs) B

We note that A(s) is regular for Re(s)> —#,. Let Fuxy=P{Y>x] and
define

)= 2 LB Fylxdy = [ 7O F (.
@

Afl
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Then, from (B.1) and (B.2), one has

L—dylw— — (w4 i
W)= Pyn 91):¥ x{n’ (1)-).(‘.&'.—(}2)_;1__5(” {41).

B.3)
w—o, W=, woo Y

After a little algebra, one finds, from (B.2), that

1 —o(w—0 /0, 1 % P\ 12
1(W i)z Y 1 + + ( - I)"(E) “,(n -3} 2‘ (84}

: 372 = !
w—t; w V’le n=3

On the other hand, A(w—0,) and (1—A(w—6,))(w—0,) are regular
for Re(w)>8,—6, with 8, —0,<0. Hence, one has the Taylor
expansion

Aw—0)= }: Rt (B.5)
n=0
From (B.3), (B.4), (B.5) and the regularity of ( (1 —Aw—0)) (u -, for

Re(w)>0,—0,, we obtain the asymptotic expression of ¥(w) near
zero, 1.€.

.- ; .. 'M\‘ 1
iw) ~ 2N 0, +< %0 i, _«01)-: as w—0+.  (B6)
w / "
AV N
This then implies that (see, e.g., Widder (1946), p. 192}

- 2x

.

i e e — /. o=y .

Fylx)~—= [2,.%/ 2x +(~,9:+/-1\/ 3)—:] as x— + x. 7(B.7)
Jr 2 VX

where #,=2 is substituted. The constants /o and 4, are obtained
from

<« / 8 NG o
w—10,) H ( = E P (i
j=2 9 "9 +w n=0
i.e., .
= /g U
=11 (m\ ~ 4952213394
J=e Vi 1/ ‘
YT 89
ip=—Y - J x~ —4.271400146. |
j:z({;—— E,A,_ \‘9,—~{3
J

+The asymplotic expression in gB.", agrees with Zolotarev (1961}







