SUPPLEMENT TO "NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES."

By Arseni Seregin^{*} and Jon A. Wellner[†]

University of Washington

1. Properties of the increasing transformation.

LEMMA 1.1. Let h be a increasing transformation and g be a closed proper convex function with dom $g = \overline{\mathbb{R}}^d_+$ such that

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g dx = C < \infty.$$

Then the following are true:

1. For a sublevel set $lev_y g$ with $y > y_0$ we have:

$$\mu[(\operatorname{lev}_{y} g)^{c}] \le C/h(y).$$

- 2. For any point $x_0 \in \mathbb{R}^d_+$ and any subgradient $a \in \partial g(x_0)$ all coordinates of a are nonpositive. If in addition $g(x_0) > y_0$ then all coordinates of a are negative.
- 3. For any point $x_0 \in \mathbb{R}^d_+$ such that $g(x_0) > y_0$ we have:

$$h \circ g(x_0) \le \frac{Cd!}{d^d V(x_0)},$$

where $V(x) \equiv \prod_{k=1}^{d} x_k$ for $x \in \mathbb{R}^d_+$.

- 4. The function h reverses partial order on $\overline{\mathbb{R}}^d_+$: if $x_1 < x_2$ then $g(x_1) \ge g(x_2)$ and the last inequality is strict if $g(x_1) > y_0$.
- 5. The supremum of g on $\overline{\mathbb{R}}^d_+$ is attained at 0.

^{*}Research supported in part by NSF grant DMS-0804587

 $^{^{\}dagger}\text{Research}$ supported in part by NSF grant DMS-0804587 and NI-AID grant 2R01 AI291968-04

AMS 2000 subject classifications: Primary 62G07, 62H12; secondary 62G05, 62G20

Keywords and phrases: consistency, log–concave density estimation, lower bounds, maximum likelihood, mode estimation, nonparametric estimation, qualitative assumptions, shape constraints, strongly unimodal, unimodal

PROOF. 1. Since h is nondecreasing we have h(y) > 0 and:

$$C = \int_{\overline{\mathbb{R}}^d_+} h \circ g dx \geq \int_{(\operatorname{lev}_y g)^c} h \circ g dx \geq h(y) \mu[(\operatorname{lev}_y g)^c].$$

2. Consider the linear function $l(x) = a^T(x-x_0)+g(x_0)$. We have $g \ge l$. If the vector a has a nonnegative coordinate a_i then consider a closed ball $B = \overline{B}(x_0) \subset \mathbb{R}^d_+$. If m is a minimum of the function l on B then the minimum of the function $h \circ l$ on $B + \lambda e_i$ is equal to $h(m + \lambda a_i)$, where e_i is the element of the basis which corresponds to the *i*th coordinate. For $\lambda > 0$ we have $B + \lambda e_i \subset \mathbb{R}^d_+$. If $a_i > 0$ then:

$$\int_{\overline{\mathbb{R}}^p_+} h \circ g dx \geq \int_{\overline{\mathbb{R}}^p_+} h \circ l dx \geq \int_B h \circ l dx \ \geq \mu[B] h(m + \lambda a_i) \to +\infty$$

as $\lambda \to \infty$, which contradicts the assumption.

If $a_i = 0$ and $g(x_0) = l(x_0) > y_0$, then we can choose the radius of the ball small enough so that $m > y_0$. Then:

$$\int_{\overline{\mathbb{R}}^p_+} h \circ g dx \geq \int_{\overline{\mathbb{R}}^p_+} h \circ l dx \geq \int_K h \circ l dx \geq \mu[K] h(m) = +\infty$$

where $K \equiv \bigcup_{\lambda>0} (B + \lambda e_i)$, and this again contradicts the assumption.

3. Consider the subgradient $a \in \partial g(x_0)$. For the linear function $l(x) = a^T(x-x_0)+g(x_0)$ we have $g \ge l$ and $l(x_0) = g(x_0)$ therefore $(\operatorname{lev}_{g(x_0)} l)^c \subseteq (\operatorname{lev}_{g(x_0)} g)^c$. From the previous statement we have that $(\operatorname{lev}_{g(x_0)})^c$ is a simplex and using inequality of arithmetic and geometric means we have:

$$\mu[(\operatorname{lev}_{g(x_0)} l)^c] = \frac{(a^T x_0)^d}{d! V(a)} \ge \frac{d^d V(x_0)}{d!}$$

which together with 1. proves the statement.

4. Since $x_1 \in \overline{\mathbb{R}}^d_+$ and $x_1 < x_2$ we have $x_2 \in \mathbb{R}^d_+ = \operatorname{ri}(\operatorname{dom} g)$. For any subgradient $a \in \partial q(x_2)$ we have

$$g(x_1) - g(x_2) \ge a^T(x_1 - x_2) \ge 0$$

from the previous statement. Now, if $g(x_1) > y_0$ then we can assume that $g(x_2) > y_0$ since otherwise the statement is trivial. In this case all coordinates of a are negative and:

$$g(x_1) - g(x_2) \ge a^T(x_1 - x_2) > 0.$$

5. From the previous statement we have that $h \circ g \leq h \circ g(0)$ on \mathbb{R}^d_+ which together with continuity of $h \circ g$ implies the statement.

LEMMA 1.2. Let h be an increasing transformation, g be a closed proper convex function on $\overline{\mathbb{R}}^d_+$ and Q be a σ -finite Borel measure on $\overline{\mathbb{R}}^d_+$. Then:

$$\int_{\operatorname{lev}_a g} h \circ g dQ = \int_{-\infty}^a h'(y) Q[(\operatorname{lev}_y g)^c \cap \operatorname{lev}_a g] dy$$

PROOF. Using the Fubini-Tonelli theorem we have:

$$\begin{split} \int_{\operatorname{lev}_a g} h \circ g dQ &= \int_{\operatorname{lev}_a g} \int_0^{h(a)} 1\{z \le h \circ g(x)\} dz dQ(x) \\ &= \int_{\operatorname{lev}_a g} \int_0^{h(a)} 1\{h^{-1}(z) \le g(x)\} dz dQ(x) \\ &= \int_{\operatorname{lev}_a g} \int_{-\infty}^a h'(y) 1\{y \le g(x)\} dy dQ(x) \\ &= \int_{-\infty}^a h'(y) \int_{\operatorname{lev}_a g} 1\{y \le g(x)\} dQ(x) dy \\ &= \int_{-\infty}^a h'(y) Q[(\operatorname{lev}_y g)^c \cap \operatorname{lev}_a g] dy. \end{split}$$

LEMMA 1.3. Let h be an increasing transformation and let g be a polyhedral convex function with dom $g = \overline{\mathbb{R}}^d_+$ such that:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g dx < \infty.$$

Then $g(0) < y_{\infty}$.

PROOF. For $y_{\infty} = +\infty$ the statement is trivial so we assume that y_{∞} is finite. If $g(0) > y_{\infty}$ then since g is continuous there exists a ball $B \subset \overline{\mathbb{R}}^d_+$ small enough such that $g > y_{\infty}$ on B and therefore

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g dx = \infty.$$

Let us assume that $g(0) = y_{\infty}$. By Lemma A.13 there exists $a \in \partial g(0)$ and therefore $g(x) \geq l(x) \equiv a^T x + y_{\infty}$. Let a_m be the minimum among the

coordinates of the vector a and -1. Then on $\overline{\mathbb{R}}^d_+$ we have $l(x) \ge l_1(x) \equiv a_m \mathbf{1}^T x + y_\infty$ where $a_m < 0$ and thus $l_1(x) \le y_\infty$. By Lemma 1.2 we have:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g dx \ge \int_{\overline{\mathbb{R}}^d_+} h \circ l_1 dx = \int_{-\infty}^{y_{\infty}} h'(y) \mu[(\operatorname{lev}_y l_1)^c \cap \overline{\mathbb{R}}^d_+] dy.$$

The set $A_y = (\operatorname{lev}_y g)^c \cap \overline{\mathbb{R}}^d_+$ is a simplex and:

$$\mu[A_y] = \frac{(y_\infty - y)^d}{d!(-a_m)^d}$$

for $y \leq y_{\infty}$. By assumption M.I.2 we have $h'(y) \asymp (y_{\infty} - y)^{-\beta - 1}$ as $y \uparrow y_{\infty}$ where $\beta > d$ and therefore:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g_1 dx = \int_{\overline{\mathbb{R}}^d_+} h \circ g dx = +\infty.$$

This contradiction proves that $g(0) < y_{\infty}$.

LEMMA 1.4. Let h be an increasing transformation and let $l(x) = a^T x + b$ be a linear function such that all coordinates of a are negative and $b < y_{\infty}$. Then:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ l dx < \infty.$$

PROOF. We have $l \leq b$ on $\overline{\mathbb{R}}^d_+$ and by Lemma 1.2:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ l dx = \int_{-\infty}^b h'(y) \mu[(\operatorname{lev}_y l)^c \cap \overline{\mathbb{R}}^d_+] dy.$$

The set $A_y = (\text{lev}_y l)^c \cap \overline{\mathbb{R}}^d_+$ is a simplex and:

$$\mu[A_y] = \frac{(b-y)^d}{d!V(-a)}$$

for $y \leq b$. By assumption M.I.1 we have $h'(y) = o(y^{-\alpha-1})$ as $y \to -\infty$ for $\alpha > d$ and therefore the integral is finite.

