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CENSORING, MARTINGALES, AND THE COX MODEL

Ya’acov Ritov and Jon A. Wellner

ABSTRACT. A brief survey of regression models for survival data is
given. We then introduce and study two basic operators arising frequently
in survival analysis, the (logarithmic) derivative operators (at a distribu-
tion function F) corresponding to the mappings from density function
f = F’ to hazard function A = f/(1 = F) and from hazard function A
back to density function f. These operators, which we call R and L
respectively, are bounded operators on Ly(F) with RT = LT =R,
and L™ =R, R = L formean 0 functions in Ly(F); hence R
and L are both unitary operators. The operators R and L play a fun-
damental role as links between counting process martingales and the Doob
(conditional expectation) martingales which arise via censoring. In the
last two sections, we use the properties of the R and L operators to give
simple information bound calculations for both the Cox proportional
hazards model and for the accelerated life model with censoring.

L. Introduction: Regression models for survival data
The classical Cox ( 1972) regression model for survival data is

(1.1) Melz) = ¥ 3

where A is an unknown baseline hazard function, A = g/(1 - G) for
some absolutely continuous df G with density g, Z € R* is a vector
of covariates with distribution H, 6 e R* is the vector of unknown
regression parameters, and A(f1z) denotes the conditional hazard function
of survival at ¢ given Z = z. Because the model (1.1) is formulated in
terms of hazard functions, it lends itself to the use of martingale methods in
the study of estimators and calculation of information bounds, and censoring
is easily incorporated. See Andersen and Gill (1982) for a study of the Cox
partial likelihood estimators via martingales, and see section 4 below for a
corresponding martingale derivation of information bounds for estimation of
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0 in the model (1.1) which is somewhat easier thank iﬁc ‘treaune‘n‘t by -
Begun, Hall, Huang, and Wellner (1983) and the earlier calculations by
Efron (1977).

Many variants of the Cox model (1.1) and other regression models for
survival data have been proposed during the past few years. We briefly
review some of these variations, beginning with other models for the condi-
tional hazard function A(zlz).

Hazard function models

Apparently the first attempt to estimate the conditional cumulative
hazard function A(zlz) based on censored data and

(1.2) Mtlz) arbitrary

without any assumptions about its structure, was that of Beran (1981). He
used kernel smoothing in the covariate space, and established consistency of
the resulting nonparametric estimators. Dabrowska (1987a, 1987b) has stu-
died rates of convergence and asymptotic normality of Beran’s estimator.

When Z = (Z,,Z>) € R"x R! , there are many useful variants of
(1.1). A model that lies between (1.1) and (1.2) is

(1.3) Melz) = exp(®lz) Melza);

where ©; isunknown and A(tlz3) is arbitrary; this is sometimes called
the stratified Cox model if z, takes on only finitely many values. Keeping
the proportional hazards form of the model (1.1), but allowing the form of
the regression to be an arbitrary (smooth) function, yields the model

(1.4) Melz) = e" @ M)

where r: R — R!. This form of the model has been studied by
O’Sullivan (1986). If k is large, it is often useful to make further assump-
tions about r; for example r(z) = 6{21 + rp(z;) leads to a "partly
linear" form of the Cox model analogous to the partly linear generalizations
of the usual regression model studied by Engle, Granger, Rice, and Weiss
(1986), Green (1985), Green and Yandell (1985), and Heckman (1986):

(1.5) Melz) = exp(0lzy + ra(z2)) Mo) -

k
¥ » is assumed to be additive, r(z) = Zz’:i ri(z;) where
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additive forms of the usual regression models; see e.g. Hastie and Tibshirani
(1987).

A different generalization of the model (1.1) was proposed by Aalen
(1978), (1980): in Aalen’s model

(1.6) Melz) = ﬁ zi M)

i=1
where the A; are unknown functions. In fact, Aalen allows the Z;’s to be
predictable processes Z;(r). McKeague (1985) has studied estimation of
the A;’s via sieves. Another variation of this type of model (which avoids
the non-negativity constraints implicit in (1.6)) is

(1.7) Melz) = exp( }% zyou(t))

i=1

where the functions o; are unknown. This model was introduced and stu-
died by Zucker (1986) and Zucker and Karr (1987).

Generalizations of (1.1) which allow relative risk functions other than
exp(67z) have been proposed and studied by Thomas (1981), Breslow and
Storer (1985), Prentice and Self (1983), and Moolgavkar and Venzon
(1987). Thomas (1981) replaces exp(67z) by

exp(B67z + (1-PB)log(l + 872)"]

with 0 < B < 1, while Breslow and Storer (1985) replace exp(6”z)
by

(1+67)F — 1
expf B b, B £ 0
1+ 672y, B=0.

