SUPPLEMENT TO "NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES."

By Arseni Seregin* and Jon A. Wellner ${ }^{\dagger}$
University of Washington

1. Properties of the increasing transformation.

Lemma 1.1. Let h be a increasing transformation and g be a closed proper convex function with $\operatorname{dom} g=\overline{\mathbb{R}}_{+}^{d}$ such that

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x=C<\infty .
$$

Then the following are true:

1. For a sublevel set $\operatorname{lev}_{y} g$ with $y>y_{0}$ we have:

$$
\mu\left[\left(\operatorname{lev}_{y} g\right)^{c}\right] \leq C / h(y) .
$$

2. For any point $x_{0} \in \mathbb{R}_{+}^{d}$ and any subgradient $a \in \partial g\left(x_{0}\right)$ all coordinates of a are nonpositive. If in addition $g\left(x_{0}\right)>y_{0}$ then all coordinates of a are negative.
3. For any point $x_{0} \in \mathbb{R}_{+}^{d}$ such that $g\left(x_{0}\right)>y_{0}$ we have:

$$
h \circ g\left(x_{0}\right) \leq \frac{C d!}{d^{d} V\left(x_{0}\right)},
$$

where $V(x) \equiv \prod_{k=1}^{d} x_{k}$ for $x \in \mathbb{R}_{+}^{d}$.
4. The function h reverses partial order on $\overline{\mathbb{R}}_{+}^{d}$: if $x_{1}<x_{2}$ then $g\left(x_{1}\right) \geq$ $g\left(x_{2}\right)$ and the last inequality is strict if $g\left(x_{1}\right)>y_{0}$.
5. The supremum of g on $\overline{\mathbb{R}}_{+}^{d}$ is attained at 0 .

[^0]Proof. 1. Since h is nondecreasing we have $h(y)>0$ and:

$$
C=\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x \geq \int_{\left(\operatorname{lev}_{y} g\right)^{c}} h \circ g d x \geq h(y) \mu\left[\left(\operatorname{lev}_{y} g\right)^{c}\right] .
$$

2. Consider the linear function $l(x)=a^{T}\left(x-x_{0}\right)+g\left(x_{0}\right)$. We have $g \geq l$. If the vector a has a nonnegative coordinate a_{i} then consider a closed ball $B=\bar{B}\left(x_{0}\right) \subset \mathbb{R}_{+}^{d}$. If m is a minimum of the function l on B then the minimum of the function $h \circ l$ on $B+\lambda e_{i}$ is equal to $h\left(m+\lambda a_{i}\right)$, where e_{i} is the element of the basis which corresponds to the i th coordinate. For $\lambda>0$ we have $B+\lambda e_{i} \subset \mathbb{R}_{+}^{d}$.
If $a_{i}>0$ then:

$$
\int_{\overline{\mathbb{R}}_{+}^{p}} h \circ g d x \geq \int_{\overline{\mathbb{R}}_{+}^{p}} h \circ l d x \geq \int_{B} h \circ l d x \geq \mu[B] h\left(m+\lambda a_{i}\right) \rightarrow+\infty
$$

as $\lambda \rightarrow \infty$, which contradicts the assumption.
If $a_{i}=0$ and $g\left(x_{0}\right)=l\left(x_{0}\right)>y_{0}$, then we can choose the radius of the ball small enough so that $m>y_{0}$. Then:

$$
\int_{\overline{\mathbb{R}}_{+}^{p}} h \circ g d x \geq \int_{\overline{\mathbb{R}}_{+}^{p}} h \circ l d x \geq \int_{K} h \circ l d x \geq \mu[K] h(m)=+\infty
$$

where $K \equiv \cup_{\lambda>0}\left(B+\lambda e_{i}\right)$, and this again contradicts the assumption.
3. Consider the subgradient $a \in \partial g\left(x_{0}\right)$. For the linear function $l(x)=$ $a^{T}\left(x-x_{0}\right)+g\left(x_{0}\right)$ we have $g \geq l$ and $l\left(x_{0}\right)=g\left(x_{0}\right)$ therefore $\left(\operatorname{lev}_{g\left(x_{0}\right)} l\right)^{c} \subseteq$ $\left(\operatorname{lev}_{g\left(x_{0}\right)} g\right)^{c}$. From the previous statement we have that $\left(\operatorname{lev}_{g\left(x_{0}\right)}\right)^{c}$ is a simplex and using inequality of arithmetic and geometric means we have:

$$
\mu\left[\left(\operatorname{lev}_{g\left(x_{0}\right)} l\right)^{c}\right]=\frac{\left(a^{T} x_{0}\right)^{d}}{d!V(a)} \geq \frac{d^{d} V\left(x_{0}\right)}{d!}
$$

which together with 1 . proves the statement.
4. Since $x_{1} \in \overline{\mathbb{R}}_{+}^{d}$ and $x_{1}<x_{2}$ we have $x_{2} \in \mathbb{R}_{+}^{d}=\operatorname{ri}(\operatorname{dom} g)$. For any subgradient $a \in \partial g\left(x_{2}\right)$ we have

$$
g\left(x_{1}\right)-g\left(x_{2}\right) \geq a^{T}\left(x_{1}-x_{2}\right) \geq 0
$$

from the previous statement. Now, if $g\left(x_{1}\right)>y_{0}$ then we can assume that $g\left(x_{2}\right)>y_{0}$ since otherwise the statement is trivial. In this case all coordinates of a are negative and:

$$
g\left(x_{1}\right)-g\left(x_{2}\right) \geq a^{T}\left(x_{1}-x_{2}\right)>0 .
$$

5. From the previous statement we have that $h \circ g \leq h \circ g(0)$ on \mathbb{R}_{+}^{d} which together with continuity of $h \circ g$ implies the statement.

LEMMA 1.2. Let h be an increasing transformation, g be a closed proper convex function on $\overline{\mathbb{R}}_{+}^{d}$ and Q be a σ-finite Borel measure on $\overline{\mathbb{R}}_{+}^{d}$. Then:

$$
\int_{\operatorname{lev}_{a} g} h \circ g d Q=\int_{-\infty}^{a} h^{\prime}(y) Q\left[\left(\operatorname{lev}_{y} g\right)^{c} \cap \operatorname{lev}_{a} g\right] d y
$$

Proof. Using the Fubini-Tonelli theorem we have:

$$
\begin{aligned}
\int_{\operatorname{lev}_{a} g} h \circ g d Q & =\int_{\operatorname{lev}_{a} g} \int_{0}^{h(a)} 1\{z \leq h \circ g(x)\} d z d Q(x) \\
& =\int_{\operatorname{lev}_{a} g} \int_{0}^{h(a)} 1\left\{h^{-1}(z) \leq g(x)\right\} d z d Q(x) \\
& =\int_{\operatorname{lev}_{a} g} \int_{-\infty}^{a} h^{\prime}(y) 1\{y \leq g(x)\} d y d Q(x) \\
& =\int_{-\infty}^{a} h^{\prime}(y) \int_{\operatorname{lev}_{a} g} 1\{y \leq g(x)\} d Q(x) d y \\
& =\int_{-\infty}^{a} h^{\prime}(y) Q\left[\left(\operatorname{lev}_{y} g\right)^{c} \cap \operatorname{lev}_{a} g\right] d y
\end{aligned}
$$

LEMMA 1.3. Let h be an increasing transformation and let g be a polyhedral convex function with $\operatorname{dom} g=\overline{\mathbb{R}}_{+}^{d}$ such that:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x<\infty
$$

Then $g(0)<y_{\infty}$.
Proof. For $y_{\infty}=+\infty$ the statement is trivial so we assume that y_{∞} is finite. If $g(0)>y_{\infty}$ then since g is continuous there exists a ball $B \subset \overline{\mathbb{R}}_{+}^{d}$ small enough such that $g>y_{\infty}$ on B and therefore