LEMMA 1.5. Let h be an increasing transformation and suppose that $K \subset \overline{\mathbb{R}}^d_+$ is a compact set. Then there exists a closed proper convex function $g \in \mathcal{G}(h)$ such that $g > y_0$ on K.

PROOF. If $y_0 = -\infty$ then consider the function T(c) defined as:

$$T(c) = \int_{\overline{\mathbb{R}}^d_+} h \circ (-\mathbf{1}^T x + c) dx.$$

By Lemma 1.4, T(c) is finite for $c < y_{\infty}$, and by Lemma 1.3, we conclude that $T(y_{\infty}) = +\infty$. By monotone convergence T is left-continuous for $c \in (-\infty, y_{\infty}]$ and by dominated convergence is right-continuous for $c \in (-\infty, y_{\infty})$. Since $T(-\infty) = 0$ there exists $c_1 < y_{\infty}$ such that $T(c_1) = 1$ and thus the linear function $l(x) = -\mathbf{1}^T x + c_1$ belongs to $\mathcal{G}(h)$.

If $y_0 < -\infty$ then choose M such that $\mathbf{1}^T x < M$ on K. Consider the function T(c) defined as:

$$T(c) = \int_{\overline{\mathbb{R}}^d_+} h \circ (c(-\mathbf{1}^T x + M) + y_0) dx.$$

By Lemma 1.4, T(c) is finite for $c < (y_{\infty} - y_0)/M$ and by Lemma 1.3, $T((y_{\infty} - y_0)/M) = +\infty$. By monotone and dominated convergence T is continuous for $c \in [0, (y_{\infty} - y_0)/M]$. Since T(0) = 0 there exists $c_1 \in (0, (y_{\infty} - y_0)/M)$ such that linear function $l(x) = c_1(-\mathbf{1}^T x + M) + y_0$ belongs to $\mathcal{G}(h)$. By construction $l > y_0$ on K.

LEMMA 1.6. If X_1, \ldots, X_n are i.i.d. $p_0 = h \circ g_0 \in \mathcal{P}(h)$ for a monotone transformation h, then the observations X are in general position with probability 1.

PROOF. Points are not in general position if at least one subset Y of X of size d + 1 belongs to a proper linear subspace of \mathbb{R}^d . This is true if and only if X as a vector in \mathbb{R}^{nd} belongs to a certain non-degenerate algebraic variety. Since with probability 1 we have $X \subset \text{dom } g_0$ and by definition $\dim(\text{dom } g_0) = d$, the statement follows from Okamoto [1973].

Below we assume that our observations are in general position for any n. For an increasing model we also assume that all X_i belong to \mathbb{R}^d_+ . This assumption holds with probability 1 since $\mu\left[\overline{\mathbb{R}}^d_+ \setminus \mathbb{R}^d_+\right] = 0$.

LEMMA 1.7 (M.3.6). Consider an increasing transformation h. For any convex function g with dom $g = \overline{\mathbb{R}}^d_+$ such that:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g dx \leq 1$$

and $\mathbb{L}_n g > -\infty$, there exists $\tilde{g} \in \mathcal{G}(h)$ such that $\tilde{g} \ge g$ and $\mathbb{L}_n \tilde{g} \ge \mathbb{L}_n g$. The function \tilde{g} can be chosen as a minimal element in $\operatorname{ev}_X^{-1} \tilde{p}$ where $\tilde{p} = \operatorname{ev}_X \tilde{g}$.

PROOF. Let $p = ev_X g$. Since $\mathbb{L}_n g > -\infty$ we have $g(X_i) > y_0$ for all $1 \le i \le n$ and therefore $g(x) > y_0$ for $x \in conv(X)$. Consider any minimal element g_1 among convex functions in $ev_X^{-1} p$ (which exists by Lemma A.15). Then:

$$\int_{\overline{\mathbb{R}}^d_+} h \circ g_1 dx \le \int_{\overline{\mathbb{R}}^d_+} h \circ g dx \le 1$$

Since g_1 is polyhedral we have $g_1 = \max l_i$ for some linear functions $l_i(x) = a_i^T x + b_i$ and for each function l_i there exists some facet of g_1 such that $g_1 = l_i$ on it.

By Lemma A.15 the interior of the facet of g_1 which corresponds to l_i contains some $X_{j_i} \in X$. We have $\partial g_1(X_{j_i}) = \{a_i\}$ and $g_1(X_{j_i}) = g(X_{j_i}) > y_0$. Thus by Lemma 1.1, all coordinates of a_i are negative and the supremum M of g_1 is attained at 0. Therefore $b_i = l_i(0) \leq M$. By Lemma 1.3 we have $M < y_\infty$. Thus by Lemma 1.4 the functions $h \circ (l_i + c)$ are integrable for all $c < y_\infty - M$. Since g_1 has only a finite number of facets we have that $h \circ (g_1 + c)$ is also integrable for all $c < y_\infty - M$. Finally, for $c = y_\infty - M$ the function $h \circ (g_1 + c)$ is not integrable by Lemma 1.3.

The function T(c) defined as:

$$T(c) \equiv \int_{\overline{\mathbb{R}}^d_+} h \circ (g_1 + c) dx$$

is increasing, finite for $c \in [0, y_{\infty} - M)$ and continuous for $c \in [0, y_{\infty} - M]$ by monotone and dominated convergence. Since $T(0) \leq 1$ and $T(y_{\infty} - M) = +\infty$, there exists $c_1 \in (0, y_{\infty} - M)$ such that $T(c_1) = 1$. Since g_1 is the minimal element in $ev_X^{-1}(p)$, the function $\tilde{g} \equiv g_1 + c_1$ is minimal in $ev_X^{-1}(p + c_1)$. Then \tilde{g} satisfies the conditions of our lemma. \Box

THEOREM 1.8 (M.3.7). If an MLE \hat{g}_0 exists for the increasing model $\mathcal{P}(h)$, then there exists an MLE \hat{g}_1 which is a minimal element in $\operatorname{ev}_X^{-1} q$ where $q = \operatorname{ev}_X \hat{g}_0$. In other words \hat{g}_1 is a polyhedral convex function such that dom $g_1 = \overline{\mathbb{R}}^d_+$, and the interior of each facet contains at least one element of X. If h is strictly increasing on $[y_0, y_\infty]$, then $\hat{g}_0(x) = \hat{g}_1(x)$ for all x such that $\hat{g}_0(x) > y_0$ and thus defines the same density from $\mathcal{P}(h)$.

PROOF. Let \hat{g}_0 be any MLE. Then by Lemma 1.5 applied to $K = \operatorname{conv}(X)$ it follows that $\mathbb{L}_n \hat{g}_0 > -\infty$. By Lemma 1.7 there exists a function $\hat{g}_1 \in \mathcal{P}(h)$ such that \hat{g}_1 is a minimal element in $\operatorname{ev}_X^{-1} q_1$ where $q_1 = \operatorname{ev}_X \hat{g}_1$ and $\hat{g}_1 \geq \hat{g}_0$. Since \hat{g}_0 is a MLE we have $\operatorname{ev}_X \hat{g}_0 = \operatorname{ev}_X \hat{g}_1$ which together with Lemma A.15 proves the first part of the statement.

By Lemma 1.3 we have $\hat{g}_0 < y_{\infty}$ and $\hat{g}_1 < y_{\infty}$. Since $h \circ \hat{g}_0$ and $h \circ \hat{g}_1$ are continuous functions, for the strictly increasing h the equality:

$$\int_{\overline{\mathbb{R}}_+} (h \circ \widehat{g}_1 - h \circ \widehat{g}_0) dx = 0$$

implies that $\hat{g}_1(x) = \hat{g}_0(x)$ for x such that $\hat{g}_0(x) > y_0$.

LEMMA 1.9 (M.3.8). Consider a decreasing transformation h. For any convex function g such that:

$$\int_{\mathbb{R}^d} h \circ g dx \le 1$$

and $\mathbb{L}_n g > -\infty$ there exists $\tilde{g} \in \mathcal{G}(h)$ such that $\tilde{g} \leq g$ and $\mathbb{L}_n \tilde{g} \geq \mathbb{L}_n g$. The function \tilde{g} can be chosen as the maximal element in $\operatorname{ev}_X^{-1} \tilde{q}$ where $\tilde{q} = \operatorname{ev}_X \tilde{g}$.

