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We study nonparametric estimation for current status data with

competing risks. Our main interest is in the nonparametric maximum

likelihood estimator (MLE), and for comparison we also consider a

simpler ‘naive estimator’. Groeneboom, Maathuis and Wellner [8]

proved that both types of estimators converge globally and locally

at rate n1/3. We use these results to derive the local limiting dis-

tributions of the estimators. The limiting distribution of the naive

estimator is given by the slopes of the convex minorants of corre-

lated Brownian motion processes with parabolic drifts. The limiting

distribution of the MLE involves a new self-induced limiting process.

Finally, we present a simulation study showing that the MLE is su-

perior to the naive estimator in terms of mean squared error, both

for small sample sizes and asymptotically.

1. Introduction. We study nonparametric estimation for current status data

with competing risks. The set-up is as follows. We analyze a system that can fail
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from K competing risks, where K ∈ N is fixed. The random variables of interest are

(X,Y ), where X ∈ R is the failure time of the system, and Y ∈ {1, . . . ,K} is the

corresponding failure cause. We cannot observe (X,Y ) directly. Rather, we observe

the ‘current status’ of the system at a single random observation time T ∈ R, where

T is independent of (X,Y ). This means that at time T , we observe whether or not

failure occurred, and if and only if failure occurred, we also observe the failure cause

Y . Such data arise naturally in cross-sectional studies with several failure causes, and

generalizations arise in HIV vaccine clinical trials [see 10].

We study nonparametric estimation of the sub-distribution functions F01, . . . , F0K ,

where F0k(s) = P (X ≤ s, Y = k), k = 1, . . . ,K. Various estimators for this purpose

were introduced in [10, 12], including the nonparametric maximum likelihood estimator

(MLE), which is our primary focus. For comparison we also consider the ‘naive esti-

mator’, an alternative to the MLE discussed in [12]. Characterizations, consistency,

and n1/3 rates of convergence of these estimators were established in Groeneboom,

Maathuis and Wellner [8]. In the current paper we use these results to derive the local

limiting distributions of the estimators.

1.1. Notation. The following notation is used throughout. The observed data are

denoted by (T,∆), where T is the observation time and ∆ = (∆1, . . . ,∆K+1) is an

indicator vector defined by ∆k = 1{X ≤ T, Y = k} for k = 1, . . . ,K, and ∆K+1 =

1{X > T}. Let (Ti,∆
i), i = 1, . . . , n, be n i.i.d. observations of (T,∆), where ∆i =

(∆i
1, . . . ,∆

i
K+1). Note that we use the superscript i as the index of an observation,

and not as a power. The order statistics of T1, . . . , Tn are denoted by T(1), . . . , T(n).

Furthermore, G is the distribution of T , Gn is the empirical distribution of Ti, i =

1, . . . , n, and Pn is the empirical distribution (Ti,∆
i), i = 1, . . . , n. For any vector

(x1, . . . , xK) ∈ R
K we define x+ =

∑K
k=1 xk, so that, for example, ∆+ =

∑K
k=1 ∆k
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and F0+(s) =
∑K

k=1 F0k(s). For any K-tuple F = (F1, . . . , FK) of sub-distribution

functions, we define FK+1(s) =
∫
u>s dF+(u) = F+(∞) − F+(s).

We denote the right-continuous derivative of a function f : R 7→ R by f ′ (if it exists).

For any function f : R 7→ R, we define the convex minorant of f to be the largest

convex function that is pointwise bounded by f . For any interval I, D(I) denotes the

collection of cadlag functions on I. Finally, we use the following definition for integrals

and indicator functions:

Definition 1.1 Let dA be a Lebesgue-Stieltjes measure, and let W be a Brownian

motion process. For t < t0, we define 1[t0,t)(u) = −1[t,t0)(u),
∫

[t0,t)
f(u)dA(u) = −

∫

[t,t0)
f(u)dA(u), and

∫ t

t0

f(u)dW (u) = −
∫ t0

t
f(u)dW (u).

1.2. Assumptions. We prove the local limiting distributions of the estimators at

a fixed point t0, under the following conditions: (a) The observation time T is inde-

pendent of the variables of interest (X,Y ); (b) For each k = 1, . . . ,K, 0 < F0k(t0) <

F0k(∞), and F0k and G are continuously differentiable at t0 with positive derivatives

f0k(t0) and g(t0); (c) The system cannot fail from two or more causes at the same time.

Assumptions (a) and (b) are essential for the development of the theory. Assumption

(c) ensures that the failure cause is well-defined. This assumption is always satisfied

by defining simultaneous failure from several causes as a new failure cause.

1.3. The estimators. We first consider the MLE. The MLE F̂n = (F̂n1, . . . , F̂nK)

is defined by ln(F̂n) = maxF∈FK
ln(F ), where

ln(F ) =

∫ { K∑

k=1

δk logFk(t) + (1 − δ+) log(1 − F+(t))

}
dPn(t, δ), (1)

and FK is the collection of K-tuples F = (F1, . . . , FK) of sub-distribution functions

on R with F+ ≤ 1. The naive estimator F̃n = (F̃n1, . . . , F̃nK) is defined by lnk(F̃nk) =
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maxFk∈F lnk(Fk), for k = 1, . . . ,K, where F is the collection of distribution functions

on R, and

lnk(Fk) =

∫
{δk logFk(t) + (1 − δk) log(1 − Fk(t))} dPn(t, δ), k = 1, . . . ,K. (2)

Note that F̃nk only uses the kth entry of the ∆-vector, and is simply the MLE for the

reduced current status data (T,∆k). Thus, the naive estimator splits the optimization

problem into K separate well-known problems. The MLE, on the other hand, estimates

F01, . . . , F0K simultaneously, accounting for the fact that
∑K

k=1 F0k(s) = P (X ≤ s) is

the overall failure time distribution. This relation is incorporated both in the object

function ln(F ) (via the term log(1−F+)) and in the space FK over which is maximized

(via the constraint F+ ≤ 1).

1.4. Main results. The main results in this paper are the local limiting distribu-

tions of the MLE and the naive estimator. The limiting distribution of F̃nk corre-

sponds to the limiting distribution of the MLE for the reduced current status data

(T,∆k). Thus, it is given by the slope of the convex minorant of a two-sided Brow-

nian motion process plus parabolic drift [9, Theorem 5.1, page 89], known as Cher-

noff’s distribution. The joint limiting distribution of (F̃n1, . . . , F̃nK) follows by noting

that the K Brownian motion processes have a multinomial covariance structure, since

∆|T ∼ MultK+1(1, (F01(T ), . . . , F0,K+1(T ))). The drifted Brownian motion processes

and their convex minorants are specified in Definitions 1.2 and 1.5. The limiting distri-

bution of the naive estimator is given in Theorem 1.6, and is simply a K-dimensional

version of the limiting distribution for current status data. A formal proof of this result

can be found in [14, Section 6.1].

Definition 1.2 Let W = (W1, . . . ,WK) be a K-tuple of two-sided Brownian motion

processes originating from zero, with mean zero and covariances
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E{Wj(t)Wk(s)} = (|s| ∧ |t|)1{st > 0}Σjk, s, t ∈ R, j, k ∈ {1, . . . ,K}, (3)

where Σjk = g(t0)
−1 {1{j = k}F0k(t0) − F0j(t0)F0k(t0)}. Moreover, V = (V1, . . . , VK)

is a vector of drifted Brownian motions, defined by

Vk(t) = Wk(t) + 1
2f0k(t0)t

2, k = 1, . . . ,K. (4)

Following the convention introduced in Section 1.1, we writeW+ =
∑K

k=1Wk and V+ =
∑K

k=1 Vk. Finally, we use the shorthand notation ak = (F0k(t0))
−1, k = 1, . . . ,K + 1.