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x=\infty
$$

Let us assume that $g(0)=y_{\infty}$. By Lemma A. 13 there exists $a \in \partial g(0)$ and therefore $g(x) \geq l(x) \equiv a^{T} x+y_{\infty}$. Let a_{m} be the minimum among the
coordinates of the vector a and -1 . Then on $\overline{\mathbb{R}}_{+}^{d}$ we have $l(x) \geq l_{1}(x) \equiv$ $a_{m} \mathbf{1}^{T} x+y_{\infty}$ where $a_{m}<0$ and thus $l_{1}(x) \leq y_{\infty}$. By Lemma 1.2 we have:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x \geq \int_{\overline{\mathbb{R}}_{+}^{d}} h \circ l_{1} d x=\int_{-\infty}^{y_{\infty}} h^{\prime}(y) \mu\left[\left(\operatorname{lev}_{y} l_{1}\right)^{c} \cap \overline{\mathbb{R}}_{+}^{d}\right] d y .
$$

The set $A_{y}=\left(\operatorname{lev}_{y} g\right)^{c} \cap \overline{\mathbb{R}}_{+}^{d}$ is a simplex and:

$$
\mu\left[A_{y}\right]=\frac{\left(y_{\infty}-y\right)^{d}}{d!\left(-a_{m}\right)^{d}}
$$

for $y \leq y_{\infty}$. By assumption M.I. 2 we have $h^{\prime}(y) \asymp\left(y_{\infty}-y\right)^{-\beta-1}$ as $y \uparrow y_{\infty}$ where $\beta>d$ and therefore:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g_{1} d x=\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x=+\infty .
$$

This contradiction proves that $g(0)<y_{\infty}$.
Lemma 1.4. Let h be an increasing transformation and let $l(x)=a^{T} x+b$ be a linear function such that all coordinates of a are negative and $b<y_{\infty}$. Then:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ l d x<\infty .
$$

Proof. We have $l \leq b$ on $\overline{\mathbb{R}}_{+}^{d}$ and by Lemma 1.2:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ l d x=\int_{-\infty}^{b} h^{\prime}(y) \mu\left[\left(\operatorname{lev}_{y} l\right)^{c} \cap \overline{\mathbb{R}}_{+}^{d}\right] d y .
$$

The set $A_{y}=\left(\operatorname{lev}_{y} l\right)^{c} \cap \overline{\mathbb{R}}_{+}^{d}$ is a simplex and:

$$
\mu\left[A_{y}\right]=\frac{(b-y)^{d}}{d!V(-a)}
$$

for $y \leq b$. By assumption M.I. 1 we have $h^{\prime}(y)=o\left(y^{-\alpha-1}\right)$ as $y \rightarrow-\infty$ for $\alpha>d$ and therefore the integral is finite.

Lemma 1.5. Let h be an increasing transformation and suppose that $K \subset \overline{\mathbb{R}}_{+}^{d}$ is a compact set. Then there exists a closed proper convex function $g \in \mathcal{G}(h)$ such that $g>y_{0}$ on K.

Proof. If $y_{0}=-\infty$ then consider the function $T(c)$ defined as:

$$
T(c)=\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ\left(-\mathbf{1}^{T} x+c\right) d x .
$$

By Lemma 1.4, $T(c)$ is finite for $c<y_{\infty}$, and by Lemma 1.3, we conclude that $T\left(y_{\infty}\right)=+\infty$. By monotone convergence T is left-continuous for $c \in\left(-\infty, y_{\infty}\right]$ and by dominated convergence is right-continuous for $c \in\left(-\infty, y_{\infty}\right)$. Since $T(-\infty)=0$ there exists $c_{1}<y_{\infty}$ such that $T\left(c_{1}\right)=1$ and thus the linear function $l(x)=-\mathbf{1}^{T} x+c_{1}$ belongs to $\mathcal{G}(h)$.

If $y_{0}<-\infty$ then choose M such that $\mathbf{1}^{T} x<M$ on K. Consider the function $T(c)$ defined as:

$$
T(c)=\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ\left(c\left(-\mathbf{1}^{T} x+M\right)+y_{0}\right) d x .
$$

By Lemma 1.4, $T(c)$ is finite for $c<\left(y_{\infty}-y_{0}\right) / M$ and by Lemma 1.3, $T\left(\left(y_{\infty}-\right.\right.$ $\left.\left.y_{0}\right) / M\right)=+\infty$. By monotone and dominated convergence T is continuous for $c \in\left[0,\left(y_{\infty}-y_{0}\right) / M\right]$. Since $T(0)=0$ there exists $c_{1} \in\left(0,\left(y_{\infty}-y_{0}\right) / M\right)$ such that linear function $l(x)=c_{1}\left(-\mathbf{1}^{T} x+M\right)+y_{0}$ belongs to $\mathcal{G}(h)$. By construction $l>y_{0}$ on K.