PROOF. Let $p = \operatorname{ev}_X g$. Since $\mathbb{L}_n g > -\infty$ we have $g(X_i) < y_0$ for all $1 \leq i \leq n$ and therefore $g(x) < y_0$ for $x \in \operatorname{conv}(X)$. Consider the maximal element g_1 among convex functions in $\operatorname{ev}_X^{-1} p$ (which exists and is unique by Lemma A.14). Then:

$$\int_{\mathbb{R}^d} h \circ g_1 dx \le \int_{\mathbb{R}^d} h \circ g dx = 1.$$

By Lemma M.3.1 there exists x_0 and $m > -\infty$ such that $g_1 \ge g_1(x_0) = m$. By Lemma M.3.3 we have $m > y_{\infty}$. By Lemma A.14 we have dom $g_1 = \text{conv}(X)$ and therefore:

$$\int_{\mathbb{R}^d} h \circ (g_1 + c) dx \le h(m + c) \mu[\operatorname{conv}(X)] < \infty,$$

for $c \in (y_{\infty} - m, 0]$. By Lemma M.3.3 we have:

$$\int_{\mathbb{R}^d} h \circ (g_1 + y_\infty - m) dx = \infty.$$

Thus the function T(c) defined as:

$$T(c) \equiv \int_{\mathbb{R}^d} h \circ (g_1 + c) dx$$

is decreasing, finite for $c \in (y_{\infty} - m, 0]$ and continuous for $c \in [y_{\infty} - m, 0]$ by monotone and dominated convergence. Since $T(0) \leq 1$ and $T(y_{\infty} - m) = +\infty$, there exists $c_1 \in (y_{\infty} - m, 0)$ such that $T(c_1) = 1$. Since g_1 is the maximal element in $ev_X^{-1}(p)$, the function $\tilde{g} \equiv g_1 + c_1$ is maximal in $ev_X^{-1}(p + c_1)$. Then \tilde{g} satisfies the conditions of our lemma.

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

THEOREM 1.10 (M.3.9). If the MLE \hat{g}_0 exists for the decreasing model $\mathcal{P}(h)$, then there exists another MLE \hat{g}_1 which is the maximal element in $\operatorname{ev}_X^{-1} q$ where $q = \operatorname{ev}_X \hat{g}_0$. In other words \hat{g}_1 is a polyhedral convex function with the set of knots $K_n \subseteq X$ and domain dom $\hat{g}_1 = \operatorname{conv}(X)$. If h is strictly decreasing on $[y_{\infty}, y_0]$, then $\hat{g}_0(x) = \hat{g}_1(x)$.

PROOF. Let \hat{g}_0 be any MLE. Then by Lemma M.3.5 applied to $K = \operatorname{conv}(X)$ we have that $\mathbb{L}_n \hat{g}_0 > -\infty$. By Lemma 1.9 there exists a function $\hat{g}_1 \in \mathcal{G}_h$ such that \hat{g}_1 is the maximal element in $\operatorname{ev}_X^{-1} q_1$ where $q_1 = \operatorname{ev}_X \hat{g}_1$ and $\hat{g}_1 \leq \hat{g}_0$. Since \hat{g}_0 is a MLE we have $\operatorname{ev}_X \hat{g}_0 = \operatorname{ev}_X \hat{g}_1$, which together with Lemma A.14 proves the first part of the statement.

By Lemma M.3.3 we have $\hat{g}_0 \geq \hat{g}_1 > y_{\infty}$. Since $h \circ \hat{g}_0$ and $h \circ \hat{g}_1$ are continuous functions, for the strictly decreasing h, the equality:

$$\int_{\mathbb{R}^d} (h \circ \widehat{g}_1 - h \circ \widehat{g}_0) dx = 0$$

implies that $\hat{g}_1(x) = \hat{g}_0(x)$ for $x \in \operatorname{conv}(X)$. Therefore $\hat{g}_0(x) \ge y_\infty$ for $x \notin \operatorname{conv}(X)$. Since \hat{g}_0 is convex we have $\hat{g}_0 = \hat{g}_1$.

LEMMA 1.11 (M.3.11). Consider a decreasing model $\mathcal{P}(h)$. Let $\{g_k\}$ be a sequence of convex functions from $\mathcal{G}(h)$, and let $\{n_k\}$ be a nondecreasing sequence of positive integers $n_k \geq n_d$ such that for some $\varepsilon > -\infty$ and $\rho > 0$ the following is true:

1. $\mathbb{L}_{n_k} g_k \ge \varepsilon;$ 2. if $\mu[\operatorname{lev}_{a_k} g_k] = \rho$ for some a_k , then $\mathbb{P}_{n_k}[\operatorname{lev}_{a_k} g_k] < d/n_d.$

Then there exists $m > y_{\infty}$ such that $g_k \ge m$ for all k.

PROOF. Suppose, on the contrary, that $m_k \to y_\infty$ where $m_k = \min g_k$. The first condition implies that $X_d \equiv \{X_1, \ldots, X_{n_d}\} \in \operatorname{dom} h_k$, and therefore by Corollary A.4 the function $\mu[\operatorname{lev}_y g_k]$ as a function of y admits all values in the interval $[\mu[\operatorname{lev}_{m_k} g_k], \mu[\operatorname{conv}(X_d)]]$. If the second condition is true for some ρ then it is also true for all $\rho' \in (0, \rho)$, and therefore we can assume that $\rho < \mu[\operatorname{conv}(X_d)]$.

By Lemma M.3.1 we have $\mu[\operatorname{lev}_{m_k} g_k] \to 0$, and thus there exists such a_k that $\mu[\operatorname{lev}_{a_k} g_k] = \rho$ for all k large enough. We define $A_k = \operatorname{lev}_{a_k} g_k$. By Lemma M.3.1 we have: $h(a_k) \leq 1/\rho$ and therefore the sequence $\{a_k\}$ is bounded below by some $a > y_{\infty}$.

Consider $t_k > m_k$ such that $t_k \to y_\infty$. We will specify the exact form of t_k later in the proof. Since a_k are bounded away from y_∞ , it follows that for

k large enough we will have $t_k < a_k$. Using Lemma A.3 we obtain:

$$\rho = \mu[A_k] \le \mu[\operatorname{lev}_{t_k} g_k] \left[\frac{a_k - m_k}{t_k - m_k} \right]^d \le \frac{1}{h(t_k)} \left[\frac{a_k - m_k}{t_k - m_k} \right]^d$$

which implies:

$$a_k \ge m_k + (t_k - m_k)[\rho h(t_k)]^{1/d}$$

We have:

$$g_k \ge m_k 1\{A_k\} + a_k(1 - 1\{A_k\}),$$

and hence:

$$\begin{split} \mathbb{L}_{n_k} g_k &\leq \mathbb{P}_{n_k}(A_k) \log h(m_k) + (1 - \mathbb{P}_{n_k}(A_k)) \log h(a_k) \\ &\leq \mathbb{P}_{n_k}(A_k) \log h(m_k) + (1 - \mathbb{P}_{n_k}(A_k)) \log h(m_k + (t_k - m_k)[\rho h(t_k)]^{1/d}). \end{split}$$

Case $y_{\infty} = -\infty$. Choose $t_k = (1-\delta)m_k$ where $\delta \in (0, 1)$. Then starting from some k we have $m_k < t_k$, $h(m_k) > 1$, $h(-Cm_k) < 1$ and $\delta[\rho h(t_k)]^{1/d} > C+1$. This implies:

$$m_k + (t_k - m_k)[\rho h(t_k)]^{1/d} = m_k (1 - \delta[\rho h(t_k)]^{1/d}) \ge -Cm_k$$

and hence:

$$\begin{aligned} \mathbb{L}_{n_k} g_k &\leq \mathbb{P}_{n_k}(A_k) \log h(m_k) + (1 - \mathbb{P}_{n_k}(A_k)) \log h(-Cm_k) \\ &\leq \frac{d}{n_d} \log h(m_k) + \frac{n_d - d}{n_d} \log h(-Cm_k) = \frac{d}{n_d} \log \left[h(m_k)h(-Cm_k)^{\gamma}\right] \to -\infty. \end{aligned}$$

Case $y_{\infty} > -\infty$. Without loss of generality we can assume that $y_{\infty} = 0$. Choose $t_k = (1 + \delta)m_k$ where $\delta > 0$. Then:

$$m_k + (t_k - m_k)[\rho h(t_k)]^{1/d} \ge m_k \delta[\rho h((1+\delta)m_k)]^{1/d} \asymp m_k^{-\frac{\beta-d}{d}} \to +\infty$$

which implies

$$h(m_k + (t_k - m_k)[\rho h(t_k)]^{1/d}) = o\left(m_k^{\frac{\alpha(\beta-d)}{d}}\right).$$

This in turn yields

$$\exp(\mathbb{L}_{n_k}g_k) = o\left(m_k^{-\frac{\beta d}{n_d} + \frac{\alpha(\beta - d)(n_d - d)}{dn_d}}\right) = o(1).$$

Therefore in both cases we obtained $\mathbb{L}_{n_k}g_k \to -\infty$. This contradiction concludes the proof.