Remark 1.3 Note that W is the limit of a rescaled version of Wn = (Wn1, . . . ,WnK),

and that V is the limit of a recentered and rescaled version of Vn = (Vn1, . . . , VnK),

where Wnk and Vnk are defined by (17) and (6) of [8]:

Wnk(t) =
∫
u≤t{δk − F0k(t0)}dPn(u, δ), t ∈ R, k = 1, . . . ,K,

Vnk(t) =
∫
u≤t δkdPn(u, δ), t ∈ R, k = 1, . . . ,K.

(5)

Remark 1.4 We define the correlation between Brownian motions Wj and Wk by

rjk =
Σjk√
ΣjjΣkk

= −
√
F0j(t0)F0k(t0)√

(1 − F0j(t0))(1 − F0k(t0))
.

Thus, the Brownian motions are negatively correlated, and this negative correlation

becomes stronger as t0 increases. In particular, it follows that r12 → −1 as F0+(t0) → 1,

in the case of K = 2 competing risks.

Definition 1.5 Let H̃ = (H̃1, . . . , H̃K) be the vector of convex minorants of V , i.e.,

H̃k is the convex minorant of Vk, for k = 1, . . . ,K. Let F̃ = (F̃1, . . . , F̃K) be the vector

of right derivatives of H̃.

Theorem 1.6 Under the assumptions of Section 1.2,

n1/3{F̃n(t0 + n−1/3t) − F0(t0)} →d F̃ (t) in the Skorohod topology on (D(R))K .
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The limiting distribution of the MLE is given by the slopes of a new self-induced

process Ĥ = (Ĥ1, . . . , ĤK), defined in Theorem 1.7. We say that the process Ĥ is

‘self-induced’, since each component Ĥk is defined in terms of the other components

through Ĥ+ =
∑K

j=1 Ĥj. Due to this self-induced nature, existence and uniqueness

of Ĥ need to be formally established (Theorem 1.7). The limiting distribution of the

MLE is given in Theorem 1.8. These results are proved in the remainder of the paper.

Theorem 1.7 There exists an almost surely unique K-tuple Ĥ = (Ĥ1, . . . , ĤK) of

convex functions with right-continuous derivatives F̂ = (F̂1, . . . , F̂K), satisfying the

following three conditions:

(i) akĤk(t) + aK+1Ĥ+(t) ≤ akVk(t) + aK+1V+(t), for k = 1, . . . ,K, t ∈ R,

(ii)
∫ {
akĤk(t) + aK+1Ĥ+(t) − akVk(t) − aK+1V+(t)

}
dF̂k(t) = 0, k = 1, . . . ,K,

(iii) For all M > 0 and k = 1, . . . ,K, there are points τ1k < −M and τ2k > M so

that akĤk(t) + aK+1Ĥ+(t) = akVk(t) + aK+1V+(t) for t = τ1k and t = τ2k.

Theorem 1.8 Under the assumptions of Section 1.2,

n1/3{F̂n(t0 + n−1/3t) − F0(t0)} →d F̂ (t) in the Skorohod topology on (D(R))K .

Thus, the limiting distributions of the MLE and the naive estimator are given by the

slopes of the limiting processes Ĥ and H̃, respectively. In order to compare Ĥ and H̃,

we note that the convex minorant H̃k of Vk can be defined as the almost surely unique

convex function H̃k with right-continuous derivative F̃k that satisfies (i) H̃k(t) ≤ Vk(t)

for all t ∈ R, and (ii)
∫
{H̃k(t)− Ṽk(t)}dF̃k(t) = 0. Comparing this to the definition of

Ĥk in Theorem 1.7, we see that the definition of Ĥk contains the extra terms Ĥ+ and

V+, which come from the term log(1−F+(t)) in the log likelihood (1). The presence of

Ĥ+ in Theorem 1.7 causes Ĥ to be self-induced. In contrast, the processes H̃k for the

naive estimator depend only on Vk, so that H̃ is not self-induced. However, note that
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the processes H̃1, . . . , H̃K are correlated, since the Brownian motions W1, . . . ,WK are

correlated (see Definition 1.2).

1.5. Outline. This paper is organized as follows. In Section 2 we discuss the new

self-induced limiting processes Ĥ and F̂ . We give various interpretations of these pro-

cesses and prove the uniqueness part of Theorem 1.7. Section 3 establishes convergence

of the MLE to its limiting distribution (Theorem 1.8). Moreover, in this proof we au-

tomatically obtain existence of Ĥ, hence completing the proof of Theorem 1.7. This

approach to proving existence of the limiting processes is different from the one fol-

lowed by [5, 6] for the estimation of convex functions, who establish existence and

uniqueness of the limiting process before proving convergence. In Section 4 we com-

pare the estimators in a simulation study, and show that the MLE is superior to

the naive estimator in terms of mean squared error, both for small sample sizes and

asymptotically. We also discuss computation of the estimators in Section 4. Technical

proofs are collected in Section 5.

2. Limiting processes. We now discuss the new self-induced processes Ĥ and

F̂ in more detail. In Section 2.1 we give several interpretations of these processes, and

illustrate them graphically. In Section 2.2 we prove tightness of {F̂k − f0k(t0)t} and

{Ĥk(t) − Vk(t)}, for t ∈ R. These results are used in Section 2.3 to prove almost sure

uniqueness of Ĥ and F̂ .

2.1. Interpretations of Ĥ and F̂ . Let k ∈ {1, . . . ,K}. Theorem 1.7 (i) and the

convexity of Ĥk, imply that akĤk + aK+1Ĥ+ is a convex function that lies below

akVk + aK+1V+. Hence, akĤk + aK+1Ĥ+ is bounded above by the convex minorant of

akVk +aK+1V+. This observation leads directly to the following proposition about the

points of touch between akĤk + aK+1Ĥ+ and akVk + aK+1V+:
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Proposition 2.1 For each k = 1, . . . ,K, we define Nk and N̂k by

Nk = {points of touch between akVk + aK+1V+ and its convex minorant}, (6)

N̂k = {points of touch between akVk + aK+1V+ and akĤk + aK+1Ĥ+}. (7)

Then the following properties hold: (i) N̂k ⊂ Nk, and (ii) At points t ∈ N̂k, the right

and left derivatives of akĤk(t) + aK+1Ĥ+(t) are bounded above and below by the right

and left derivatives of the convex minorant of akVk(t) + aK+1V+(t).

Since akVk + aK+1V+ is a Brownian motion process plus parabolic drift, the point

process Nk is well-known from [4]. On the other hand, little is known about N̂k, due

to the self-induced nature of this process. However, Proposition 2.1 (i) relates N̂k to

Nk, and this allows us to deduce properties of N̂k and the associated processes Ĥk and

F̂k. In particular, Proposition 2.1 (i) implies that F̂k is piecewise constant, and that

Ĥk is piecewise linear (Corollary 2.2). Moreover, Proposition 2.1 (i) is essential for the

proof of Proposition 2.16, where it is used to establish expression (30). Proposition 2.1

(ii) is not used in the sequel.

Corollary 2.2 For each k ∈ {1, . . . ,K}, the following properties hold almost surely:

(i) N̂k has no condensation points in a finite interval, and (ii) F̂k is piecewise constant

and Ĥk is piecewise linear.

Proof. Nk is a stationary point process which, with probability one, has no condensa-

tion points in a finite interval [see 4]. Together with Proposition 2.1 (i), this yields that

with probability one, N̂k has no condensation points in a finite interval. Conditions

(i) and (ii) of Theorem 1.7 imply that F̂k can only increase at points t ∈ Nk. Hence,

F̂k is piecewise constant and Ĥk is piecewise linear. �

Thus, conditions (i) and (ii) of Theorem 1.7 imply that akĤk+aK+1Ĥ+ is a piecewise

linear convex function, lying below akVk + aK+1V+, and touching akVk + aK+1V+
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whenever F̂k jumps. We illustrate these processes using the following example with

K = 2 competing risks:

Example 2.3 Let K = 2, and let T be independent of (X,Y ). Let T , Y and X|Y be

distributed as follows: G(t) = 1 − exp(−t), P (Y = k) = k/3 and P (X ≤ t|Y = k) =

1 − exp(−kt) for k = 1, 2. This yields F0k(t) = (k/3){1 − exp(−kt)} for k = 1, 2.