Lemma 1.6. If X_{1}, \ldots, X_{n} are i.i.d. $p_{0}=h \circ g_{0} \in \mathcal{P}(h)$ for a monotone transformation h, then the observations X are in general position with probability 1.

Proof. Points are not in general position if at least one subset Y of X of size $d+1$ belongs to a proper linear subspace of \mathbb{R}^{d}. This is true if and only if X as a vector in $\mathbb{R}^{n d}$ belongs to a certain non-degenerate algebraic variety. Since with probability 1 we have $X \subset \operatorname{dom} g_{0}$ and by definition $\operatorname{dim}\left(\operatorname{dom} g_{0}\right)=d$, the statement follows from Okamoto [1973].

Below we assume that our observations are in general position for any n. For an increasing model we also assume that all X_{i} belong to \mathbb{R}_{+}^{d}. This assumption holds with probability 1 since $\mu\left[\overline{\mathbb{R}}_{+}^{d} \backslash \mathbb{R}_{+}^{d}\right]=0$.

Lemma 1.7 (M.3.6). Consider an increasing transformation h. For any convex function g with $\operatorname{dom} g=\overline{\mathbb{R}}_{+}^{d}$ such that:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x \leq 1
$$

and $\mathbb{L}_{n} g>-\infty$, there exists $\tilde{g} \in \mathcal{G}(h)$ such that $\tilde{g} \geq g$ and $\mathbb{L}_{n} \tilde{g} \geq \mathbb{L}_{n} g$. The function \tilde{g} can be chosen as a minimal element in $\operatorname{ev}_{X}^{-1} \tilde{p}$ where $\tilde{p}=\mathrm{ev}_{X} \tilde{g}$.

Proof. Let $p=\mathrm{ev}_{X} g$. Since $\mathbb{L}_{n} g>-\infty$ we have $g\left(X_{i}\right)>y_{0}$ for all $1 \leq i \leq n$ and therefore $g(x)>y_{0}$ for $x \in \operatorname{conv}(X)$. Consider any minimal element g_{1} among convex functions in $\mathrm{ev}_{X}^{-1} p$ (which exists by Lemma A.15). Then:

$$
\int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g_{1} d x \leq \int_{\overline{\mathbb{R}}_{+}^{d}} h \circ g d x \leq 1 .
$$

Since g_{1} is polyhedral we have $g_{1}=\max l_{i}$ for some linear functions $l_{i}(x)=$ $a_{i}^{T} x+b_{i}$ and for each function l_{i} there exists some facet of g_{1} such that $g_{1}=l_{i}$ on it.

By Lemma A. 15 the interior of the facet of g_{1} which corresponds to l_{i} contains some $X_{j_{i}} \in X$. We have $\partial g_{1}\left(X_{j_{i}}\right)=\left\{a_{i}\right\}$ and $g_{1}\left(X_{j_{i}}\right)=g\left(X_{j_{i}}\right)>$ y_{0}. Thus by Lemma 1.1, all coordinates of a_{i} are negative and the supremum M of g_{1} is attained at 0 . Therefore $b_{i}=l_{i}(0) \leq M$. By Lemma 1.3 we have $M<y_{\infty}$. Thus by Lemma 1.4 the functions $h \circ\left(l_{i}+c\right)$ are integrable for all $c<y_{\infty}-M$. Since g_{1} has only a finite number of facets we have that $h \circ\left(g_{1}+c\right)$ is also integrable for all $c<y_{\infty}-M$. Finally, for $c=y_{\infty}-M$ the function $h \circ\left(g_{1}+c\right)$ is not integrable by Lemma 1.3.