LEMMA 1.12 (M.3.13). Consider a monotone model $\mathcal{P}(h)$. Suppose the true density $h \circ g_0$ and the sequence of MLEs $\{\hat{g}_n\}$ have the following properties:

$$\int (h|\log h|) \circ g_0(x) dx < \infty,$$

and

$$\int \log[\varepsilon + h \circ \hat{g}_n(x)] d(\mathbb{P}_n(x) - P_0(x)) \to_{a.s.} 0,$$

for $\varepsilon > 0$ small enough. Then the sequence of the MLEs is Hellinger consistent:

$$H(h \circ \hat{g}_n, h \circ g_0) \to_{a.s.} 0.$$

PROOF. For $\varepsilon \in (0, 1)$ we have:

$$\begin{split} 0 &\geq \int_{\{h \circ g_0(x) \leq 1-\varepsilon\}} \log(\varepsilon + h \circ g_0) dP_0 \geq \log(\varepsilon) P_0\{h \circ g_0(x) \leq 1-\varepsilon\} > -\infty \\ 0 &\leq \int_{\{h \circ g_0(x) \geq 1\}} \log(\varepsilon + h \circ g_0) dP_0 \leq \int_{\{h \circ g_0(x) \geq 1\}} \log(2h \circ g_0) dP_0 \\ &\leq \int (h \log h) \circ g_0(x) dx + \log 2 < \infty. \end{split}$$

Thus the function $\log(\varepsilon + h \circ g_0)$ is integrable with respect to probability measure P_0 .

We can rearrange:

$$0 \leq \mathbb{L}_{n}\hat{g}_{n} - \mathbb{L}_{n}g_{0} = \int \log[h \circ \hat{g}_{n}]d\mathbb{P}_{n} - \int \log[h \circ g_{0}]d\mathbb{P}_{n}$$
$$\leq \int \log[\varepsilon + h \circ \hat{g}_{n}]d\mathbb{P}_{n} - \int \log[h \circ g_{0}]d\mathbb{P}_{n}$$

(1.1)
$$\leq \int \log[\varepsilon + h \circ \hat{g}_n] d(\mathbb{P}_n - P_0)$$

(1.2)
$$+ \int \log \left[\frac{\varepsilon + h \circ g_n}{\varepsilon + h \circ g_0} \right] dP_0$$

(1.3)
$$+ \int \log[\varepsilon + h \circ g_0] dP_0 - \int \log[h \circ g_0] d\mathbb{P}_n.$$

The term (1.1) converges almost surely to zero by assumption. For the term (1.2) we can apply the analogue of Lemma 1 from Pal et al. [2007]:

$$II \equiv \int \log \left[\frac{\varepsilon + h \circ \hat{g}_n}{b + h \circ g_0}\right] dP_0 \le 2 \int \sqrt{\frac{\varepsilon}{\varepsilon + h \circ g_0}} dP_0 - 2H^2(h \circ \hat{g}_n, h \circ g_0).$$

For the term (1.3), the SLLN implies that:

$$III = \int \log[\varepsilon + h \circ g_0] dP_0 - \int \log[h \circ g_0] d\mathbb{P}_n$$

$$\rightarrow_{a.s.} \int \log[\varepsilon + h \circ g_0] dP_0 - \int \log[h \circ g_0] dP_0 = \int \log\left[\frac{\varepsilon + h \circ g_0}{h \circ g_0}\right] dP_0.$$

Thus we have:

$$0 \leq \liminf (I + II + III)$$

$$\leq_{a.s.} -\limsup 2H^2(h \circ \hat{g}_n, h \circ g_0)$$

$$+ 2\int \sqrt{\frac{\varepsilon}{\varepsilon + h \circ g_0}} dP_0 + \int \log \left[\frac{\varepsilon + h \circ g_0}{h \circ g_0}\right] dP_0.$$

This yields

$$\limsup_{a.s.} H^2(h \circ \hat{g}_n, h \circ g_0) \leq a.s. \int \sqrt{\frac{1}{1 + h \circ g_0/\varepsilon}} dP_0 + \frac{1}{2} \int \log\left[\frac{\varepsilon + h \circ g_0}{h \circ g_0}\right] dP_0 \to 0$$

as $\varepsilon \downarrow 0$ by monotone convergence.

LEMMA 1.13 (M.3.15). Let \mathcal{A} be a class of sets in \mathbb{R}^d such that class $\mathcal{A} \cap [-a, a]^d$ has finite bracketing entropy with respect to Lebesgue measure μ for any a large enough:

$$\log N_{[]}(\varepsilon, \mathcal{A} \cap [-a, a]^d, L_1(\mu)) < +\infty$$

for every $\varepsilon > 0$. Then for any Lebesgue absolutely continuous probability measure P with bounded density we have that A is a Glivenko-Cantelli class:

$$\|\mathbb{P}_n - P\|_{\mathcal{A}} \to_{a.s.} 0.$$

PROOF. Let C be an upper bound for the density of P and a be large so that for the set $D \equiv [-a, a]^d$ we have $P([-a, a]^d) > 1 - \varepsilon/2C$. By assumption the class $\mathcal{A} \cap D$ has a finite set of $\varepsilon/2$ -brackets $\{[L_i, U_i]\}$. Then for any set $A \in \mathcal{A}$ there exists index i such that:

$$L_i \subseteq A \cap D \subseteq U_i$$

Therefore:

$$L_i \subseteq A \subseteq U_i \cup D^c$$

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

and:

$$\begin{aligned} \|1\{U_i \cup D^c\} - 1\{L_i\}\|_{L_1(P)} &\leq \|1\{U_i\} - 1\{L_i\}\|_{L_1(P)} + \|1\{D^c\}\|_{L_1(P)} \\ &\leq C(\|1\{U_i\} - 1\{L_i\}\|_{L_1(\lambda)} + \|1\{D^c\}\|_{L_1(\lambda)}) \leq \varepsilon. \end{aligned}$$

Thus the set $\{[L_i, U_i \cup D^c]\}$ is the set of ε -brackets for our class \mathcal{A} in $L_1(P)$. This implies that \mathcal{A} is a Glivenko-Cantelli class and the statement follows from Theorem 2.4.1 van der Vaart and Wellner [1996].

2. Consistency of the MLE for an increasing model. To prove consistency for increasing models we begin with a general property of lower layer sets (see Dudley [1999], Chapter 8.3). Recall that a lower lay set $B \subset \mathbb{R}^d$ is a set satisfying $y \leq x$ coordinate-wise with $x \in B$ implies $y \in B$.

LEMMA 2.1. Let \mathcal{LL} be the class of closed lower layer sets in \mathbb{R}^d_+ and P be a Lebesgue absolutely continuous probability measure with bounded density. Then:

 $\|\mathbb{P}_n - P\|_{\mathcal{LL}} \to_{a.s.} 0.$

PROOF. By Theorem 8.3.2 Dudley [1999] we have

$$\log N_{[]}(\varepsilon, \mathcal{LL} \cap [0, 1]^d, L_1(\mu)) < +\infty.$$

Since the class \mathcal{LL} is invariant under rescaling, the result follows from Lemma 1.13

Note that Lemma 1.1 implies that if $h \circ g$ belongs to an increasing model $\mathcal{P}(h)$ then $(\operatorname{lev}_y g)^c$ is a lower layer set and has Lebesgue measure less or equal than 1/h(y). Let us denote by A_{δ} the set $\{V(x) \leq \delta, x \in \mathbb{R}^d_+\}$. Then by Lemma 1.1 part 3 we have:

(2.4)
$$(\operatorname{lev}_y g)^c \subset A_{c/h(y)},$$

for $c \equiv d!/d^d$.

THEOREM 2.2 (M.2.15). For an increasing model $\mathcal{P}(h)$ where h satisfies assumptions M.I.1 - M.I.3 and for the true density $h \circ g_0$ which satisfies assumptions M.I.4 - M.I.6, the sequence of MLEs $\{\hat{p}_n = h \circ \hat{g}_n\}$ is Hellinger consistent: $H(\hat{p}_n, p_0) = H(h \circ \hat{g}_n, h \circ g_0) \rightarrow_{a.s.} 0.$

PROOF. By Assumption M.I.6 and Lemma 1.12 it is enough to show that:

$$\int \log[\varepsilon + h \circ \hat{g}_n(x)] d(\mathbb{P}_n(x) - P_0(x)) \to_{a.s.} 0$$

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

Indeed, applying Lemma 1.2 for the increasing transformation $\log[\varepsilon + h(y)] - \log \varepsilon$ we obtain:

$$\int \log[\varepsilon + h \circ \hat{g}_n(x)] d(\mathbb{P}_n(x) - P_0(x))$$

$$= \int_{-\infty}^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] (\mathbb{P}_n - P_0) \left((\operatorname{lev}_z \hat{g}_n)^c \right) dz$$

$$\leq \|\mathbb{P}_n - P_0\|_{\mathcal{LL}} \int_{-\infty}^M \left[\frac{h'(z)}{\varepsilon + h(z)} \right] dz + \int_M^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] |\mathbb{P}_n - P_0| \left((\operatorname{lev}_z \hat{g}_n)^c \right) dz$$

$$\leq \|\mathbb{P}_n - P_0\|_{\mathcal{LL}} \log \left[\frac{\varepsilon + h(M)}{\varepsilon} \right] + \int_M^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] (\mathbb{P}_n + P_0) \left((\operatorname{lev}_z \hat{g}_n)^c \right) dz.$$

The first converges to zero almost surely by Lemma 2.1. For the second term we will use the inclusion 2.4:

$$\int_{M}^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] (\mathbb{P}_n + P_0) (\operatorname{lev}_z \hat{g}_n)^c dz \le \int_{M}^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] (\mathbb{P}_n + P_0) A_{c/h(z)} dz$$