Figure 1 shows the limiting processes akVk +aK+1V+, akĤk +aK+1Ĥ+, and F̂k, for

this model with t0 = 1. The relevant parameters at the point t0 = 1 are:

F01(1) = 0.21, F02(1) = 0.58, f01(1) = 0.12, f02(1) = 0.18, g(1) = 0.37.

The processes shown in Figure 1 are approximations, obtained by computing the MLE

for sample size n = 100,000 (using the algorithm described in Section 4), and then

computing the localized processes V loc
nk and Ĥ loc

nk (see Definition 3.1 ahead).

Note that F̂1 has a jump around −3. This jump causes a change of slope in akĤk +

aK+1Ĥ+ for both components k ∈ {1, 2}, but only for k = 1 is there a touch between

akĤk +aK+1Ĥ+ and akVk +aK+1V+. Similarly, F̂2 has a jump around −1. Again, this

causes a change of slope in akĤk + aK+1Ĥ+ for both components k ∈ {1, 2}, but only

for k = 2 is there a touch between akĤk +aK+1Ĥ+ and akVk +aK+1V+. The fact that

akĤk + aK+1Ĥ+ has changes of slope without touching akVk + aK+1V+ implies that

akĤk + aK+1Ĥ+ is not the convex minorant of akVk + aK+1V+.

It is possible to give convex minorant characterizations of Ĥ, but again these charac-

terizations are self-induced. Proposition 2.4 (a) characterizes Ĥk in terms of
∑K

j=1 Ĥj,

and Proposition 2.4 (b) characterizes Ĥk in terms of
∑K

j=1,j 6=k Ĥj.

Proposition 2.4 Ĥ satisfies the following convex minorant characterizations:

(a) For each k = 1, . . . ,K, Ĥk(t) is the convex minorant of

Vk(t) +
aK+1

ak
{V+(t) − Ĥ+(t)}. (8)
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Fig 1. Limiting processes for the model given in Example 2.3 for t0 = 1. The top row shows the
processes akVk + aK+1V+ and akĤk + aK+1Ĥ+, around the dashed parabolic drifts akf0k(t0)t

2/2 +

aK+1f0+(t0)t
2/2. The bottom row shows the slope processes F̂k, around dashed lines with slope f0k(t0).

The circles and crosses indicate jump points of F̂1 and F̂2, respectively. Note that akĤk + aK+1Ĥ+

touches akVk + aK+1V+ whenever F̂k has a jump, for k = 1, 2.
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(b) For each k = 1, . . . ,K, Ĥk(t) is the convex minorant of

Vk(t) +
aK+1

ak + aK+1
{V (−k)

+ (t) − Ĥ
(−k)
+ (t)}, (9)

where V
(−k)
+ (t) =

∑K
j=1,j 6=k Vj(t) and Ĥ

(−k)
+ (t) =

∑K
j=1,j 6=k Ĥj(t).

Proof. Conditions (i) and (ii) of Theorem 1.7 are equivalent to:

Ĥk(t) ≤ Vk(t) +
aK+1

ak
{V+(t) − Ĥ+(t)}, t ∈ R,

∫ {
Ĥk(t) − Vk(t) −

aK+1

ak
{V+(t) − Ĥ+(t)}

}
dF̂k(t) = 0,

for k = 1, . . . ,K. This gives characterization (a). Similarly, characterization (b) holds

since conditions (i) and (ii) of Theorem 1.7 are equivalent to:

Ĥk(t) ≤ Vk(t) +
aK+1

ak + aK+1
{V (−k)

+ (t) − Ĥ
(−k)
+ (t)}, t ∈ R,

∫ {
Ĥk(t) − Vk(t) −

aK+1

ak + aK+1
{V (−k)

+ (t) − Ĥ
(−k)
+ (t)}

}
dF̂k(t) = 0,

for k = 1, . . . ,K. �

Comparing the MLE and the naive estimator, we see that H̃k is the convex minorant

of Vk, and Ĥk is the convex minorant of Vk + (aK+1/ak){V+ − Ĥ+}. These processes

are illustrated in Figure 2. The difference between the two estimators lies in the extra

term (aK+1/ak){V+ − Ĥ+}, which is shown in the bottom row of Figure 2. Apart

from the factor aK+1/ak, this term is the same for all k = 1, . . . ,K. Furthermore,

aK+1/ak = F0k(t0)/F0,K+1(t0) is an increasing function of t0, so that the extra term

(aK+1/ak){V+ − Ĥ+} is more important for large values of t0. This provides an expla-

nation for the simulation results shown in Figure 3 of Section 4, which indicate that

MLE is superior to the naive estimator in terms of mean squared error, especially for

large values of t. Finally, note that (aK+1/ak){V+− Ĥ+} appears to be nonnegative in

Figure 2. In Proposition 2.5 we prove that this is indeed the case. In turn, this result

implies that H̃k ≤ Ĥk (Corollary 2.6), as shown in the top row of Figure 2.
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Proposition 2.5 Ĥ+(t) ≤ V+(t) for all t ∈ R.

Proof. Theorem 1.7 (i) can be written as

Ĥk(t) +
F0k(t0)

1 − F0+(t0)
Ĥ+(t) ≤ Vk(t) +

F0k(t0)

1 − F0+(t0)
V+(t), k = 1, . . . ,K, t ∈ R.

The statement then follows by summing over k = 1, . . . ,K. �

Corollary 2.6 H̃k(t) ≤ Ĥk(t) for all k = 1, . . . ,K and t ∈ R.

Proof. Let k ∈ {1, . . . ,K} and recall that H̃k is the convex minorant of Vk. Since

V+ − Ĥ+ ≥ 0 by Proposition 2.5, it follows that H̃k is a convex function below Vk +

(aK+1/ak){V+ − Ĥ+}. Hence, it is bounded above by the convex minorant Ĥk of

Vk + (aK+1/ak){V+ − Ĥ+}. �

Finally, we write the characterization of Theorem 1.7 in a way that is analogous

to the characterization of the MLE in Proposition 4.8 of [8]. We do this to make a

connection between the finite sample situation and the limiting situation. Using this

connection, the proofs for the tightness results in Section 2.2 are similar to the proofs

for the local rate of convergence in [8, Section 4.3]. We need the following definition:

Definition 2.7 For k = 1, . . . ,K and t ∈ R, we define

F̄0k(t) = f0k(t0)t and Sk(t) = akWk(t) + aK+1W+(t). (10)

Note that Sk is the limit of a rescaled version of the process Snk = akWnk +aK+1Wn+,

defined in (18) of [8].

Proposition 2.8 For all k = 1, . . . ,K, for each point τk ∈ N̂k (defined in (7)) and

for all s ∈ R we have:
∫ s

τk

{
ak{F̂k(u) − F̄0k(u)} + aK+1{F̂+(u) − F̄0+(u)}

}
du ≤

∫ s

τk

dSk(u), (11)

and equality must hold if s ∈ N̂k.
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Fig 2. Limiting processes for the model given in Example 2.3 for t0 = 1. The top row shows the
processes Vk and their convex minorants H̃k (grey), together with Vk +(aK+1/ak)(V+− Ĥ+) and their

convex minorants Ĥk (black). The dashed lines depict the parabolic drift f0k(t0)t
2/2. The middle row

shows the slope processes F̃k (grey) and F̂k (black), which follow the dashed lines with slope f0k(t0).