Prentice and Self (1983) also allow time dependent covariates.
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Transformation models
The Cox model (1.1) can also be written as

(1.8) s(Ty =-6"Z + ¢

where s = logA and 6 are unknown and e® ~ exponential(l), so
¢ ~ extreme value: P(e =1) = P(e® = ') = exp(—e’). (This is
easily obtained from (1.1) by writing it in terms of cumulative hazards as
A(t1z) = exp(®Tz) A(r), evaluating this at T and Z, and noting that
AT 1Z) ~ exponential(1).) If € has some (known) distribution, perhaps
not extreme value, then (1.8) is called a ransformation model. This type of
model arises if the underlying model is a Cox model as in (1.1), but some
covariate Z; is not observed; see Clayton and Cuzick (1986). The theory
of efficient estimation for this type of model is difficult, and has not yet
incorporated censoring. For the best results to date, see Bickel (1986).

Accelerated life models

Another alternative to the Cox regression model (1.1) is the accelerated
life model

(1.9) 3z = e Y75 Y

where g is an unknown density function, 6 € R* is unknown, and
g(t1z) is the conditional density of T given Z = z . Transformation to
Y = logT gives

(110)  gylz) =gy - 872)
with g(y) = e” g(e”) unknown, or
(1.11) Y=6TZ +¢, where € ~g.

Thus the accelerated life model can be transformed to an ordinary linear
regression model. Note that the model (1.9) coincides with the Cox model
(1.1)if g is a Weibull density. See e.g. Cox and Oakes (1984).

The problem is that censoring creates more difficulties here since there
is no immediate martingale structure in the basic model (1.11). These
difficulties have hindered wide use of this model for survival analysis. In
section 5 below we show how censoring induces a martingale structure in
the problem which can be exploited to give a relatively clean and
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straightforward derivation of information bounds for estimation of 8 in the
model (1.11) based on censored observations. Our derivation also yields the
natural family of estimating equations developed by Tsiatis (1986) from
consideration of rank tests.

Estimates of © in this model have been previously proposed and stu-
died by Buckley and James (1979), James and Smith (1984), and by Tsiatis
(1986) who also makes nice use of martingale methods. Their estimates are,
in general, inefficient. Efficient estimates have been proposed and studied
by Ritov (1984).

Discussion and Summary

Many of the alternative models to the Cox model (1.1) reviewed above
involve additional parameters or have been difficult to study with censor-
ing. Our purpose in the remainder of this paper is to introduce two basic
operators which occur repeatedly in the survival analysis and reliability
literature, but have not been isolated and systematically studied. In section 2
we introduce the two basic operators R and L and explore their proper-
ties. (These operators have been independently discovered by Efron and
Johnstone (1987); see remark 2.4.) In section 3 we give connections
between these operators and martingales which occur naturally in the
analysis of censored data. Systematic use of the results of sections 2 and 3
yields relatively straightforward semiparametric information calculations for
the parametric components of both the Cox model (1.1) and the accelerated
life model (1.11) with random censoring. We present these calculations in
sections 4 and 5. Efficiency calculations for the Kaplan - Meier estimator
alternative to those of Wellner (1982) are also easily carried out with the
help of the results for the R and L operators given in sections 2 and 3;
these will be given in Bickel, Klaassen, Ritov, and Wellner (1988).

These methods will also be very useful in treating many of the other
models reviewed above. In fact, information calculations for the parametric
components of models (1.3) and (1.5) have already been carried out by Peter
Sasieni at the University of Washington, and will appear in Sasieni (1988),
along with constructions of efficient estimators.
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2. The R | énd L operators and their properties
We first explore the relationships between a collection of density func-

tions {fg: 0 € ® c R'} on R! and the corresponding hazard func-
tions {Ag: ® € ® c— R' }. Itis well - known that

.1 M) = SO = (Hf)r
2.1 (t) - FQ@) (H f))
where 1 — F(1) = [~ f(s)ds = P[X 2 ¢]; we regard H as a map-
ping from the set of density functions to the set of hazard functions. Simi-
larly, it is well-known that

22) F0) = Mexp(~ [T Ms)ds) = DM@ ;
here we regard D as a mapping from the set of hazard functions to the set
of density functions on R! .

It is really the derivative mappings corresponding to H and D
which concern us here. First consider (2.1) for a smooth family
{fo: 6 € ©}. Taking logarithms across (2.1), differentiating with

respect to @, and setting a(f) = 5%—Iog fo(t), yields

23 9_loghe(r) = Jradr e
(2.3) 30 08 o(t) = a(t) — TFO = (Ra)(1) .
Note that

(2.4) Ra(t) = —E{a(X) — a()IX > t}

- residt_xal lifeof a(X) at ¢.