Now, we can apply Lemma 1.2 again for $g_A(x) = h^{-1}(c/V(x))$. We have $(\text{lev}_z g_A)^c = A_{c/h(z)}$ and therefore:

$$\int_{M}^{+\infty} \left[\frac{h'(z)}{\varepsilon + h(z)} \right] (\mathbb{P}_{n} + P_{0}) A_{c/h(z)} dz = \int_{A_{c/h(M)}} \log(\varepsilon + c/V(x)) d(\mathbb{P}_{n} + P_{0})$$
$$\leq \int_{A_{c/h(M)}} \log(2c/V(x)) d(\mathbb{P}_{n} + P_{0}),$$

for M large enough. Assumption M.I.5 and the SLLN imply that:

$$\int_{A_{c/h(M)}} \log(2c/V(x)) d(\mathbb{P}_n + P_0) \to_{a.s.} 2 \int_{A_{c/h(M)}} \log(2c/V(x)) dP_0.$$

Since M is arbitrary and $A_{c/h(M)} \downarrow \{0\}$ as $M \to +\infty$ the result follows. \Box

3. Lower bounds.

3.1. Local deformations.

LEMMA 3.1 (M.3.18). Let $\{g_{\varepsilon}\}$ be a local deformation of the function $g : \mathbb{R}^d \to \mathbb{R}$ at the point x_0 , such that g is continuous at x_0 , and let the function $h : \mathbb{R} \to \mathbb{R}$ be continuously differentiable at the point $g(x_0)$. Then for any r > 0:

(3.5)
$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} |g_\varepsilon(x) - g(x)|^r dx = 0,$$

(3.6)
$$\lim_{\varepsilon \to 0} \frac{\int_{\mathbb{R}^d} |h \circ g_\varepsilon(x) - h \circ g(x)|^r dx}{\int_{\mathbb{R}^d} |g_\varepsilon(x) - g(x)|^r dx} = |h' \circ g(x_0)|^r.$$

PROOF. Since $\{g_{\varepsilon}\}$ is a local deformation, for $\varepsilon > 0$ small enough we have:

$$\begin{split} \int_{\mathbb{R}^d} |h \circ g_{\varepsilon}(x) - h \circ g(x)|^r dx &= \int_{B(x_0; r_{\varepsilon})} |h \circ g_{\varepsilon}(x) - h \circ g(x)|^r dx, \\ \int_{\mathbb{R}^d} |g_{\varepsilon}(x) - g(x)|^r dx &= \int_{B(x_0; r_{\varepsilon})} |g_{\varepsilon}(x) - g(x)|^r dx. \end{split}$$

Then: $\int_{B(x_0;r_{\varepsilon})} |g_{\varepsilon} - g|^r dx \le \operatorname{ess\,sup} |g_{\varepsilon} - g|^r \mu[B(x_0;r_{\varepsilon})]$ implies (3.5). Let us define a sequence $\{a_{\varepsilon}\}$:

$$a_{\varepsilon} \equiv \operatorname{ess\,sup} |g_{\varepsilon} - g| + \sup_{x \in B(x_0; r_{\varepsilon})} |g(x) - g(x_0)|.$$

For $x \in B(x_0; r_{\varepsilon})$ and $y \in [g_{\varepsilon}(x), g(x)]$ we have a.e.:

$$|y - g(x_0)| \le |g_{\varepsilon}(x) - g(x)| + |g(x) - g(x_0)| \le a_{\varepsilon}.$$

Using the mean value theorem we obtain:

$$\int_{\mathbb{R}^d} |h \circ g_{\varepsilon}(x) - h \circ g(x)|^r dx = \int_{\mathbb{R}^d} |h'(y_x)|^r |g_{\varepsilon}(x) - g(x)|^r dx$$
$$\inf_{y \in B(g(x_0);a_{\varepsilon})} |h'(y)|^r \le \frac{\int_{\mathbb{R}^d} |h \circ g_{\varepsilon}(x) - h \circ g(x)|^r dx}{\int_{\mathbb{R}^d} |g_{\varepsilon}(x) - g(x)|^r dx} \le \sup_{y \in B(g(x_0);a_{\varepsilon})} |h'(y)|^r$$

Since h' is continuous at $g(x_0)$, to prove (3.6) it is enough to show that $a_{\varepsilon} \to 0$. By assumption we have: $\lim_{\varepsilon \to 0} \operatorname{ess\,sup} |g_{\varepsilon} - g| = 0$. Since g is continuous at x_0 and $r_{\varepsilon} \to 0$ we have: $\lim_{\varepsilon \to 0} \sup_{x \in B(x_0; r_{\varepsilon})} |g(x) - g(x_0)| = 0$. Thus $a_{\varepsilon} \to 0$, which proves (3.6).

LEMMA 3.2 (M.3.19). Let $\{g_{\varepsilon}\}$ be a local deformation of the function $g : \mathbb{R}^d \to \mathbb{R}$ at the point x_0 , such that g is continuous at x_0 , and let the function $h : \mathbb{R} \to \mathbb{R}$ be continuously differentiable at the point $g(x_0)$ so that $h' \circ g(x_0) \neq 0$. Then for any fixed $\delta > 0$ small enough, the deformation $g_{\theta,\delta} = \theta g_{\delta} + (1 - \theta)g$ and any r > 0 we have:

(3.7)
$$\limsup_{\theta \to 0} \theta^{-r} \int_{\mathbb{R}^d} |h \circ g_{\theta,\delta}(x) - h \circ g(x)|^r dx < \infty,$$

(3.8)
$$\liminf_{\theta \to 0} \theta^{-r} \int_{\mathbb{R}^d} |h \circ g_{\theta,\delta}(x) - h \circ g(x)|^r dx > 0.$$

Note that $g_{\theta,\delta}$ is not a local deformation of g.

PROOF. The statement follows from the argument for Lemma 3.1. For a fixed θ the family $\{g_{\theta,\delta}\}$ is a local deformation of g. Thus for $a_{\theta,\varepsilon}$ defined by: $a_{\theta,\varepsilon} \equiv \operatorname{ess\,sup} |g_{\theta,\varepsilon} - g| + \sup_{x \in B(x_0;r_{\varepsilon})} |g(x) - g(x_0)|$, it follows that

$$\frac{\int_{\mathbb{R}^d} |h \circ g_{\theta,\varepsilon}(x) - h \circ g(x)|^r dx}{\int_{\mathbb{R}^d} |g_{\theta,\varepsilon}(x) - g(x)|^r dx} \le \sup_{y \in B(g(x_0); a_{\theta,\varepsilon})} |h'(y)|^r,$$
$$\frac{\int_{\mathbb{R}^d} |h \circ g_{\theta,\varepsilon}(x) - h \circ g(x)|^r dx}{\int_{\mathbb{R}^d} |g_{\theta,\varepsilon}(x) - g(x)|^r dx} \ge \inf_{y \in B(g(x_0); a_{\theta,\varepsilon})} |h'(y)|^r.$$

For $|\theta| < 1$ we have: $|g_{\theta,\varepsilon} - g| = |\theta||g_{\varepsilon} - g|$ and therefore $a_{\theta,\delta} \leq a_{\delta}$. Since $a_{\varepsilon} \to 0$ and h is continuously differentiable for all $\delta > 0$ small enough we have:

$$\begin{split} \sup_{y \in B(g(x_0); a_{\theta, \delta})} |h'(y)|^r &\leq \sup_{y \in B(g(x_0); a_{\delta})} |h'(y)|^r < \infty,\\ \inf_{y \in B(g(x_0); a_{\theta, \delta})} |h'(y)|^r &\geq \inf_{y \in B(g(x_0); a_{\delta})} |h'(y)|^r > 0. \end{split}$$

Thus for all θ we obtain:

$$\theta^{-r} \int_{\mathbb{R}^d} |h \circ g_{\theta,\delta} - h \circ g|^r d\mu \le \sup_{y \in B(g(x_0);a_\delta)} |h'(y)|^r \int_{\mathbb{R}^d} |g_\delta - g|^r d\mu < \infty,$$

$$\theta^{-r} \int_{\mathbb{R}^d} |h \circ g_{\theta,\delta} - h \circ g|^r d\mu \ge \inf_{y \in B(g(x_0);a_\delta)} |h'(y)|^r \int_{\mathbb{R}^d} |g_\delta - g|^r d\mu > 0$$

which proves the lemma.

LEMMA 3.3 (M.3.22). For all $\varepsilon > 0$ small enough there exist $\theta_{\varepsilon}^+, \theta_{\varepsilon}^- \in (0,1)$ such that the functions g_{ε}^+ and g_{ε}^- defined by:

$$g_{\varepsilon}^{+} = (1 - \theta_{\varepsilon}^{+}) D_{\varepsilon}(g; x_{0}, v_{0}) + \theta_{\varepsilon}^{+} D_{\delta}^{*}(g; x_{1})$$

$$g_{\varepsilon}^{-} = (1 - \theta_{\varepsilon}^{-}) D_{\varepsilon}^{*}(g; x_{0}) + \theta_{\varepsilon}^{-} D_{\delta}(g; x_{1}; v_{1})$$

belong to $\mathcal{P}(h)$.