The bottom row shows the ‘correction term’ (aK+1/ak)(V+ − Ĥ+) for the MLE.
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Proof. Let k ∈ {1, . . . ,K}. By Theorem 1.7 (i), we have

akĤk(t) + aK+1Ĥ+(t) ≤ akVk(t) + aK+1V+(t), t ∈ R,

where equality holds at t = τk ∈ N̂k. Subtracting this expression for t = τk from the

expression for t = s, we get:
∫ s

τk

{
akF̂k(u) + aK+1F̂+(u)

}
du ≤

∫ s

τk

{akdVk(u) + aK+1dV+(u)} .

The result then follows by subtracting
∫ s
τk

{
akF̄0k(u) + aK+1F̄0+(u)

}
du from both

sides, and using that dVk(u) = F̄0k(u)du + dWk(u) (see (4)). �

2.2. Tightness of Ĥ and F̂ . The main results of this section are tightness of

{F̂k(t) − F̄0k(t)} (Proposition 2.9) and {Ĥk(t) − Vk(t)} (Corollary 2.15), for t ∈ R.

These results are used in Section 2.3 to prove that Ĥ and F̂ are almost surely unique.

Proposition 2.9 For every ǫ > 0 there is an M > 0 such that

P
(∣∣∣F̂k(t) − F̄0k(t)

∣∣∣ ≥M
)
< ǫ, for k = 1, . . . ,K, t ∈ R.

Proposition 2.9 is the limit version of Theorem 4.17 of [8], which gave the n1/3 local

rate of convergence of F̂nk. Hence, analogously to [8, Proof of Theorem 4.17], we first

prove a stronger tightness result for the sum process {F̂+(t) − F̄0+(t)}, t ∈ R.

Proposition 2.10 Let β ∈ (0, 1) and define

v(t) =





1, if |t| ≤ 1,

|t|β , if |t| > 1.
(12)

Then for every ǫ > 0 there is an M > 0 such that

P


sup

t∈R

∣∣∣F̂+(t) − F̄0+(t)
∣∣∣

v(t− s)
≥M


 < ǫ, for s ∈ R.
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Proof. The organization of this proof is similar to the proof of Theorem 4.10 of [8].

Let ǫ > 0. We only prove the result for s = 0, since the proof for s 6= 0 is equivalent,

due to stationarity of the increments of Brownian motion.

It is sufficient to show that we can choose M > 0 such that

P
(
∃t ∈ R : F̂+(t) /∈ (F̄0+(t−Mv(t)), F̄0+(t+Mv(t)))

)

= P
(
∃t ∈ R :

∣∣∣F̂+(t) − F̄0+(t)
∣∣∣ ≥ f0+(t0)Mv(t)

)
< ǫ.

In fact, we only prove that there is an M such that

P
(
∃t ∈ [0,∞) : F̂+(t) ≥ F̄0+(t+Mv(t))

)
<
ǫ

4
,

since the proofs for the inequality F̂+(t) ≤ F̄0+(t −Mv(t)) and the interval (−∞, 0]

are analogous. In turn, it is sufficient to show that there is an m1 > 0 such that

P
(
∃t ∈ [j, j + 1) : F̂+(t) ≥ F̄0+(t+Mv(t))

)
≤ pjM , j ∈ N, M > m1, (13)

where pjM satisfies
∑∞

j=0 pjM → 0 as M → ∞. We prove (13) for

pjM = d1 exp
{
−d2(Mv(j))3

}
, (14)

where d1 and d2 are positive constants. Using the monotonicity of F̂+, we only need

to show that P (AjM ) ≤ pjM for all j ∈ N and M > m1, where

AjM = {F̂+(j + 1) ≥ F̄0+(sjM)} and sjM = j +Mv(j). (15)

We now fix M > 0 and j ∈ N, and define τkj = max{N̂k ∩ (−∞, j + 1]}, for k =

1, . . . ,K. These points are well defined by Theorem 1.7 (iii) and Corollary 2.2 (i).

Without loss of generality, we assume that the sub-distribution functions are labeled

so that τ1j ≤ · · · ≤ τKj. On the event AjM , there is a k ∈ {1, . . . ,K} such that

F̂k(j + 1) ≥ F̄0k(sjM). Hence, we can define ℓ ∈ {1, . . . ,K} such that
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F̂k(j + 1) < F̄0k(sjM), k = ℓ+ 1, . . . ,K, (16)

F̂ℓ(j + 1) ≥ F̄0ℓ(sjM ). (17)

Recall that F̂ must satisfy (11). Hence, P (AjM ) equals

P

(∫ sjM

τℓj

{
aℓ{F̂ℓ(u) − F̄0ℓ(u)} + aK+1{F̂+(u) − F̄0+(u)}

}
du ≤

∫ sjM

τℓj

dSℓ(u), AjM

)

≤ P

(∫ sjM

τℓj

aℓ{F̂ℓ(u) − F̄0ℓ(u)}du ≤
∫ sjM

τℓj

dSℓ(u), AjM

)
(18)

+ P

(∫ sjM

τℓj

{F̂+(u) − F̄0+(u)}du ≤ 0, AjM

)
. (19)

Using the definition of τℓj and the fact that F̂ℓ is monotone nondecreasing and piecewise

constant (Corollary 2.2), it follows that on the event AjM we have, F̂ℓ(u) ≥ F̂ℓ(τℓj) =

F̂ℓ(j + 1) ≥ F̄0ℓ(sjM ), for u ≥ τℓj. Hence, we can bound (18) above by

P

(∫ sjM

τℓj

aℓ

{
F̄0ℓ(sjM) − F̄0ℓ(u)

}
du ≤

∫ sjM

τℓj

dSℓ(u)

)

= P

(
1
2f0ℓ(t0)(sjM − τℓj)

2 ≤
∫ sjM

τℓj

dSℓ(u)

)

≤ P

(
inf

w≤j+1

{
1
2f0ℓ(t0)(sjM − w)2 −

∫ sjM

w
dSℓ(u)

}
≤ 0

)
.

For m1 sufficiently large, this probability is bounded above by pjM/2 for all M > m1

and j ∈ N, by Lemma 2.11 below. Similarly, (19) is bounded by pjM/2, using Lemma

2.12 below. �

Lemmas 2.11 and 2.12 are the key lemmas in the proof of Proposition 2.10. They

are the limit versions of Lemmas 4.13 and 4.14 of [8], and their proofs are given in

Section 5. The basic idea of Lemma 2.11 is that the positive quadratic drift b(sjM−w)2

dominates the Brownian motion process Sk and the term C(sjM − w)3/2. Note that

the lemma also holds when C(sjM − w)3/2 is omitted, since this term is positive for

M > 1. In fact, in the proof of Proposition 2.10 we only use the lemma without this
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term, but we need the term C(sjM −w)3/2 in the proof of Proposition 2.9 ahead. The

proof of Lemma 2.12 relies on the system of component processes. Since it is very

similar to the proof of Lemma 4.14, we only point out the differences in Section 5.

Lemma 2.11 Let C > 0 and b > 0. Then there exists an m1 > 0 such that for all

k = 1, . . . ,K, M > m1 and j ∈ N,

P

(
inf

w≤j+1

{
b(sjM − w)2 −

∫ sjM

w
dSk(u) − C(sjM − w)3/2

}
≤ 0

)
≤ pjM ,

where sjM = j +Mv(j), and Sk(·), v(·) and pjM are defined by (10), (12) and (14),

respectively.

Lemma 2.12 Let ℓ be defined by (16) and (17). There is an m1 > 0 such that

P

(∫ sjM

τℓj

{F̂+(u) − F̄0+(u)}du ≤ 0, AjM

)
≤ pjM , for M > m1, j ∈ N,

where sjM = j + Mv(j), τℓj = max{N̂ℓ ∩ (−∞, j + 1]}, and v(·), pjM and AjM are

defined by (12), (14) and (15), respectively.