Since e(¢) = E(X —t1X > t) is the mean residual life of X at ¢,
we sometimes write Ra(t) = —e,(t).

Now consider (2.2) for a smooth family {Ag: 6 € ©® — R!}. Tak-
ing logarithms across (2.2), differentiating with respect to 8, and setting

b(t) = -gaé-logkg(t) yields, with

r

AQ) =1 Moyds = [" (1= Fo) T dF(s),

(2.5) %.Ggfg(t) = b(t) - j_; b(s)Ms)ds
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= b(r) - [*_bda |

() = [T Liezs) b(s)dAG)
= (Lb)(t) .

Note that L is a "martingale operator”: if X ~ F and

2.6) M@ = lix<n = [* s dAG)

is the counting process martingale, then
Q.7 Lb(X) = [ bdM .

Both R = R(F) and L = L(F) are bounded operators from L, (F)
to Ly(F) as will be shown below; throughout most of the following we
will suppose that the df F is continuous and suppress the dependence of
R and L on F. Even more interesting is that both the adjoint
LT =R and the inverse L' =R on
L(Z)(F) ={a e LyF): EaX) = fadF = 0 } : by straightforward cal-
culation

(2.8) LoRa = a — Ea(X) for a € L,(F)
and
2.9) Rola = a for a € Ly(F).

This is easily understood in the case E a (X) = 0 by writing
fot) = (DoH)(fo(1)),

and then taking logarithmic derivatives as in (2.3) and (2.5) to obtain
a(t) = LoRa(s) .

Similarly, writing
Ag(r) = (HoD)hg(2)

and taking (logarithmic) derivatives yields (2.9). To see that the adjoint of
L is R and vice versa, let <- ,*> denote the inner product in Ly(Fy,
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andlet a,b € L,(F). Then Fubini’s theorem yields
<La,b>=[" {a@) - [* adA}b@)dF (1)

o0

- g b dF
[La®tbt) - f—p s 1FO

(2.10) = <a,Rb>,

and hence LT = R . The conclusion of these calculations is that the map-
pings R and L are isometries of L2(F y. Let Il denote the nporm in
Lo(F): lal? = <a,a>. Thenfor a € LY(F) we have

2.11) ILal?* = <La,La>
= <a,L"La> by definition of LT
= <a,RLa> by LT =R
= <a,a> = lal> by the identity (2.8).

A similar calculation holds for lIRall?® for a € Lg (F) , but more generally,
by (2.7) it follows that

2.12) Var(a(X)] = <a,a — Ea>

il

<a,LRa> = <a, RTRa>

<Ra,Ra> = lRali? .

I

I

Ela(X) - AT
where

(2.13) A(t) = ElaX)iIX >1t].

We summarize these results in the following proposition:

Proposition 2.1. Suppose that the df F is continuous. The operators R
and L mapping from L,(F) to itself defined by (2.3) and (2.5) respec-
tively satisfy:

(i) R and L arebounded with Rl = ilLll = 1.

(i) LRa =a - Ea(X) and Rela=a; tus R =L on
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Ho = LY(F) = la € Ly(F): Ea = 0} .

(i) L =RT and R =LT; hence L and R are isometries of Hy
(or unitary transformations): WLall = llall = IRall for all a e Hg
and LTL = RTR = identity on Hy.

(iv) Varla(X)] = E[Ra(X)]* = E[e,(X)]* or, with A defined in
(2.13),

Var[a(X)] = E[a(X) - AX)]* .

Proof. It remains only to prove (i). Since LT = R , by the theory of
adjoints it suffices to prove that one of R and L is bounded. We will
give two different proofs. The first shows that L is bounded by a mar-
tingale argument, while the second uses Hardy’s inequality to show that R
is bounded.

First proof of (i): For a € Lo(F) set
(a) Ze) = [ aam
where M is the counting process martingale of (2.6) with predictable vari-

ation process <M >(t) = J" lix25]dA(s). Then Z isa square integr-
able martingale with B

(b) Z(t) =45 La(X) as t — oo,

and with predictable variation process

<Z>(t) = 'f; atd<M> .

Thus
E[Z*(1)] = E[<Z>(1)]
= E[|'_a’d<M>]
= E[[' () 1x ) dAGs)]
© = [ a*G)dF (s).

Hence by Fatou’s lemma and (c),

(d) E(lLaC)P} = E{ lim Z%(r))

£ =00
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hmmfj

t— oo “—o0

= E[a?*(X)] < .

If follows that L is bounded (as an operator from L,(F) to L,(F)) and
It < 1.