The function $T(c)$ defined as:

$$
T(c) \equiv \int_{\overline{\mathbb{R}}_{+}^{d}} h \circ\left(g_{1}+c\right) d x
$$

is increasing, finite for $c \in\left[0, y_{\infty}-M\right)$ and continuous for $c \in\left[0, y_{\infty}-M\right]$ by monotone and dominated convergence. Since $T(0) \leq 1$ and $T\left(y_{\infty}-M\right)=$ $+\infty$, there exists $c_{1} \in\left(0, y_{\infty}-M\right)$ such that $T\left(c_{1}\right)=1$. Since g_{1} is the minimal element in $\operatorname{ev}_{X}^{-1}(p)$, the function $\tilde{g} \equiv g_{1}+c_{1}$ is minimal in $\mathrm{ev}_{X}^{-1}(p+$ $\left.c_{1}\right)$. Then \tilde{g} satisfies the conditions of our lemma.

Theorem 1.8 (M.3.7). If an MLE \widehat{g}_{0} exists for the increasing model $\mathcal{P}(h)$, then there exists an MLE \widehat{g}_{1} which is a minimal element in $\mathrm{ev}_{X}^{-1} q$ where $q=\operatorname{ev}_{X} \hat{g}_{0}$. In other words \widehat{g}_{1} is a polyhedral convex function such that dom $g_{1}=\overline{\mathbb{R}}_{+}^{d}$, and the interior of each facet contains at least one element of X. If h is strictly increasing on $\left[y_{0}, y_{\infty}\right]$, then $\widehat{g}_{0}(x)=\widehat{g}_{1}(x)$ for all x such that $\widehat{g}_{0}(x)>y_{0}$ and thus defines the same density from $\mathcal{P}(h)$.

Proof. Let \widehat{g}_{0} be any MLE. Then by Lemma 1.5 applied to $K=\operatorname{conv}(X)$ it follows that $\mathbb{L}_{n} \widehat{g}_{0}>-\infty$. By Lemma 1.7 there exists a function $\widehat{g}_{1} \in \mathcal{P}(h)$ such that \widehat{g}_{1} is a minimal element in $\mathrm{ev}_{X}^{-1} q_{1}$ where $q_{1}=\mathrm{ev}_{X} \widehat{g}_{1}$ and $\widehat{g}_{1} \geq \widehat{g}_{0}$. Since \widehat{g}_{0} is a MLE we have $\mathrm{ev}_{X} \widehat{g}_{0}=\mathrm{ev}_{X} \widehat{g}_{1}$ which together with Lemma A. 15 proves the first part of the statement.

By Lemma 1.3 we have $\widehat{g}_{0}<y_{\infty}$ and $\widehat{g}_{1}<y_{\infty}$. Since $h \circ \widehat{g}_{0}$ and $h \circ \widehat{g}_{1}$ are continuous functions, for the strictly increasing h the equality:

$$
\int_{\overline{\mathbb{R}}_{+}}\left(h \circ \widehat{g}_{1}-h \circ \widehat{g}_{0}\right) d x=0
$$

implies that $\widehat{g}_{1}(x)=\widehat{g}_{0}(x)$ for x such that $\widehat{g}_{0}(x)>y_{0}$.
Lemma 1.9 (M.3.8). Consider a decreasing transformation h. For any convex function g such that:

$$
\int_{\mathbb{R}^{d}} h \circ g d x \leq 1
$$

and $\mathbb{L}_{n} g>-\infty$ there exists $\tilde{g} \in \mathcal{G}(h)$ such that $\tilde{g} \leq g$ and $\mathbb{L}_{n} \tilde{g} \geq \mathbb{L}_{n} g$. The function \tilde{g} can be chosen as the maximal element in $\operatorname{ev}_{X}^{-1} \tilde{q}$ where $\tilde{q}=\mathrm{ev}_{X} \tilde{g}$.