In order to prove tightness of {F̂k(t) − F̄0k(t)}, t ∈ R, we only need Proposition

2.10 to hold for one value of β ∈ (0, 1), analogously to [8, Remark 4.12]. We therefore

fix β = 1/2, so that v(t) = 1 ∨
√

|t|. Then Proposition 2.10 leads to the following

corollary, which is a limit version of Corollary 4.16 of [8]:

Corollary 2.13 For every ǫ > 0 there is a C > 0 such that

P



 sup

u∈R+

∫ s
s−u

∣∣∣F̂+(t) − F̄0+(t)
∣∣∣ dt

u ∨ u3/2
≥ C



 < ǫ, for s ∈ R.

This corollary allows us to complete the proof of Proposition 2.9.

Proof of Proposition 2.9. Let ǫ > 0 and let k ∈ {1, . . . ,K}. It is sufficient to

show that there is an M > 0 such that P (F̂k(t) ≥ F̄0k(t + M)) < ǫ and P (F̂k(t) ≤
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F̄0k(t−M)) < ǫ for all t ∈ R. We only prove the first inequality, since the proof of the

second one is analogous. Thus, let t ∈ R and M > 1, and define

BkM = {F̂k(t) ≥ F̄0k(t+M)} and τk = max{N̂k ∩ (−∞, t]}.

Note that τk is well-defined because of Theorem 1.7 (iii) and Corollary 2.2 (i). We

want to prove that P (BkM) < ǫ. Recall that F̂ must satisfy (11). Hence,

P (BkM ) = P

(∫ t+M

τk

{
ak{F̂k(u) − F̄0k(u)} + aK+1{F̂+(u) − F̄0+(u)}

}
du

≤
∫ t+M

τk

dSk(u), BkM

)
. (20)

By Corollary 2.13, we can choose C > 0 such that, with high probability,
∫ t+M

τk

∣∣∣F̂+(u) − F̄0+(u)
∣∣∣ du ≤ C(t+M − τk)

3/2, (21)

uniformly in τk ≤ t, using that u3/2 > u for u > 1. Moreover, on the event BkM , we

have
∫ t+M
τk

{F̂k(u) − F̄0k(u)}du ≥
∫ t+M
τk

{F̄0k(t + M) − F̄0k(u)}du = f0k(t0)(t + M −

τk)
2/2, yielding a positive quadratic drift. The statement now follows by combining

these facts with (20), and applying Lemma 2.11. �

Proposition 2.9 leads to the following corollary about the distance between the jump

points of F̂k. The proof is analogous to the proof of Corollary 4.19 of [8], and is

therefore omitted.

Corollary 2.14 For all k = 1, . . . ,K, let τ−k (s) and τ+
k (s) be, respectively, the largest

jump point ≤ s and the smallest jump point > s of F̂k. Then for every ǫ > 0 there is

a C > 0 such that P
(
τ+
k (s) − τ−k (s) > C

)
< ǫ, for k = 1, . . . ,K, s ∈ R.

Combining Theorem 2.9 and Corollary 2.14 yields tightness of {Ĥk(t) − Vk(t)}:

Corollary 2.15 For every ǫ > 0 there is an M > 0 such that

P
(∣∣∣Ĥk(t) − Vk(t)

∣∣∣ > M
)
< ǫ, for t ∈ R.



CURRENT STATUS COMPETING RISKS DATA (II) 19

2.3. Uniqueness of Ĥ and F̂ . We now use the tightness results of Section 2.2 to

prove the uniqueness part of Theorem 1.7, as given in Proposition 2.16. The existence

part of Theorem 1.7 will follow in Section 3.

Proposition 2.16 Let Ĥ and H satisfy the conditions of Theorem 1.7. Then Ĥ ≡ H

almost surely.

The proof of Proposition 2.16 relies on the following lemma:

Lemma 2.17 Let Ĥ = (Ĥ1, . . . , ĤK) and H = (H1, . . . ,HK) satisfy the conditions

of Theorem 1.7, and let F̂ = (F̂1, . . . , F̂K) and F = (F1, . . . , FK) be the corresponding

derivatives. Then

K∑

k=1

ak

∫
{Fk(t) − F̂k(t)}2dt+ aK+1

∫
{F+(t) − F̂+(t)}2dt

≤ lim inf
m→∞

K∑

k=1

{ψk(m) − ψk(−m)}, (22)

where ψk : R → R is defined by

ψk(t) = {Fk(t) − F̂k(t)}
[
ak{Hk(t) − Ĥk(t)} + aK+1{H+(t) − Ĥ+(t)}

]
. (23)

Proof. We define the following functional:

φm(F ) =

K∑

k=1

ak

{
1

2

∫ m

−m
F 2

k (t)dt −
∫ m

−m
Fk(t)dVk(t)

}

+ aK+1

{
1

2

∫ m

−m
F 2

+(t)dt −
∫ m

−m
F+(t)dV+(t)

}
, m ∈ N.

Then, letting

Dk(t) = ak{Hk(t) − Vk(t)} + aK+1{H+(t) − V+(t)}, (24)

D̂k(t) = ak{Ĥk(t) − Vk(t)} + aK+1{Ĥ+(t) − V+(t)}, (25)

and using F 2
k − F̂ 2

k = (Fk − F̂k)
2 + 2F̂k(Fk − F̂k), we have
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φm(F ) − φm(F̂ ) =

K∑

k=1

ak

2

∫ m

−m
{Fk(t) − F̂k(t)}2dt+

aK+1

2

∫ m

−m
{F+(t) − F̂+(t)}2dt

+
K∑

k=1

∫ m

−m
{Fk(t) − F̂k(t)}dD̂k(t). (26)

Using integration by parts, we rewrite the last term of the right side of (26) as:
K∑

k=1

{Fk(t) − F̂k(t)}D̂k(t)

∣∣∣∣
m

−m

−
K∑

k=1

∫ m

−m
D̂k(t)d{Fk(t) − F̂k(t)}

≥
K∑

k=1

{Fk(t) − F̂k(t)}D̂k(t)

∣∣∣∣
m

−m

. (27)

The inequality on the last line follows from: (a)
∫m
−m D̂k(t)dF̂k(t) = 0 by Theorem

1.7 (ii), and (b)
∫m
−m D̂k(t)dFk(t) ≤ 0, since D̂k(t) ≤ 0 by Theorem 1.7 (i) and Fk is

monotone nondecreasing. Combining (26) and (27), and using the same expressions

with F and F̂ interchanged, yields

0 = φm(F̂ ) − φm(F ) + φm(F ) − φm(F̂ )

≥
K∑

k=1

ak

∫ m

−m
{Fk(t) − F̂k(t)}2dt + aK+1

∫ m

−m
{F+(t) − F̂+(t)}2dt

+
K∑

k=1

{F̂k(t) − Fk(t)}Dk(t)

∣∣∣∣
m

−m

+
K∑

k=1

{Fk(t) − F̂k(t)}D̂k(t)

∣∣∣∣
m

−m

.

By writing out the right side of this expression, we find that it is equivalent to
K∑

k=1

ak

∫ m

−m
{Fk(t) − F̂k(t)}2dt+ aK+1

∫ m

−m
{F+(t) − F̂+(t)}2dt

≤
K∑

k=1

[
{Fk(m) − F̂k(m)}{Dk(m) − D̂k(m)}

− {Fk(−m) − F̂k(−m)}{Dk(−m) − D̂k(−m)}
]
. (28)

This inequality holds for all m ∈ N, and hence we can take lim infm→∞. The left side

of (28) is a monotone sequence in m, so that we can replace lim infm→∞ by limm→∞.