The second proof of (i) uses Hardy’s inequality. This proof was pointed
out to us by Peter Bickel. Let T : L2(0,1) — L»(0,1) be defined by

(e) Th(x) = —1; jgh(y)dy for h e L,(0,1).
Then T isbounded with T = 2: ie.
® J | f h)dy)dx < 4]0 RPO)dy

This is Hardy’s inequality; see Hardy, Littlewood, and Polya (1952, second
ed.) page 240, Dunford and Schwartz (1958) page 582, or Rudin (1973)
page 107.

Boundedness of Ra =a — [~ adF/(1 - F) follows from bounded-
ness of T by the probability integral transformation: since the first term of
R is clearly bounded, it suffices to show that

(g) j_"‘; 1—;%—(——)—[ adF} dF(z)<4[°° dF .

Butby letiing u = 1 — F(f) = F(z), the left side of (g) equals

[ [t a @™ (1= )y ds

IA

4f) laFH1-s)Pds by (®

4j_°°wa2dF.

Thus (g) holds and R is bounded. O
We conclude this section with some remarks on proposition 2.1.

Remark 2.1. The equality lIiLall = llall in (iii) follows from the mar-
tingale representation (7) of L and (i).
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(2.14) Var[X] = E[e%(X)]

for X ~ F continuous noted by Pyke (1965), and extended to the case of
discontinuous ¥ by Hall and Wellner (1981): they show that

(2.15) Var[X] = E[le(X) e (X )]

always holds. These formulas were extended to any a € L,(F) and arbi-
trary F by Shorack and Wellner (1986), page 283: from (2.7) and (2.8) it
follows that
(2.16)  a(X) - EaX) = [~ RaaM,
and hence a martingale calculation yields
(2.17) Var[a(X)] = E[(Ra)>(X)(1 - AA(X))]

= E[e(X)(1 - AA(X))] .
(Note that 1 — AA(x) = (1 = F(x)(1 = F(x-)).)
Remark 2.3. Note that our first proof of (i) gives an indirect proof (via
adjoints) of Hardy’s inequality. Csorgo, Csorgo, and Horvath (1986) page

40 also use Hardy’s inequality in connection with estimation of mean resi-
~ dual life (as suggested by David Mason).

Remark 2.4. These and other properties of R and L have been indepen-
dently discovered by Efron and Johnstone (1987). (Their A is our R and
their B is our L.) They point out the following consequence of proposi-
tion 2.1(v). For a smooth family of functions { hg: 8 e O cR! }, write

ho(t) = -é%—hg(r) .

Suppose that {fg: 6 € ©} is a smooth family of functions with
feolfe € Ly(Fg) = Ly(F). Then it follows immediately from (3) that

YT _ e
7.0 = 3508k = R( 70,

and hence (v) yields an identity for the Fisher information / g for 6:

| fo »
2.18 lg = Egl(=)?] = Eqaf(—2)21
(2.18) 8 e{(feﬂ e{(}%H
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3. Martingale connections

The R and L operators play an important role as links between the
martingales which arise via censoring (Doob’s martingales) and the count-
ing process martingale M of (2.6).

Let X ~ F be defined on a probability space (2, F, P), and con-
sider the filration { F;},>¢ defined by

3.1 F, = o I[XSSI: s <t} :G{X/\IaI{XSt}}
for t > 0. Fora fixed function a € L,(F) and ¢t 2 0 set
(3.2) Y(t) = ElaX)IF,].

If a = (9/90)logqg is a score function for estimation of a parameter 6 in
amodel Q= {gg:0€ O C R!} based on observation of X, then
Y(r) is the score function for estimation of © in the induced model
P = {py: O € ©} based on the censored observation T = XAt.

It is well-known that { ¥(¢), F;};>0 is a (uniformly - integrable )
martingale for any increasing filtration F, and integrable function a.
This is sometimes called Doob’s martingale; see e.g. Karlin and Taylor
(1975) page 246 for the discrete time version of this, and Elliott (1982) page
36 for the continuous time result. Conversely, every uniformly integrable
martingale can be written as the conditional expectation of some integrable
function a@ as in (3.2); see e.g. Elliott (1982) page 36, or Liptser and
Shiryayev (1978), theorem 2.7, page 45. For our present particular filtration
{F,} itis easily shown that

EaX)lx >0

(3.3) Y(0) = lxcqaX) + lix s 1—F()

]

Iix<naX) + x> nA®@)

with A asin (2.13).
Now we can relate the martingale ¥ to the counting process mar-
tingale

(3.4) M) = N@t) — A1)

i

it

lix<ep — fw Iix ) dA(s)
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defined in (2.6). The following proposition is apparently due to Chou and
Meyer (1974) and (1975): see theorem 2 and formulas (9) and (10) of Chou
and Meyer (1974), page 1563; and see proposition 2 and formula (13) of
Chou and Meyer (1975), pages 231 - 232. (The (¢, M ,H , h) of Chou and
Meyer (1975) correspond to our our (M ,Y ,q ,Ra) . Their result is some-
what more general in that they only require « e L(F).) For more on
related martingale representation theorems see Liptser and Shiryayev
(1978), chapter 19.