PROOF. By dominated convergence, the function $F(\theta)$ defined by:

$$F(\theta) = \int h \circ ((1 - \theta) D_{\varepsilon}(g; x_0, v_0) dx + \theta D_{\delta}^*(g; x_1)) dx$$

is continuous. We have:

$$F(0) = \int h \circ D_{\varepsilon}(g; x_0, v_0) dx > \int h \circ g dx = 1,$$

$$F(1) = \int h \circ D^*_{\delta}(g; x_1) dx < \int h \circ g dx = 1.$$

Therefore there exists $\theta_{\varepsilon}^+ \in (0,1)$ such that $F(\theta_{\varepsilon}^+) = 1$.

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

3.2. Mode estimation.

THEOREM 3.4 (M.2.26). Let h be a decreasing transformation, $h \circ g \in \mathcal{P}(h)$ be a convex-transformed density and a point $x_0 \in \operatorname{ri}(\operatorname{dom} g)$ be a unique global minimum of g such that h is continuously differentiable at $g(x_0)$, $h' \circ g(x_0) \neq 0$ and $\operatorname{curv}_{x_0} g > 0$. In addition let us assume that g is locally Hölder continuous at $x_0: |g(x) - g(x_0)| \leq L ||x - x_0||^{\gamma}$ with respect to some norm $\|\cdot\|$. Then, for the functional $T(h \circ g) \equiv \operatorname{argmin} g$ there exists a sequence $\{p_n\} \in \mathcal{P}(h)$ such that:

(3.9)

$$\liminf_{n \to \infty} n^{\frac{2}{\gamma(d+4)}} R_s(n; T, \{p, p_n\}) \ge C(d) L^{-\frac{1}{\gamma}} \left[\frac{h \circ g(x_0)^2 \operatorname{curv}_{x_0} g}{h' \circ g(x_0)^4} \right]^{\frac{1}{\gamma(d+4)}}$$

where the constant C(d) depends only on the dimension d and metric s(x, y) is defined as ||x - y||.

PROOF. The proof is similar to the proof for a point estimation lower bounds. The deformation we will construct will resemble g_{ε}^{-} .

Our statement is not trivial only if the curvature $\operatorname{curv}_{x_0} g > 0$ or equivalently there exists such positive definite $d \times d$ matrix G so that the function g is locally G-strongly convex. For a > 0 small enough $h' \circ g(x)$ is negative and decomposition (M.3.16) is true on $B(x_0; a)$. Let us fix some $v_0 \in \partial g(x_0)$, some $x_1 \in B(x_0; a)$ such that $x_1 \neq x_0$ and some $y_1 \in \partial g(x_1)$. We fix δ such that equation (M.3.14) of Lemma M.3.19 is true for the transformation \sqrt{h} and r = 2 and also $x_0 \notin \overline{B_G(x_1; \sqrt{2\delta})}$.

Let us consider the deformation $D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u)$ where $u \in \mathbb{R}^d$ is an arbitrary fixed vector in \mathbb{R}^d with ||u|| = 1 and

$$\xi(\varepsilon) = g(x_0) - g(x_0 + \varepsilon u) + \varepsilon^{\gamma+1}.$$

Since the value of $D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u)$ at any point x is a convex combination of g(y) for some $y, g(x) \ge g(x_0)$ and

$$D^*_{\mathcal{E}(\varepsilon)}(g; x_0 + \varepsilon u)(x_0 + \varepsilon u) = g(x_0) + \varepsilon^{\gamma+1}$$

the global minimum of $D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u)$ is $x_0 + \varepsilon u$. By Lemma M.3.21 for all $\varepsilon > 0$ small enough we have

$$\operatorname{supp}[D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u) - g] \subseteq B_G(x_0 + \varepsilon u, \sqrt{2\xi(\varepsilon)}).$$

Since, by assumption

$$\xi(\varepsilon) \le L\varepsilon^{\gamma} + \varepsilon^{\gamma+1}$$

the support of $\operatorname{supp}[D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u) - g]$ converges to a point x_0 and thus does not intersect $\operatorname{supp}[D_{\varepsilon}(g; x_1, y_1) - g]$ for ε small enough i.e. these two deformations do not interfere.

The same argument as in Lemma M.3.22 shows that there exists $\theta_{\varepsilon}^m \in (0,1)$ such that the deformation g_{ε}^m defined as:

$$g_{\varepsilon}^{m} = (1 - \theta_{\varepsilon}^{m}) D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) + \theta_{\varepsilon}^{m} D_{\delta}(g; x_{1}, y_{1})$$

belongs to $\mathcal{P}(h)$. Also $g_{\varepsilon}^m \geq D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u)$ and the global minimum of g_{ε}^m is $x_0 + \varepsilon u$. We have:

$$\varepsilon^{-1}s(Tg^m_\varepsilon, Tg) \equiv 1.$$

Next, we will show that θ_{ε}^m goes to zero fast enough so that g_{ε}^m is very close to $D_{\xi(\varepsilon)}^*(g; x_0 + \varepsilon u)$. We have:

$$0 = \int (h \circ g_{\varepsilon}^{m} - h \circ g) dx$$

= $-\int \left(h \circ g - h \circ ((1 - \theta_{\varepsilon}^{m})D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) + \theta_{\varepsilon}^{m}g)\right) dx$
+ $\int (h \circ (\theta_{\varepsilon}^{m}D_{\delta}(g; x_{1}, y_{1}) + (1 - \theta_{\varepsilon}^{m})g) - h \circ g) dx,$

where both integrals have the same sign. For the first integral by Lemma M.3.18 we have:

$$\begin{split} &\int \left| h \circ g - h \circ ((1 - \theta_{\varepsilon}^{m}) D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) + \theta_{\varepsilon}^{m}g) \right| dx, \\ &\leq \int \left| h \circ g - h \circ D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) \right| dx \sim \int \left| D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) - g \right| dx \\ &\leq \xi(\varepsilon) \mu [B_{G}(x_{0} + \varepsilon u; \sqrt{2\xi(\varepsilon)})] = O(\xi(\varepsilon)^{1 + d/2}) \end{split}$$

The second integral is monotone in θ_{ε}^m and by Lemma M.3.19 we have:

$$\int \left(h \circ \left(\theta_{\varepsilon}^{m} D_{\delta}(g; x_{1}, y_{1}) + \left(1 - \theta_{\varepsilon}^{m}\right)g\right) - h \circ g\right) dx \sim \theta_{\varepsilon}^{m},$$

thus we have $\theta_{\varepsilon}^{+} = O(\varepsilon^{\gamma(1+d/2)}).$

For Hellinger distance we have:

$$\begin{aligned} H(h \circ g_{\varepsilon}^{m}, h \circ g) &= H(h \circ ((1 - \theta_{\varepsilon}^{m})D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) + \theta_{\varepsilon}^{m}g), h \circ g) \\ &+ H(h \circ (\theta_{\varepsilon}^{m}D_{\delta}(g; x_{1}, y_{1}) + (1 - \theta_{\varepsilon}^{m})g)), h \circ g). \end{aligned}$$

For the first part we can apply Lemma M.3.18:

$$H^{2}(h \circ ((1 - \theta_{\varepsilon}^{m})D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) + \theta_{\varepsilon}^{m}g), h \circ g) \leq H^{2}(h \circ D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u), h \circ g)$$
$$\lim_{\varepsilon \to 0} \frac{H^{2}(h \circ D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u), h \circ g)}{\int (D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) - g)^{2}dx} = \frac{h' \circ g(x_{0})^{2}}{4h \circ g(x_{0})} \quad \text{and}$$
$$\int (D_{\xi(\varepsilon)}^{*}(g; x_{0} + \varepsilon u) - g)^{2}dx \leq \xi(\varepsilon)^{2} \mu [B_{\varepsilon}(x_{0}; \sqrt{2\xi(\varepsilon)})]$$

$$\int (D^*_{\xi(\varepsilon)}(g; x_0 + \varepsilon u) - g)^2 dx \le \xi(\varepsilon)^2 \mu [B_G(x_0; \sqrt{2\xi(\varepsilon)})]$$
$$= \xi(\varepsilon)^{2+d/2} \frac{2^{d/2} \mu [S(0, 1)]}{\sqrt{\det G}}$$

which gives:

$$\begin{split} \limsup_{\varepsilon \to 0} \varepsilon^{-\gamma(1+d/4)} H(h \circ ((1-\theta_{\varepsilon}^m) D_{\xi(\varepsilon)}^*(g; x_0+\varepsilon u) + \theta_{\varepsilon}^m g), h \circ g) \\ & \leq C(d) L^{1+d/4} \left[\frac{h' \circ g(x_0)^4}{h \circ g(x_0)^2 \det G} \right]^{1/4} \end{split}$$

where S(0, 1) is *d*-dimensional sphere of radius 1. For the second part by Lemma M.3.19 we obtain:

$$\limsup_{\varepsilon \to 0} (\theta_{\varepsilon}^{+})^{-2} H^{2}(h \circ ((1 - \theta_{\varepsilon}^{+})g + \theta_{\varepsilon}^{+}D_{\delta}(g; x_{1}, y_{1})), h \circ g) < \infty$$
$$H(h \circ ((1 - \theta_{\varepsilon}^{+})g + \theta_{\varepsilon}^{+}D_{\delta}(g; x_{1}, y_{1})), h \circ g) = O(\varepsilon^{\gamma(1 + d/2)}).$$

Thus:

$$\limsup_{\varepsilon \to 0} \varepsilon^{-\gamma(1+d/4)} H(h \circ g_{\varepsilon}^+, h \circ g) \le C(d) L^{1+d/4} \left[\frac{h' \circ g(x_0)^4}{h \circ g(x_0)^2 \det G} \right]^{1/4}.$$

Finally, we apply Corollary M.2.21:

$$\liminf_{n \to \infty} n^{\frac{2}{\gamma(d+4)}} R_1(n; T, \{p, p_n\}) \ge C(d) L^{-\frac{1}{\gamma}} \left[\frac{h \circ g(x_0)^2 \det G}{h' \circ g(x_0)^4} \right]^{\frac{1}{\gamma(d+4)}}.$$

Taking the supremum over all $G \in \mathcal{SC}(g; x_0)$ we obtain the statement of the theorem. \Box

APPENDIX A: SOME RESULTS FROM CONVEX ANALYSIS

We will use the following general properties of convex sets and convex functions. We use Rockafellar [1970] as a reference.