The result then follows from the definitions of ψk, Dk, and D̂k in (23) – (25). �
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We are now ready to prove Proposition 2.16. The idea of the proof is to show that

the right side of (22) is almost surely equal to zero. We prove this in two steps. First,

we show that it is of order Op(1), using the tightness results of Proposition 2.9 and

Corollary 2.15. Next, we show that the right side is almost surely equal to zero.

Proof of Proposition 2.16. We first show that the right side of (22) is of order

Op(1). Let k ∈ {1, . . . ,K}, and note that Proposition 2.9 yields that {Fk(m)−F̄0k(m)}

and {F̂k(m) − F̄0k(m)} are of order Op(1), so that also {Fk(m) − F̂k(m)} = Op(1).

Similarly, Corollary 2.15 implies that {Hk(m) − Ĥk(m)} = Op(1). Using the same

argument for −m, this proves that the right side of (22) is of order Op(1).

We now show that the right side of (22) is almost surely equal to zero. Let k ∈

{1, . . . ,K}. We only consider |Fk(m)−F̂k(m)||Hk(m)−Ĥk(m)|, since the term |Fk(m)−

F̂k(m)||H+(m)− Ĥ+(m)| and the point −m can be treated analogously. It is sufficient

to show that

lim inf
m→∞

P
(∣∣∣Fk(m) − F̂k(m)

∣∣∣
∣∣∣Hk(m) − Ĥk(m)

∣∣∣ > η
)

= 0, for all η > 0. (29)

Let τmk be the last jump point of Fk before m, and let τ̂mk be the last jump point of

F̂k before m. We define the following events

Em = Em(ǫ, δ, C) = E1m(ǫ) ∩ E2m(δ) ∩ E3m(C), where

E1m = E1m(ǫ) =

{∫ ∞

τmk∨τ̂mk

{Fk(t) − F̂k(t)}2dt < ǫ

}
,

E2m = E2m(δ) = {m− (τmk ∨ τ̂mk) > δ} ,

E3m = E3m(C) =
{∣∣∣Hk(m) − Ĥk(m)

∣∣∣ < C
}
.

Let ǫ1 > 0 and ǫ2 > 0. Since the right side of (22) is of order Op(1), it follows that
∫
{Fk(t) − F̂k(t)}2dt = Op(1) for every k ∈ {1, . . . ,K}. This implies that

∫∞

m {Fk(t) −

F̂k(t)}2dt →p 0 as m → ∞. Together with the fact that m − {τmk ∨ τ̂mk} = Op(1)
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(Corollary 2.14), this implies that there is an m1 > 0 such that P (E1m(ǫ1)
c) < ǫ1 for

all m > m1. Next, recall that the points of jump of Fk and F̂k are contained in the set

Nk, defined in Proposition 2.1. Letting τ ′mk = max{Nk ∩ (−∞,m]}, we have

P (Ec
2m(δ)) ≤ P (m− τ ′mk < δ). (30)

The distribution of m− τ ′mk is independent of m, non-degenerate and continuous [see

4]. Hence, we can choose δ > 0 such that the probabilities in (30) are bounded by

ǫ2/2 for all m. Furthermore, by tightness of {Hk(m)− Ĥk(m)}, there is a C > 0 such

that P (E3m(C)c) < ǫ2/2 for all m. This implies that P (Em(ǫ1, δ, C)c) < ǫ1 + ǫ2 for

m > m1.

Returning to (29), we now have for η > 0:

lim inf
m→∞

P
(∣∣∣Fk(m) − F̂k(m)

∣∣∣
∣∣∣Hk(m) − Ĥk(m)

∣∣∣ > η
)

≤ ǫ1 + ǫ2 + lim inf
m→∞

P
(∣∣∣Fk(m) − F̂k(m)

∣∣∣
∣∣∣Hk(m) − Ĥk(m)

∣∣∣ > η, Em(ǫ1, δ, C)
)

≤ ǫ1 + ǫ2 + lim inf
m→∞

P
(∣∣∣Fk(m) − F̂k(m)

∣∣∣ >
η

C
, Em(ǫ1, δ, C)

)
,

using the definition of E3m(C) in the last line. The probability in the last line equals

zero for ǫ1 small. To see this, note that Fk(m) − F̂k(m) > η/C, m− {τmk ∨ τ̂mk} > δ,

and the fact that Fk and F̂k are piecewise constant on m− {τkm ∨ τ̂km} imply that
∫ ∞

τmk∨τ̂mk

{Fk(u) − F̂k(u)}2du ≥
∫ m

τmk∨τ̂mk

{Fk(u) − F̂k(u)}2du >
η2δ

C2
,

so that E1m(ǫ1) cannot hold for ǫ1 < η2δ/C2.

This proves that the right side of (22) equals zero, almost surely. Together with the

right-continuity of Fk and F̂k, this implies that Fk ≡ F̂k almost surely, for k = 1, . . . ,K.

Since Fk and F̂k are the right derivatives of Hk and Ĥk, this yields that Hk = Ĥk + ck

almost surely. Finally, both Hk and Ĥk satisfy conditions (i) and (ii) of Theorem 1.7

for k = 1, . . . ,K, so that c1 = · · · = cK = 0 and H ≡ Ĥ almost surely. �
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3. Proof of the limiting distribution of the MLE. In this section we prove

that the MLE converges to the limiting distribution given in Theorem 1.8. In the

process, we also prove the existence part of Theorem 1.7.

First, we recall from [8, Section 2.2] that the naive estimators F̃nk, k = 1, . . . ,K,

are unique at t ∈ {T1, . . . , Tn}, and that the MLEs F̂nk, k = 1, . . . ,K, are unique

at t ∈ TK , where Tk =
{
Ti, i = 1, . . . , n : ∆i

k + ∆i
K+1 > 0

}
∪
{
T(n)

}
for k = 1, . . . ,K

[see 8, Proposition 2.3]. To avoid issues with non-uniqueness, we adopt the convention

that F̃nk and F̂nk, k = 1, . . . ,K, are piecewise constant and right-continuous, with

jumps only at the points at which they are uniquely defined. This convention does not

affect the asymptotic properties of the estimators under the assumptions of Section

1.2. Recalling the definitions of G and Gn given in Section 1.1, we now define the

following localized processes:

Definition 3.1 For each k = 1, . . . ,K, we define:

F̂ loc
nk (t) = n1/3{F̂nk(t0 + n−1/3t) − F0k(t0)}, (31)

V loc
nk (t) =

n2/3

g(t0)

∫

u∈(t0,t0+n−1/3t]
{δk − F0k(t0)}dPn(u, δ), , (32)

H̄ loc
nk (t) =

n2/3

g(t0)

∫ t0+n−1/3t

t0

{F̂nk(u) − F0k(t0)}dG(u), (33)

Ĥ loc
nk (t) = H̄ loc

nk (t) +
cnk

ak
− F0k(t0)

K∑

k=1

cnk

ak
, (34)

where cnk is the difference between akV
loc
nk + aK+1V

loc
n+ and akH

loc
nk + aK+1H

loc
n+ at the

last jump point τnk of F̂ loc
nk before zero, i.e.,

cnk = akV
loc
nk (τnk−) + aK+1V

loc
n+ (τnk−) − akH̄

loc
nk (τnk) − aK+1H̄

loc
n+(τnk). (35)

Moreover, we define the vectors F̂ loc
n = (F̂ loc

n1 , . . . , F̂
loc
nK), V loc

n = (V loc
n1 , . . . , V

loc
nK), and

Ĥ loc
n = (Ĥ loc

n1 , . . . , Ĥ
loc
nK).
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Note that Ĥ loc
nk differs from H̄ loc

nk by a vertical shift, and that (Ĥ loc
nk )′(t) = (H̄ loc

nk )′(t) =

F̂ loc
nk (t) + o(1). We now show that the MLE satisfies the characterization given in

Proposition 3.2, which can be viewed as a recentered and rescaled version of the

characterization in Proposition 4.8 of [8]. In the proof of Theorem 1.8 we will see

that, as n→ ∞, this characterization converges to the characterization of the limiting

process given in Theorem 1.7.