Proposition 3.1. Suppose that a Ly(F) and Ea(X) = 0. Then the
martingale ¥(¢) in (3.2) and (3.3) is related to the counting process mar-
tingale M in (3.4) by

(3.5) Y = f Ra(s)dM(s)

where, as in (2.3),

3.6 = M' =

(3.6) Ra(t) = a(t) — e a(t) — A(r).

Proof. First write M = § — A and note that since Rqg = g — A,

(2) [ RaaN = a1y, - A1y <y .
But then
(b) [ Raan = ["*Raan

=-A@lx<, - AOLx 5
since, by a calculation using Fubini’s theorem and f adF = 0 twice,
[“ RadA = [ ada

it 1 o0
- mem)-fs adF }dA(s)

= —A(u).

Subtracting (a) and (b) yields 3.5. O
Remark 3.1. If ¢ in (3.3) and (3.5) is replaced by a — £4(X) for an
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arbtrary a € (F), then R(a - Ea(X)) = Ra and (3.3) together with
(3.5) imply that

a(X) - Ea(X) = ¥(=) = L(Ra)X)

in agreement with (2.8).

Remark 3.2. The predictable variation process of the martingale transform
Y is

3.7 <¥>(0) = [ (RaY(s) Ix 251 dAG)
so that both
(3.8) E[Y%()] = E<¥>(t) = f (Ra)? dF
from (3.7) and
(3.9) E[Yi(] = f adF + A2 - F(1)
directly from (3.3).
Nowlet X;, X3, -~ beiid F and, for ¢ € RY, set

n
(3.10)  Fu) =n"% lx <,

i=1
G11) X, = VnlF,0) - FO,

and

(312) M) = VnlFy@ - [ (1 = Fyls-)daol;

F, is the empirical df, X, is the empirical process, and M, is the nor-
malized counting process martingale corresponding to the counting process
nF, . While both X, and M, have mean zero, X, records uncondi-
tional deviations of F, from the true F , whereas M, records condi-
tional deviations of F, from the truedf F .

It is useful to relate these two sets of deviations. From (2.16), or from
(3.5) with ¢ = <o, it follows that

(3.13) aX) — Ea(X) = f“‘ Ra dM;
with
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Mit) = 1w <o) = [* 126 dAGs)
Summing (3.13) on i and dividing by » !/ yields
(3.14) [aax, = |Raam,
or equivalently, since ReL = I, by taking a = Lb ,
(315 [LbdX, = [baM, .

Since X, =4 Uy(F) = B%(F) as n — s where U, is the empirical
df of §;, --+ &, iid Uniform(0,1) and B® is a Brownian bridge pro-
cess, and M, = B(F) where B is a standard Brownian motion, as
n — oo (3.14) and (3.15) become

(3.16)  [adB(F) =; [RadB(F)
and
(3.17) [LbdBO(F) =, [baB(F).

Thus R and L give a way of relating integrals with respect to the empiri-
cal process X, (unconditional deviations) to integrals with respect to the
martingale process M, (conditional deviations). See Shorack and Wellner
(1986) chapter 6 for these and other connections between X, and M,

and between the limit processes B 0(F ) and B(F).

4. Information Calculations for the Cox model

Because the Cox model is formulated in terms of hazards, martingaies
appear naturally in the basic model even without any censoring, and then the
addition of censoring creates little or no real additional complication. Here
we will give a complete derivation of the information bounds for estimation
of the regression parameter 6 in the Cox model (1.1) without censoring.
These calculations show how the Z and R operators arise naturally in
many situations of this kind. While the results are exactly the same as those
presented in Begun, Hall, Huang, and Wellner (1983), the present calcula-
tions are both simpler and more complete.