LEMMA A.1. For any convex set A in \mathbb{R}^d we have:

- 1. The boundary of A has Lebesgue measure zero.
- 2. A has Lebesgue measure zero if and only if it belongs to a d-1 dimensional affine subspace.
- 3. A has Lebesgue measure $+\infty$ if and only if it is unbounded and has dimension d.

Proof.

1. If A is such that cl(A) has finite Lebesgue measure then:

$$\partial A \subseteq (1+\varepsilon) \operatorname{cl}(A) \setminus (1-\varepsilon) \operatorname{cl}(A), \quad \varepsilon \in (0,1)$$
$$\mu[\partial A] \le 2\varepsilon \mu[\operatorname{cl}(A)]$$

and thus $\mu[\partial A] = 0$. Since \mathbb{R}^d is a countable union of closed convex cubes B_i the result for an arbitrary convex set A follows from:

$$\partial A \subseteq \bigcup_i \partial (A \cap B_i).$$

- If A has dimension k ≤ d then its affine hull V has dimension k and A contains a k-dimensional simplex D (Theorem 2.4 Rockafellar [1970]). Then if k = d we have μ[D] > 0 and if k < d we have μ[V] = 0.
- 3. Part 1 implies that it is enough to consider closed convex sets. Part 2 implies that it is enough to prove that an unbounded closed convex set of dimension d has Lebesgue measure $+\infty$. Let A be such a set; i.e. an unbounded closed convex set. Then A contains d-dimensional simplex D (Theorem 2.4 Rockafellar [1970]) which has non-zero Lebesgue measure. Since A is unbounded then its recession cone is non-empty (Theorem 8.4 Rockafellar [1970]) and therefore we can choose a direction v such that $D + \lambda v \subset A$ for all $\lambda \geq 0$ which implies $\mu[A] = +\infty$.

The following lemma shows that convergence of convex sets in measure implies pointwise convergence.

LEMMA A.2. Let A be a convex set in \mathbb{R}^d such that $\dim(A) = d$ and $\operatorname{ri}(A) \neq \emptyset$. Then:

- 1. Suppose a sequence of convex sets B_n is such that $A \subseteq B_n$ and $\lim \mu[B_n \setminus A] = 0$ then $\limsup \operatorname{cl}(B_n) = \operatorname{cl}(A)$;
- 2. Suppose a sequence of convex sets B_n is such that $C_n \subseteq A$ and $\lim \mu[A \setminus C_n] = 0$ then $\liminf \operatorname{ri}(C_n) = \operatorname{ri}(A)$.

PROOF. By Lemma A.1 we can assume that A, B_n and C_n are closed convex sets.

1. If on the contrary, there exists a subsequence $\{k\}$ such that for some $x \in A^c$ we have $x \in \bigcap_{k \ge 1} B_k$ then for $xA = \operatorname{conv}(\{x\} \cup A)$ we have:

$$xA \subseteq B_k$$
$$\mu[B_k \setminus A] \ge \mu[xA \setminus A].$$

Since A is closed there exists a ball B(x) such that $B(x) \cap A = \emptyset$. Since $\operatorname{ri}(A) \neq \emptyset$ there exists a ball $B(x_0)$ such that $B(x_0) \subseteq A$ for some $x_0 \in \operatorname{ri}(A)$. Then for $xB = \operatorname{conv}(\{x\} \cup B(x_0))$ we have:

$$\begin{aligned} xB &\subseteq xA \\ \mu[xA \setminus A] \geq \mu[xB \cap B(x)] > 0. \end{aligned}$$

This contradiction implies $\limsup B_i = A$.

2. If on the contrary, there exists a point $x \in \operatorname{ri}(A)$ and subsequence $\{k\}$ such that $x \notin C_k$ for all k then for each C_k there exists a half-space L_k such that $x \in L_k$ and $C_k \subseteq L_k^c$. Let B(x) be a ball such that $B(x) \subseteq A$. We have:

$$\mu[A \setminus C_i] \ge \mu[A \cap L_k] \ge \mu[B(x) \cap L_k] = \mu[B(x)]/2 > 0.$$

This contradiction implies $ri(A) \subseteq \liminf C_i$.

Our next lemma shows that the Lebesgue measure of sublevel sets of a convex function grows at most polynomially.

LEMMA A.3. Let g be a convex function and values $y_1 < y_2 < y_3$ are such that $\text{lev}_{y_1} g \neq \emptyset$. Then we have:

(A.10)
$$\mu[\operatorname{lev}_{y_3} g] \le \left[\frac{y_3 - y_1}{y_2 - y_1}\right]^d \mu[\operatorname{lev}_{y_2} g]$$

PROOF. By assumption we have:

$$\mu[\operatorname{lev}_{y_3} g] \ge \mu[\operatorname{lev}_{y_2} g] \ge \mu[\operatorname{lev}_{y_1} g] > 0.$$

Let us consider the set L defined as:

$$L = \{ x_1 + k(x - x_1) \, | \, x \in \operatorname{lev}_{y_2} g \},\$$

where x_1 is any fixed point such that $g(x_1) = y_1$ and

$$k = \frac{y_3 - y_1}{y_2 - y_1} > 1.$$

Then:

$$\mu[L] = k^d \mu[\operatorname{lev}_{y_2} g].$$

and therefore it is enough to prove that $\operatorname{lev}_{y_3} g \subseteq L$. If $x_3 \in \operatorname{lev}_{y_3} g$ then for $x_2 = x_1 + (x_3 - x_1)/k$ we have:

$$x_3 = x_1 + k(x_2 - x_1),$$

$$g(x_2) \le (1 - 1/k)g(x_1) + (1/k)g(x_3) = y_2$$

and thus $x_2 \in \operatorname{lev}_{y_2} g$.

COROLLARY A.4. If g is a convex function then function $\mu[\operatorname{lev}_{g} g]$ is continuous on $(\inf q, \sup q)$.

A.1. Maximal convex minorant. In this section we describe the convex function f_c which is in some sense the closest to a given function f.

DEFINITION A.5. The maximal convex minorant f_c of a proper function f is a supremum of all linear functions l such that $l \leq f$.

It is possible that f_c does not majorate any linear function and then $f_c = -\infty$. However if it is not the case the following properties of the maximal convex minorant hold. Recall that for any function f, the convex conjugate f^* of f is defined by $f^*(y) \equiv \sup_{x \in \mathbb{R}^d} (\langle y, x \rangle - f(x)).$

LEMMA A.6. Let f be a function and $f_c \neq -\infty$ its maximal convex minorant. Then:

1. f_c is a closed proper convex function; 2. if f is proper convex function then f_c is its closure; 3. $f_c \leq f;$ 4. $(f_c)^*(y) = f^*(y)$.

PROOF. This follows from Corollary 12.1.1 Rockafellar [1970].

The maximal convex minorant allows us to see an important duality between operations of pointwise minimum and pointwise maximum.

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

LEMMA A.7. Let f_i be a proper convex functions and let $g = \inf_i f_i$ be the pointwise infinum of f_i . Then $(g_c)^* = \sup_i f_i^*$.

PROOF. This follows from Theorem 16.5 Rockafellar [1970]. \Box

A.2. Subdifferential.

DEFINITION A.8. The subdifferential $\partial h(x)$ of a convex function h at the point x is the set of all vectors v which satisfy the inequality

$$h(z) \ge \langle v, z - x \rangle + h(x)$$
 for all x .

Obviously $\partial h(x)$ is a closed convex set. It might be empty, but if it is not, the function h is called *subdifferentiable* at x.

LEMMA A.9. Let h be a proper convex function then for $x \in ri dom h$ subdifferential $\partial h(x)$ is not empty.

PROOF. This follows from Theorem 23.4 Rockafellar [1970].