Proposition 3.2 Let the assumptions of Section 1.2 hold, and let m > 0. Then

akĤ
loc
nk (t) + aK+1Ĥ

loc
n+(t) ≤ akV

loc
nk (t−) + aK+1V

loc
n+ (t−) +Rloc

nk (t), for t ∈ [−m,m],
∫ m

−m
{akV

loc
nk (t−) + aK+1dV

loc
n+ (t−) +Rloc

nk (t) − akĤ
loc
nk (t) − aK+1Ĥ

loc
n+(t)}dF̂ loc

nk (t) = 0,

where Rloc
nk (t) = op(1), uniformly in t ∈ [−m,m].

Proof. Let m > 0 and let τnk be the last jump point of F̂nk before t0. It follows from

the characterization of the MLE in Proposition 4.8 of [8] that
∫ s

τnk

{
ak{F̂nk(u) − F0k(u)} + aK+1{F̂n+(u) − F0+(u)}

}
dG(u)

≤
∫

[τnk,s)

{
ak{δk − F0k(u)} + aK+1{δ+ − F0+(u)}

}
dPn(u, δ) +Rnk(τnk, s), (36)

where equality holds if s is a jump point of F̂nk. Using that t0 − τnk = Op(n
−1/3) by

[8, Corollary 4.19], it follows from [8, Corollary 4.20] that Rnk(τnk, s) = op(n
−2/3),

uniformly in s ∈ [t0 −m1n
1/3, t0 +m1n

−1/3]. We now add
∫ s

τnk

{
ak{F0k(u) − F0k(t0)} + aK+1{F0+(u) − F0+(t0)}

}
dG(u)

to both sides of (36). This gives
∫ s

τnk

{
ak{F̂nk(u) − F0k(t0)} + aK+1{F̂n+(u) − F0+(t0)}

}
dG(u)

≤
∫

[τnk ,s)

{
ak{δk − F0k(t0)} + aK+1{δ+ − F0+(t0)}

}
dPn(u, δ) +R′

nk(τnk, s), (37)
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where equality holds if s is a jump point of F̂nk, and where

R′
nk(s, t) = Rnk(s, t) + ρnk(s, t), with

ρnk(s, t) =

∫

[s,t)

{
ak{F0k(t0) − F0k(u)} + aK+1{F0+(t0) − F0+(u)}

}
d(Gn −G)(u).

Note that ρnk(τnk, s) = op(n
−2/3), uniformly in s ∈ [t0−m1n

−1/3, t0 +m1n
−1/3], using

(29) in [8, Lemma 4.9] and t0 − τnk = Op(n
−1/3) by [8, Corollary 4.19]. Hence, the

remainder term R′
nk in (37) is of the same order as Rnk. Next, consider (37), and write

∫
[τnk,s) =

∫
[τnk ,t0)

+
∫
[t0,s), let s = t0 + n−1/3t, and multiply by n2/3/g(t0). This yields

cnk + akH̄nk(t) + aK+1H̄n+(t) ≤ Rloc
nk (t) + akV

loc
nk (t−) + aK+1V

loc
n+ (t−), (38)

where equality holds if t is a jump point of F̂ loc
nk and where

Rloc
nk (t) = {n2/3/g(t0)}R′

nk(τnk, t0 + n−1/3t), k = 1, . . . ,K. (39)

Note that Rloc
nk (t) = op(1) uniformly in t ∈ [−m1,m1], using again that t0 − τnk =

Op(n
−1/3). Moreover, note that Rloc

nk is left-continuous. We now remove the random

variables cnk by solving the following system of equations for H1, . . . ,HK :

cnk + akH̄nk(t) + aK+1H̄n+(t) = akHnk(t) + aK+1Hn+(t), k = 1, . . . ,K.

The unique solution is Hnk(t) = H̄nk(t) + (cnk/ak) +
∑K

k=1(cnk/ak) ≡ Ĥ loc
nk (t). �

Definition 3.3 We define Ûn = (Rloc
n , V loc

n , Ĥ loc
n , F̂ loc

n ), where R loc
n = (R loc

n1 , . . . , R
loc
nK)

with Rloc
nk defined by (39), and where V loc

n , Ĥ loc
n and F̂ loc

n are given in Definition 34.

We use the notation ·|[−m,m] to denote that processes are restricted to [−m,m].

We now define a space for Ûn|[−m,m]:

Definition 3.4 For any interval I, let D−(I) be the collection of ‘caglad’ functions on

I (left-continuous with right limits), and let C(I) denote the collection of continuous

functions on I. For m ∈ N, we define the space
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E[−m,m] = (D−[−m,m])K × (D[−m,m])K × (C[−m,m])K × (D[−m,m])K

≡ I × II × III × IV,

endowed with the product topology induced by the uniform topology on I × II× III,

and the Skorohod topology on IV .

Proof of Theorem 1.8. Analogously to the work of [6, Proof of Theorem 6.2] on the

estimation of convex densities, we first show that Ûn|[−m,m] is tight in E[−m,m] for

each m ∈ N. Since Rloc
nk |[−m,m] = op(1) by Proposition 3.2, it follows that Rloc

n is tight

in (D−[−m,m])K endowed with the uniform topology. Next, note that the subset of

D[−m,m] consisting of absolutely bounded nondecreasing functions is compact in the

Skorohod topology. Hence, the local rate of convergence of the MLE [see 8, Theorem

4.17] and the monotonicity of F̂ loc
nk , k = 1, . . . ,K, yield tightness of F̂ loc

n |[−m,m] in the

space (D[−m,m])K endowed with the Skorohod topology. Moreover, since the set of

absolutely bounded continuous functions with absolutely bounded derivatives is com-

pact in C[−m,m] endowed with the uniform topology, it follows that H̄ loc
n |[−m,m] is

tight in (C[−m,m])K endowed with the uniform topology. Furthermore, V loc
n |[−m,m]

is tight in (D[−m,m])K endowed with the uniform topology, since V loc
n (t) →d V (t)

uniformly on compacta. Finally, cn1, . . . , cnK are tight since each cnk is the difference

of quantities that are tight, using that t0 − τnk = Op(n
−1/3) by [8, Corollary 4.19].

Hence, also Ĥ loc
n |[−m,m] is tight in (C[−m,m])K endowed with the uniform topology.

Combining everything, it follows that Ûn|[−m,m] is tight in E[−m,m] for each m ∈ N.

It now follows by a diagonal argument that any subsequence Ûn′ of Ûn has a further

subsequence Ûn′′ that converges in distribution to a limit

U = (0, V,H, F ) ∈ (C(R))K × (C(R))K × (C(R))K × (D(R))K .

Using a representation theorem (see, e.g., [2], [15, Representation Theorem 13, page
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71], or [17, Theorem 1.10.4, page 59]), we can assume that Ûn′′ →a.s. U . Hence, F = H ′

at continuity points of F , since the derivatives of a sequence of convex functions

converge together with the convex functions at points where the limit has a continuous

derivative. Proposition 3.2 and the continuous mapping theorem imply that the vector

(V,H,F ) must satisfy

inf
[−m,m]

{akVk(t) + aK+1V+(t) − akHk(t) − aK+1H+(t)} ≥ 0,

∫ m

−m
{akVk(t) + aK+1V+(t) − akHk(t) − aK+1H+(t)}dFk(t) = 0,

for all m ∈ N, where we replaced Vk(t−) by Vk(t), since V1, . . . , VK are continuous.