We assume, as in (1.1), that we observe (Z,T) with conditional
hazard function
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4.1 Melz) = r(B2) M) = A (1)

where r(z) = e¢”, and that Z ~ H is, for simplicity, real-valued. (We
also suppose, for simplicity, that H is known; if H is unknown, itcan be
shown that the information for 6 is unchanged.) Thus the joint density of
the observations is, with r = r(6z),

4.2) fGe, 0 =rg@®G T OhE.
Straightforward calculation yields the score for 6 :
4.3) iz, 0) = z[1 = A(D)]
where

:  dG
(4.4) A1) = r(82) A(r) = r(82) jo G

Similarly, letting {gn: M € R!'} be a regular parametric family and

a = —a—log gn » the score (operator) for g is

o

“adG

(4.5) ba(z,t) =a@t) + (r - 1) R

Now we have two sets of L and R operators: L and R correspond-
ing to the survival function 1 — G with hazard rate A ; and, conditional
on Z=z, L, and R, corresponding to (1 — G)" with hazard rate
A, = rA. Thus

Loa(r) = a(t) - j(;adA, =a(t) - rj‘;adA
and

j""adF(-iz)
[ S —

Rra(®) 1 - F(z12)

a(t)y —

-Ela(T) —a®)lZ=z,T > t}.

The scores §; and 1, are casily expressed in terms of L, and R: we
have




CENSORING, MARTINGALES, AND THE COX MODEL

@46 L0 = 2L 1))

while
%) ba(z,t) = (L, Ra)z.r).

The formula (4.7) follows since the right side of (4.5) equals

" adG
Ra(r) + r-“;——fz——— = Ra(t) - r[ RadA

1-G@)

by (c) of the proof of proposition 3.1

Il

Ra(r) - [ RadA,

]

L,Ra(r).

Thus by proposition 3.1,

(4.8) WZ,T) =Z j(;” dM,(s)

and

4.9) La(Z,T) = jo"" Ra(s)dM,(s)
where

G10) M) = 1<y = [/ 1z dAs).

207

To calculate the efficient score function I’f for 6, we want to find a

function a* with fa*dG = 0 so that
f{ = il - iza* L iza in Lz(P)
for all functions a e LS(P); ie.

4.11) E{ll; - ha'lba} = 0 forall ¢ e LyP).

This is just as in Begun, Hall, Huang, and Wellner (1983), except that here
we are working in  L;(P) rather than L,(u) and have replaced A by
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L, B* by a",and B by a.
By conditioning on  Z , the expectation in (4.11) is easily calculated as

the expectation of the predictable covariation process of the martingale
transforms in (4.8) and (4.10): thus the left side of (4.11) equals

EE([l, - ha*lhalZ)
EE([(Z - Ra")Raljr > 5yr(02)dA(s)IZ }
JLEZr©2)1ir24)]

~ E[r(6Z) lir 251 1Ra"(s) } Ra(s) dA(s)

It

Il

4.12) [{S1(s) = So(s)Ra"(s)} Ra(s)dA(s)

il

where
(4.13) Sit) = E{Z' r(®82D) L7241} » for i =0,1.

From (4.12) it is easy to make the right choice of a”: set
S

@14)  a" = L(EH).
So

Since RoL = identity by proposition 2.1, it follows that

S
Ra* = -1 .
So
and hence the integrand of (4.12) is zero identically, and (4.11) holds. Thus
the efficient score function for estimation of 9 is

BEZ.T) = hWZ,T) - La"Z,T)

. S1()
= jo (Z - m}er(t)
(4.15) = j: [Z - EQZI\T=t)]dM, ()

since

Sy
2Ly = E(ZIT=1)
So
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by straightforward calculations. Hence the information for 6 is, by an
easy martingale calculation

I6) = E[I1Z, T)*]
=EE{[7[Z - EQIT=0 ;5 r(02)dA(1)1Z)
=E[°[Z -~ EQIT=01r62)G(y @1 45 (r)
(4.16) =E[Z - EZIT)?.

These calculations also lead to estimating equations which can be used
- to obtain a whole class of inefficient estimates of 6 in the Cox model as
follows: Let J(z,7) be a fixed measurable function satisfying
E[J*(Z,T)] < o, and define

hZ.T) = [T 1J@Z0 - EU@ZDIT =1)]dM, ()

S;(t)
So(t)

4.17) = jo” [J(Z1) - 1dM, (1)

where
Si(0) = E{J(Z,0)r(®8Z) 1, } .

By a calculation as in (4.12), it is easily verified that 4 (Z,T) A iz a for all
a e Lg (G). Then

0=EhZT) = E{J(ZT))} - E{%(T)},

so by defining
418)  W@O,P) = EpirzTy - 2T 8. P)
(4.18) 8,P) = Ep{J(Z,T) - m ,

Vn — consistent estimates 9 ; of 8 can be defined as the solutions of
(4.19) W, P,) =0.

This family of estimators will be studied elsewhere. Note that with
J(z,t) =z, (4.18) and (4.19) yield the Cox partial likelihood estimator.
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5. Information calculations for censored regression models

We now illustrate the usefulness of the results of sections 2 and 3in
treating linear regression models when the observations on the dependent
variable are subject to (arbitrary right) censoring. For simplicity, we sup-
pose that the independent variable (covariate) is one - dimensional and we
treat only information bounds for estimation of the regression parameter .