Proof. Let $p=\mathrm{ev}_{X} g$. Since $\mathbb{L}_{n} g>-\infty$ we have $g\left(X_{i}\right)<y_{0}$ for all $1 \leq i \leq n$ and therefore $g(x)<y_{0}$ for $x \in \operatorname{conv}(X)$. Consider the maximal element g_{1} among convex functions in $\operatorname{ev}_{X}^{-1} p$ (which exists and is unique by Lemma A.14). Then:

$$
\int_{\mathbb{R}^{d}} h \circ g_{1} d x \leq \int_{\mathbb{R}^{d}} h \circ g d x=1 .
$$

By Lemma M.3.1 there exists x_{0} and $m>-\infty$ such that $g_{1} \geq g_{1}\left(x_{0}\right)=m$. By Lemma M.3.3 we have $m>y_{\infty}$. By Lemma A. 14 we have $\operatorname{dom} g_{1}=$ $\operatorname{conv}(X)$ and therefore:

$$
\int_{\mathbb{R}^{d}} h \circ\left(g_{1}+c\right) d x \leq h(m+c) \mu[\operatorname{conv}(X)]<\infty
$$

for $c \in\left(y_{\infty}-m, 0\right]$. By Lemma M.3.3 we have:

$$
\int_{\mathbb{R}^{d}} h \circ\left(g_{1}+y_{\infty}-m\right) d x=\infty
$$

Thus the function $T(c)$ defined as:

$$
T(c) \equiv \int_{\mathbb{R}^{d}} h \circ\left(g_{1}+c\right) d x
$$

is decreasing, finite for $c \in\left(y_{\infty}-m, 0\right]$ and continuous for $c \in\left[y_{\infty}-m, 0\right]$ by monotone and dominated convergence. Since $T(0) \leq 1$ and $T\left(y_{\infty}-m\right)=$ $+\infty$, there exists $c_{1} \in\left(y_{\infty}-m, 0\right)$ such that $T\left(c_{1}\right)=1$. Since g_{1} is the maximal element in $\operatorname{ev}_{X}^{-1}(p)$, the function $\tilde{g} \equiv g_{1}+c_{1}$ is maximal in $\mathrm{ev}_{X}^{-1}(p+$ $\left.c_{1}\right)$. Then \tilde{g} satisfies the conditions of our lemma.

Theorem 1.10 (M.3.9). If the MLE \widehat{g}_{0} exists for the decreasing model $\mathcal{P}(h)$, then there exists another MLE \widehat{g}_{1} which is the maximal element in $\operatorname{ev}_{X}^{-1} q$ where $q=\operatorname{ev}_{X} \widehat{g}_{0}$. In other words \widehat{g}_{1} is a polyhedral convex function with the set of knots $K_{n} \subseteq X$ and domain $\operatorname{dom} \widehat{g}_{1}=\operatorname{conv}(X)$. If h is strictly decreasing on $\left[y_{\infty}, y_{0}\right]$, then $\widehat{g}_{0}(x)=\widehat{g}_{1}(x)$.

Proof. Let \widehat{g}_{0} be any MLE. Then by Lemma M.3.5 applied to $K=$ $\operatorname{conv}(X)$ we have that $\mathbb{L}_{n} \widehat{g}_{0}>-\infty$. By Lemma 1.9 there exists a function $\widehat{g}_{1} \in \mathcal{G}_{h}$ such that \widehat{g}_{1} is the maximal element in $\operatorname{ev}_{X}^{-1} q_{1}$ where $q_{1}=\operatorname{ev}_{X} \widehat{g}_{1}$ and $\widehat{g}_{1} \leq \widehat{g}_{0}$. Since \widehat{g}_{0} is a MLE we have $\mathrm{ev}_{X} \widehat{g}_{0}=\mathrm{ev}_{X} \widehat{g}_{1}$, which together with Lemma A. 14 proves the first part of the statement.

By Lemma M.3.3 we have $\widehat{g}_{0} \geq \widehat{g}_{1}>y_{\infty}$. Since $h \circ \widehat{g}_{0}$ and $h \circ \widehat{g}_{1}$ are continuous functions, for the strictly decreasing h, the equality:

$$
\int_{\mathbb{R}^{d}}\left(h \circ \widehat{g}_{1}-h \circ \widehat{g}_{0}\right) d x=0
$$

implies that $\widehat{g}_{1}(x)=\widehat{g}_{0}(x)$ for $x \in \operatorname{conv}(X)$. Therefore $\widehat{g}_{0}(x) \geq y_{\infty}$ for $x \notin \operatorname{conv}(X)$. Since \widehat{g}_{0} is convex we have $\widehat{g}_{0}=\widehat{g}_{1}$.