Letting m→ ∞ it follows that H1, . . . ,HK satisfy conditions (i) and (ii) of Theorem

1.7. Furthermore, Theorem 1.7 (iii) is satisfied since t0−τnk = Op(n
−1/3) by [8, Corol-

lary 4.19]. Hence, there exists a K-tuple of processes (H1, . . . ,HK) that satisfies the

conditions of Theorem 1.7. This proves the existence part of Theorem 1.7. Moreover,

Proposition 2.16 implies that there is only one such K-tuple. Thus, each subsequence

converges to the same limit H = (H1, . . . ,HK) = (Ĥ1, . . . , ĤK) defined in Theorem

1.8. In particular, this implies that F̂ loc
n (t) = n1/3(F̂n(t0 + n−1/3t) − F0(t0)) →d F̂ (t)

in the Skorohod topology on (D(R))K . �

4. Simulations. We simulated 1000 data sets of sizes n = 250, 2500 and 25000,

from the model given in Example 2.3. For each data set, we computed the MLE and

the naive estimator. For computation of the naive estimator, see [1, pages 13-15] and

[9, pages 40-41]. Various algorithms for the computation of the MLE are proposed by

[10, 11, 12]. However, in order to handle large data sets, we use a different approach.

We view the problem as a bivariate censored data problem, and use a method based on

sequential quadratic programming and the support reduction algorithm of [7]. Details

are discussed in [13, Chapter 5]. As convergence criterion we used satisfaction of the
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characterization in [8, Corollary 2.8] within a tolerance of 10−10. Both estimators were

assumed to be piecewise constant, as discussed in the beginning of Section 3.

It was suggested by [12] that the naive estimator can be improved by suitably

modifying it when the sum of its components exceeds one. In order to investigate this

idea, we define a ‘scaled naive estimator’ F̃ s
nk by

F̃ s
nk(t) =





F̃nk(t) if F̃n+(s0) ≤ 1,

F̃nk(t)/F̃n+(s0) if F̃n+(s0) > 1,

for k = 1, . . . ,K, where we take s0 = 3. Note that F̃ s
n+(t) ≤ 1 for t ≤ 3. We also

defined a ‘truncated naive estimator’ F̃ t
nk. If F̃n+(T(n)) ≤ 1, then F̃ t

nk ≡ F̃nk for all

k = 1, . . . ,K. Otherwise, we let sn = min{t : F̃n+(t) > 1} and define

F̃ t
nk(t) =





F̃nk(t) for t < sn,

F̃nk(t) + αnk for t ≥ sn,

where αk =
F̃nk(sn) − F̃nk(sn−)

F̃n+(sn) − F̃n+(sn−)
{1 − F̃n+(sn−)},

for k = 1, . . . ,K. Note that F̃ t
n+(t) ≤ 1 for all t ∈ R.

We computed the mean squared error (MSE) of all estimators on a grid with points

0, 0.01, 0.02, . . . , 3.0. Subsequently, we computed relative MSEs by dividing the MSE

of the MLE by the MSE of each estimator. The results are shown in Figure 3. Note

that the MLE tends to have the best MSE, for all sample sizes and for all values of t.

Only for sample size 250 and small values of t, the scaled naive estimator outperforms

the other estimators; this anomaly is caused by the fact that this estimator is scaled

down so much that it has a very small variance. The difference between the MLE and

the naive estimators is most pronounced for large values of t. This was also observed

by [12], and they explained this by noting that only the MLE is guaranteed to satisfy

the constraint F+(t) ≤ 1 at large values of t. We believe that this constraint is indeed
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important for small sample sizes, but the theory developed in this paper indicates

that it does not play any role asymptotically. Asymptotically, the difference can be

explained by the extra term (aK+1/ak){V+ − Ĥ+} in the limiting process of the MLE

(see Proposition 2.4), since the factor aK+1/ak = F0k(t)/F0,K+1(t) is increasing in t.

Among the naive estimators, the truncated naive estimator behaves better than

the naive estimator for sample sizes 250 and 2500, especially for large values of t.

However, for sample size 25000 we can barely distinguish the three naive estimators.

The latter can be explained by the fact that all versions of the naive estimator are

asymptotically equivalent for t ∈ [0, 3], since consistency of the naive estimator ensures

that limn→∞ F̃n+(3) ≤ 1 almost surely. On the other hand, the three naive estimators

are clearly less efficient than the MLE for sample size 25000. These results support our

theoretical finding that the form of the likelihood (and not the constrained F+ ≤ 1)

causes the different asymptotic behavior of the MLE and the naive estimator.

Finally, we note that our simulations consider estimation of F0k(t), for t on a grid.

Alternatively, one can consider estimation of certain smooth functionals of F0k. The

naive estimator was suggested to be asymptotically efficient for this purpose [12], and

[14, Chapter 7] proved that the same is true for the MLE. A simulation study that

compares the estimators in this setting is presented in [14, Chapter 8.2].

5. Technical proofs.

Proof of Lemma 2.11. Let k ∈ {1, . . . ,K} and j ∈ N = {0, 1, . . . }. Note that for

M large, we have for all w ≤ j + 1:

C(sjM − w ∨ (sjM − w)3/2) ≤ 1
2b(sjM −w)2.

Hence, the probability in the statement of Lemma 2.11 is bounded above by

P

{
sup

w≤j+1

{∫ sjM

w
dSk(u) − 1

2b(sjM −w)2
}

≥ 0

}
.
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Fig 3. Relative MSEs, computed by dividing the MSE of the MLE by the MSE of the other estimators.
All MSEs were computed over 1000 simulations for each sample size, on the grid 0, 0.01, 0.02,. . . , 3.0.
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In turn, this probability is bounded above by
∞∑

q=0

P

{
sup

w∈(j−q,j−q+1]

∫ sjM

w
dSk(u) ≥ λkjq

}
, (40)

where λkjq = b(sjM − (j − q + 1))2/2 = b(Mv(j) + q − 1)2/2.

We write the qth term in (40) as

P

(
sup

w∈[j−q,j−q+1)
Sk(sjM −w) ≥ λkjq

)
≤ P

(
sup

w∈[0,Mv(j)+q)
Sk(w) ≥ λkjq

)

= P

(
sup

w∈[0,1)
Sk(w) ≥ λkjq√

Mv(j) + q

)
≤ P

(
sup

w∈[0,1]
Bk(w) ≥ λkjq

bk
√
Mv(j) + q

)

≤ 2P

(
N(0, 1) ≥ λkjq

bk
√
Mv(j) + q

)
≤ 2bkjq exp


−1

2

(
λkjq

bk
√
Mv(j) + q

)2

 ,

where bk is the standard deviation of Sk(1) and bkjq = bk
√
Mv(j) + q/(λkjq

√
2π), and

Bk(·) is standard Brownian motion. Here we used standard properties of Brownian

motion. The second to last inequality is given in for example [16, equation 6, page

33], and the last inequality follows from Mills’ ratio [see 3, Equation (10)]. Note that

bkjq ≤ d all j ∈ N, for some d > 0 and all M > 3. It follows that (40) is bounded

above by
∞∑

q=0

d exp


−1

2

(
λkjq

bk
√
Mv(j) + q

)2

 ≈

∞∑

q=0

d exp

(
−1

2

(Mv(j) + q)3

b2k

)
,

which in turn is bounded above by d1 exp(−d2(Mv(j))3), for some constants d1 and

d2, using (a+ b)3 ≥ a3 + b3 for a, b ≥ 0. �

Proof of Lemma 2.12. This proof is completely analogous to the proof of Lemma

4.14 of [8], upon replacing F̂nk(u) by F̂k(u), F0k(u) by F̄0k(u), dG(u) by du, Snk(·)

by Sk(·), τnkj by τkj, snjM by sjM , and AnjM by AjM . The only difference is that

the second term on the right side of [8, equation (69)] vanishes, since this term comes

from the remainder term Rnk(s, t), and we do not have such a remainder term in the

limiting characterization given in Proposition 3.2. �
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