Let X = (Y,Z,C) € R® where
5.1 Y =60Z + ¢

with € independentof (Z,C). We suppose that the distribution function
F of the error € has density f. Thus the model Qs

M iQ— z = — Oz =
Q: du(y"’c) fO—6z)h(zc)

-2 Q= forsome f and h and 6 € R!
We observe
(5.3) T(X) = Z,YAC, ly<c) = (Z,V,4),

and denote the induced model by P = QT -1,

This model arises in survival analysis when Y is the log of failure
time, and is sometimes called the "accelerated time model"; see e.g.
Kalbfleisch and Prentice (1981) or Lawless (1982). Estimators of 6 in
this model have been proposed by Miller (1976), Buckley and James (1979),
Koul, Susarla and Van Ryzin (1981), and Tsiatis (1986). Information calcu-
lations and a construction of efficient estimators were carried out by Ritov
(1985).

Here we rederive the information bound calculated by Ritov (1985)
using the results of sections 2 and 3, and show how these calculations pro-
vide an alternative rationale for the (inefficient) rank estimators proposed by
Tsiatis (1986).

We begin by calculating scores for 9 and f in the model Q: by
straightforward differentiation, the score for 9 is

54  ho.sQ =-: f}—@ ~02) = zy(e)

R
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where  y(x) = - f(x)/f(x). To calculate the score for [, let
{fn: M € R'} be aregular parametric family and set a = izog fn -

om

Then the score (operator) for fis
(5.5) La(,z; Q) = a(y—6:) = a(e).

To calculate scores in the induced model P = QT™! we can compute
the induced distribution P = Q7! as

P@Ev,8) = {f(v=0)HW I} (h(v I2)F (v - 82)} 14 b (2)

(where h(clz) and H(clz) are the conditional density and distribution
function of C conditional on Z = z, and h(z) is the marginal density
of Z), and differentiate as above. Or, alternatively, we can project the
scores ii( *,Q) in the model Q into scores in the model P by simply
calculating their conditional expectation given the observation
T=TX)=(Z,YNC, liy<sep) = @Z,V,A):

(5.6) W(T;P) = E(;(X:Q)IT], i=1.2.

(For justifications of this conditional expectation formula, and for preserva-
tion of regular parametric models under measurable transformations more
generally, see: Ibragimov and Has’minskii ( 1981), theorem 7.2, page 70;
van der Vaart (1988), appendix A.3; and Le Cam and Yang (1988), section
7.) To calculate the conditional expectations in (5.6), first note that with

(5.7) eE=Y - 67 and d=C -0z,
it follows that
(5.8) YAC -0Z = ¢AD and I{YSC} = I[sﬁ 5] »

so  conditioning on T is equivalent to conditioning  on
T =(Z,end, lie <5)) . Furthermore, note that ¢ and & are indepen-
dent. Thus the conditional expectation in (5.6) can be calculated as

E[(X;Q)I1Z,F,]
evaluated at r = 8 where

Fr=ollecy s St} =ofeAr, lp<,).

i
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But by proposition 3.1 it follows that
ELXQIZ,F] = E[Zy(e)|Z,F,]

(5.9) = Z{lg<y(e) + 1;g>t;§—“%§-'—‘-}

(5.10) = Z{e<¥® + les =)

(5.11) =z[' RydM

where M@ = lg< - f_; Lie 251 dA(s) and

A() = f’ (1 - F YL dF is the cumulative hazard function corresponding
to F . The third formula results from

(5.12) Ely(e)le > t] = 1_JfF(t) = M)

also note that

(5.13) Ry(r) = y(t) — E[y(e)le > 1]

= y(r) — M2)

N PP

= f(t) 7@
__4 __Mo
== logh(t) N

Note that
J(t) = jjw (Ry)* dF

_qt L2 £
- LGP G

=] (—{')2 dF

from (3.8), (3.9), and (5.11); J(¢) is the information for location based on
EATL.

Similarly, the score (operator) for f in the model P can be obtained
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"by computing
(5.14) Elba(X;Q)IZ,F,] = Ela(e)|Z,F,]
= j_’w RadM .
Evaluating (5.11) and (5.14) at r = & yields
W(T:P) = Z[° Ryam

= Z[7 lis2s1 RY(s) dM(s)

(5.15) =Z j_"; Ry(s)dM,,
and
ba(T;P) = ji RadM
=7 1525  Ra(s)am(s)
(5.16) = [7 Radm,,
where

Muc(t) = leas < 0,a = 1) — f_’w Lig a5 2 51 dA(s)

=ly_o'z<s, a=1) — f_:o Iy —e7z >51dAGs) .
Thus for ¢ e LY(F)
(5.17) L(T;P) — la*(T:P) = f’ {ZRY — Ra™}dM .