Lemma 1.11 (M.3.11). Consider a decreasing model $\mathcal{P}(h)$. Let $\left\{g_{k}\right\}$ be a sequence of convex functions from $\mathcal{G}(h)$, and let $\left\{n_{k}\right\}$ be a nondecreasing sequence of positive integers $n_{k} \geq n_{d}$ such that for some $\varepsilon>-\infty$ and $\rho>0$ the following is true:

1. $\mathbb{L}_{n_{k}} g_{k} \geq \varepsilon$;
2. if $\mu\left[\operatorname{lev}_{a_{k}} g_{k}\right]=\rho$ for some a_{k}, then $\mathbb{P}_{n_{k}}\left[\operatorname{lev}_{a_{k}} g_{k}\right]<d / n_{d}$.

Then there exists $m>y_{\infty}$ such that $g_{k} \geq m$ for all k.
Proof. Suppose, on the contrary, that $m_{k} \rightarrow y_{\infty}$ where $m_{k}=\min g_{k}$. The first condition implies that $X_{d} \equiv\left\{X_{1}, \ldots, X_{n_{d}}\right\} \in \operatorname{dom} h_{k}$, and therefore by Corollary A. 4 the function $\mu\left[\operatorname{lev}_{y} g_{k}\right]$ as a function of y admits all values in the interval $\left[\mu\left[\operatorname{lev}_{m_{k}} g_{k}\right], \mu\left[\operatorname{conv}\left(X_{d}\right)\right]\right]$. If the second condition is true for some ρ then it is also true for all $\rho^{\prime} \in(0, \rho)$, and therefore we can assume that $\rho<\mu\left[\operatorname{conv}\left(X_{d}\right)\right]$.

By Lemma M.3.1 we have $\mu\left[\operatorname{lev}_{m_{k}} g_{k}\right] \rightarrow 0$, and thus there exists such a_{k} that $\mu\left[\operatorname{lev}_{a_{k}} g_{k}\right]=\rho$ for all k large enough. We define $A_{k}=\operatorname{lev}_{a_{k}} g_{k}$. By Lemma M.3.1 we have: $h\left(a_{k}\right) \leq 1 / \rho$ and therefore the sequence $\left\{a_{k}\right\}$ is bounded below by some $a>y_{\infty}$.

Consider $t_{k}>m_{k}$ such that $t_{k} \rightarrow y_{\infty}$. We will specify the exact form of t_{k} later in the proof. Since a_{k} are bounded away from y_{∞}, it follows that for
k large enough we will have $t_{k}<a_{k}$. Using Lemma A. 3 we obtain:

$$
\rho=\mu\left[A_{k}\right] \leq \mu\left[\operatorname{lev}_{t_{k}} g_{k}\right]\left[\frac{a_{k}-m_{k}}{t_{k}-m_{k}}\right]^{d} \leq \frac{1}{h\left(t_{k}\right)}\left[\frac{a_{k}-m_{k}}{t_{k}-m_{k}}\right]^{d}
$$

which implies:

$$
a_{k} \geq m_{k}+\left(t_{k}-m_{k}\right)\left[\rho h\left(t_{k}\right)\right]^{1 / d} .
$$

We have:

$$
g_{k} \geq m_{k} 1\left\{A_{k}\right\}+a_{k}\left(1-1\left\{A_{k}\right\}\right)
$$

and hence:

$$
\begin{aligned}
\mathbb{L}_{n_{k}} g_{k} & \leq \mathbb{P}_{n_{k}}\left(A_{k}\right) \log h\left(m_{k}\right)+\left(1-\mathbb{P}_{n_{k}}\left(A_{k}\right)\right) \log h\left(a_{k}\right) \\
& \leq \mathbb{P}_{n_{k}}\left(A_{k}\right) \log h\left(m_{k}\right)+\left(1-\mathbb{P}_{n_{k}}\left(A_{k}\right)\right) \log h\left(m_{k}+\left(t_{k}-m_{k}\right)\left[\rho h\left(t_{k}\right)\right]^{1 / d}\right) .
\end{aligned}
$$