LEMMA A.10. Let h be a closed proper convex function. Then the following conditions on x and x^* are equivalent:

x* ∈ ∂h(x);
 l(z) = ⟨x*, z⟩ - h*(x*) is a support plane for epi(h) at x;
 h(x) + h*(x*) = ⟨x*, x⟩;
 x ∈ ∂h*(x*);
 l(z) = ⟨x, z⟩ - h(x) is a support plane for epi(h*) at x*;

PROOF. This follows from Theorem 23.5 Rockafellar [1970]. \Box

LEMMA A.11. Let h_1 and h_2 be proper convex functions such that $\operatorname{ridom} h_1 \cap$ ridom $h_2 \neq \emptyset$. Then $\partial(h_1 + h_2) = \partial h_1 + \partial h_2$ for all x.

PROOF. This follows from Theorem 23.8 Rockafellar [1970].

A.3. Polyhedral functions.

DEFINITION A.12. A polyhedral convex set is a set which can be expressed as an intersection of finitely many half-spaces. A polyhedral convex function is a convex function whose epigraph is polyhedral.

From Theorem 19.1 Rockafellar [1970] we have that the epigraph of the polyhedral function $h : \mathbb{R}^d \to \mathbb{R}$ has finite number of extremal points and faces. We call projections of extremal points the *knots* of *h* and projections of the nonvertical *d*-dimensional faces the *facets* of *h*. Thus the set of knots and the set of facets of polyhedral function are always finite. Moreover, by Theorem 18.3 Rockafellar [1970] the knots are the extremal points of the facets. Finally, let $\{C_i\}$ be the set of facets of a polyhedral function *h* then:

$$\operatorname{dom} h = \bigcup_{i} C_{i}$$
$$\operatorname{ri}(C_{i}) \cap \operatorname{ri}(C_{j}) = \emptyset,$$

and on dom h we have $h = \max(l_i)$ where l_i are linear functions. For each C_i there exists l_i such that:

$$C_i = \{ x \, | \, h(x) = l_i(x) \}.$$

LEMMA A.13. Let f be a polyhedral convex function and $x \in \text{dom } h$ then $\partial h(x) \neq \emptyset$.

PROOF. This follows from Theorem 23.10 Rockafellar [1970]. \Box

LEMMA A.14. For the set of points $x = \{x_i\}_{i=1}^n$ such that $x_i \in \mathbb{R}^d$ and any point $p \in \mathbb{R}^n$ consider a family of all convex functions h with $ev_x h = p$. The unique maximal element U_x^p in this family is a polyhedral convex function with domain dom $U_x^p = conv(x)$ and the set of knots $K \subseteq x$.

PROOF. Points (x_i, p_i) and direction (0, 1) belong to the epigraph of any convex function h in our family and so does convex hull U of these points and direction. By construction U is an epigraph of some closed proper convex function U_x^p such that dom $U_x^p = \operatorname{conv}(x)$, by Theorem 19.1 Rockafellar [1970] this function is polyhedral, by Corollary 18.3.1 Rockafellar [1970] the set of its knots K belongs to x and since $\operatorname{epi}(U_x^p) = U \subseteq \operatorname{epi}(h)$ we have $h \leq U_x^p$. On the other hand, since $(x_i, p_i) \in U$ we have

$$p_i = h(x_i) \le U_x^p(x_i) \le p_i$$

and therefore $U_x^p(x_i) = p_i$ which proves the lemma.

LEMMA A.15. For the set of points $x = \{x_i\}_{i=1}^n$, convex set C such that $x_i \in \operatorname{ri}(C)$ and any point $p \in \mathbb{R}^n$ consider a family of all convex functions h with $\operatorname{ev}_x h = p$ and $C \subseteq \operatorname{dom} h$. Any minimal element L_x^p in this family is a polyhedral convex function with $\operatorname{dom} L_x^p = \mathbb{R}^d$. For each facet C of L_x^p , $\operatorname{ri}(C)$ contains at least one element of x.

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

PROOF. For any function h in our family let us consider the set of linear functions l_i such that $l_i(x_i) = h(x_i) = p_i$ and $l_i \leq h$ and which correspond to arbitrarily chosen nonvertical support planes for epi(h) at x_i . Then $L = \max(l_i)$ is polyhedral and since $l_j(x_i) \leq h(x_i) = p_i$ we have $L(x_i) = p_i$. We also have dom $L = \mathbb{R}^d$. If the interior of any facet C_i of L does not contain elements of x we can exclude corresponding linear function l_i from maximum. For the new polyhedral function $L' = \max_{j \neq i} l_j$ we still have $\operatorname{ev}_x L' = p$. Now, we repeat this procedure until interior of each facet contains at least one element of x and denote the function we obtained by L_x^p . If a closed proper convex function h is such that $\operatorname{ev}_x h = p$ and $h \leq L_x^p$, then consider for any facet C_i and corresponding linear function l_i we have $h \leq l_i$ on C_i and the supremum of h on the convex set C_i is obtained in interior point $x_j \in x$. By Theorem 32.1 Rockafellar [1970] $h \equiv L_x^p$ on C_i . Thus $h \equiv L_x^p$ and L_x^p is the minimal element of our family.

LEMMA A.16. For linear function $l(x) = a^T x + b$ the polyhedral set $A = \{l \ge c\} \cap \mathbb{R}^d_+$ is bounded if and only if all coordinates of a are negative. In this case, if $b \ge c$ the set A is a simplex with vertices $p_i = ((c-b)/a_i)e_i$ and 0, where e_i are basis vectors. Otherwise, A is empty.

PROOF. If coordinate a_i is nonnegative then the direction $\{\lambda e_i\}, \lambda > 0$ belongs to the recession cone of A and thus it is unbounded. If all coordinates a_i are negative and $b \leq c$ the set A is either empty or consists of zero vector 0. Finally, if a_i are negative and b > c then for $x \in A$ we can define $\theta_i = a_i x_i / (c - b) > 0$. Then $1 \geq \sum_i \theta_i$ and $x = \sum_i \theta_i p_i$, which proves that Ais simplex. \Box

A.4. Strong convexity. Following Rockafellar and Wets [1998] page 565 we say that a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ is strongly convex if there exists a constant σ such that:

(A.11)
$$h(\theta x + (1 - \theta)y) \le \theta h(x) + (1 - \theta)h(y) - \frac{1}{2}\sigma\theta(1 - \theta)||x - y||^2$$

for all x, y and $\theta \in (0,1)$. There is a simple characterization of strong convexity:

LEMMA A.17. A proper convex function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is strongly convex if and only if the function $f(x) - \frac{1}{2}\sigma ||x||^2$ is convex.

Since we need a more precise control over the curvature of a convex function we define a generalization of strong convexity based on the characterization above:

DEFINITION A.18. We say that a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ is G-strongly convex if there exists a point x_0 , a positive semidefinite $d \times d$ matrix G and a convex function q such that:

(A.12)
$$h(x) = \frac{1}{2}(x - x_0)^T G(x - x_0) + q(x)$$
 for all x .

Obviously, strong convexity is equivalent to σI -strong convexity where I denotes the $d \times d$ identity matrix. Note that the definition does not depend on the choice of x_0 .

DEFINITION A.19. We say that a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ is locally G-strongly convex at a point x_0 if there exist an open neighborhood of x_0 , a positive semidefinite $d \times d$ matrix G and a convex function q such that (A.12) holds for any x in this neighborhood.

We can relate G-strong convexity to the Hessian of a smooth convex function:

LEMMA A.20. If a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ is continuously twice differentiable at x_0 then h is locally $(1-\varepsilon)\nabla^2 h$ -strongly convex for any $\varepsilon \in (0,1)$.

The last result suggests the following definition:

DEFINITION A.21. For a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ we define a curvature $\operatorname{curv}_{x_0} h$ at a point x_0 as:

$$(A.13) \qquad \qquad \operatorname{curv}_{x_0} h = \sup_{G \in \mathcal{SC}(h; x_0)} \det(G)$$

where $SC(h; x_0)$ is the set of all positive semidefinite matrices G such that h is locally G-strong convex at x_0 .

Lemma A.20 implies that:

LEMMA A.22. If a proper convex function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ is continuously twice differentiable at x_0 and Hessian $\nabla^2 h(x_0)$ is positive definite then

(A.14)
$$\operatorname{curv}_{x_0} h = \det(\nabla^2 h(x_0)).$$

NOTATION

REFERENCES

- DUDLEY, R. M. (1999). Uniform central limit theorems, vol. 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
- OKAMOTO, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 763–765.
- PAL, J. K., WOODROOFE, M. B. and MEYER, M. C. (2007). Estimating a polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond, vol. 54 of IMS Lecture Notes-Monograph Series. IMS, 239–249.
- ROCKAFELLAR, R. T. (1970). *Convex analysis*. Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J.
- ROCKAFELLAR, R. T. and WETS, R. J.-B. (1998). Variational analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin.
- VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes, with Applications to Statistics. Springer Series in Statistics, Springer-Verlag, New York.

DEPARTMENT OF STATISTICS, BOX 354322 UNIVERSITY OF WASHINGTON SEATTLE, WA 98195-4322 E-MAIL: arseni@stat.washington.edu Department of Statistics, Box 354322 University of Washington Seattle, WA 98195-4322 E-mail: jaw@stat.washington.edu