To find the efficient score function l’f for 6 in the model P, we

want to find a function «¢* with fa*dF = 0 so that
M=l -ha" L ha in Lyp

for all functions a e L%(F ); le.

(5.18) E{ll; —ha'lha) =0  forall 4 e LY(F) .

This is just as in Begun, Hall, Huang, and Wellner (1983) except that here
we are working in L,(P) rather than I 2(W) , and have replaced A by
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I,, B* by a",and B by a. But, by conditioningon Z and &, the
expectation in (5.18) is easily computed as the expectation of the predictable
covariation process of the martingale transforms in (5.17) and (5.16): thus
the left side of (5.18) equals

EE{[l; - La*1halZ,8)
= EE{[" 15251 [ZRY(s) - Ra"(s)]Ra(s) e » 5} dA(s)1Z, 8}
= E[” 125 [ZRY(s) = Ra"(9)]Ra(s)dF (s)
= [ E[Z126]RY(s) — Ell2s1)Ra’ ) Ra(s)dF (s)

5.19) =7 LIERZlgss]RYE) -~ G)Ra ()} a()dF (),

by using RT =L from (2.10) where G(s) = Elgzs) = P(325).
From (5.19) it is easy to make the right choice of a*: define

K(s) = E[Z1825]
and set
a" = LKRY) = LIK($)RY(s)) -
Then, since RoL = identity by proposition 2.1, it follows that
(5.20) Ra"(s) = K(s)RY(s)
and
(521)  G(s)Ra'(s) = E(Z1525]1RY(s),

so, with this choice of a” , the right side of (5.19) is zero for all
a € L% (F). Thus, by substituting (5.20) in (5.17), (5.18) holds with the
efficient score function

!7{ i1 - iza*

il

= [ 125 (Z ~ E[Z1825]1 ] RY(s)dM(s)
= [7 {Z - E(Z1325] ) Ry(s) dMc(s)

(5.22) = [7 {Z - E[ZIV - 6Z2 5]} Ry(s) dMyc(s)
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where the last line follows from independence of (Z,8) and ¢ and (5.8).
Thus the information for © in the model P is, again by a martingale cal-

culation,
I(8,P) = Ej_"; lg21{Z = E(ZI18 251} (RY)*(5) L 4 dAs)
= Ej__"; 13251 {Z — E[Z182 51} (Ry)2(s)dF (s)
(523) = [ E{1p20(Z - E@1825)? } Ry)(s)dF (5)

= E[Z?J(C - 0Z)] - [K%(s)G(s)dJ (s) .
If Z and 8 = C-6Z are independent, then (5.23) reduces to

Var(Z) [ P(325)(Ry)2(s)dF (s) .

When there is no censoring, P (3 > s) =1 forall s > 0, and the infor-
mation for © reduces still further to the familiar expression

Var (Z)If,
where Iy = [(FIH?dF = [ (Ry)*dF .
Taking Ry to be a given fixed function Royo (Rp = R(Fyp)) in
(5.22) yields the function
h(T) = f:o [Z ~ E(ZI18 2 5)|Ryo(s)dM,.(s)

which, by calculations exactly as those leading to (5.19), satisfies 4 L iza
in Ly(P) forall a € LY(G). This suggests estimation of 9 as a solu-
tion 8 = 6(ygy) of

0

il

S [1Z - K(s:8)] (Rowo)s) dN.(s)

i=1

n Fy A A
2 AZ - KV, - 8Z;;0)IRoyo(V; — 6Z;)

i=1

il
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where

n
3 Zily, -6z, 2 5]
K(s:0) = =

n
Y 1w -6z 2 5]

i=1

This class of estimates, which are closely related to the rank estimators of
Hodges and Lehmann (1963) for uncensored data, was suggested and stu-
died by Tsiatis (1986) building on earlier work by Wei and Gail (1983) and
Louis (1981). The particular choice Yo(?) = e’ — 1, corresponding to the
extreme value distribution 1 — Fo(f) = exp(— e’) with hazard function
Ao(t) = e, has Royo(?) = ~No(t)Ao(t) = —1, and yields an estima-
tor related to the log - rank test.

Acknowledgments. We owe thanks to Peter Bickel (for the proof of the
boundedness of R ), to Richard Gill (for the references to Chou and
Meyer), and to Peter Sasieni (for pointing out the nice conditional expecta-
tion formula for the Cox model between (4.15) and (4.16)).
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