Case $y_{\infty}=-\infty$. Choose $t_{k}=(1-\delta) m_{k}$ where $\delta \in(0,1)$. Then starting from some k we have $m_{k}<t_{k}, h\left(m_{k}\right)>1, h\left(-C m_{k}\right)<1$ and $\delta\left[\rho h\left(t_{k}\right)\right]^{1 / d}>C+1$. This implies:

$$
m_{k}+\left(t_{k}-m_{k}\right)\left[\rho h\left(t_{k}\right)\right]^{1 / d}=m_{k}\left(1-\delta\left[\rho h\left(t_{k}\right)\right]^{1 / d}\right) \geq-C m_{k}
$$

and hence:

$$
\begin{aligned}
\mathbb{L}_{n_{k}} g_{k} & \leq \mathbb{P}_{n_{k}}\left(A_{k}\right) \log h\left(m_{k}\right)+\left(1-\mathbb{P}_{n_{k}}\left(A_{k}\right)\right) \log h\left(-C m_{k}\right) \\
& \leq \frac{d}{n_{d}} \log h\left(m_{k}\right)+\frac{n_{d}-d}{n_{d}} \log h\left(-C m_{k}\right)=\frac{d}{n_{d}} \log \left[h\left(m_{k}\right) h\left(-C m_{k}\right)^{\gamma}\right] \rightarrow-\infty .
\end{aligned}
$$

Case $y_{\infty}>-\infty$. Without loss of generality we can assume that $y_{\infty}=0$. Choose $t_{k}=(1+\delta) m_{k}$ where $\delta>0$. Then:

$$
m_{k}+\left(t_{k}-m_{k}\right)\left[\rho h\left(t_{k}\right)\right]^{1 / d} \geq m_{k} \delta\left[\rho h\left((1+\delta) m_{k}\right)\right]^{1 / d} \asymp m_{k}^{-\frac{\beta-d}{d}} \rightarrow+\infty
$$

which implies

$$
h\left(m_{k}+\left(t_{k}-m_{k}\right)\left[\rho h\left(t_{k}\right)\right]^{1 / d}\right)=o\left(m_{k}^{\frac{\alpha(\beta-d)}{d}}\right) .
$$

This in turn yields

$$
\exp \left(\mathbb{L}_{n_{k}} g_{k}\right)=o\left(m_{k}^{-\frac{\beta d}{n_{d}}+\frac{\alpha(\beta-d)\left(n_{d}-d\right)}{d n_{d}}}\right)=o(1)
$$

Therefore in both cases we obtained $\mathbb{L}_{n_{k}} g_{k} \rightarrow-\infty$. This contradiction concludes the proof.

Lemma 1.12 (M.3.13). Consider a monotone model $\mathcal{P}(h)$. Suppose the true density $h \circ g_{0}$ and the sequence of $M L E s\left\{\hat{g}_{n}\right\}$ have the following properties:

$$
\int(h|\log h|) \circ g_{0}(x) d x<\infty
$$

and

$$
\int \log \left[\varepsilon+h \circ \hat{g}_{n}(x)\right] d\left(\mathbb{P}_{n}(x)-P_{0}(x)\right) \rightarrow_{a . s .} 0
$$

for $\varepsilon>0$ small enough. Then the sequence of the MLEs is Hellinger consistent:

$$
H\left(h \circ \hat{g}_{n}, h \circ g_{0}\right) \rightarrow_{a . s .} 0 .
$$

Proof. For $\varepsilon \in(0,1)$ we have:

$$
\begin{aligned}
0 & \geq \int_{\left\{h \circ g_{0}(x) \leq 1-\varepsilon\right\}} \log \left(\varepsilon+h \circ g_{0}\right) d P_{0} \geq \log (\varepsilon) P_{0}\left\{h \circ g_{0}(x) \leq 1-\varepsilon\right\}>-\infty \\
0 & \leq \int_{\left\{h \circ g_{0}(x) \geq 1\right\}} \log \left(\varepsilon+h \circ g_{0}\right) d P_{0} \leq \int_{\left\{h \circ g_{0}(x) \geq 1\right\}} \log \left(2 h \circ g_{0}\right) d P_{0} \\
& \leq \int(h \log h) \circ g_{0}(x) d x+\log 2<\infty .
\end{aligned}
$$

Thus the function $\log \left(\varepsilon+h \circ g_{0}\right)$ is integrable with respect to probability measure P_{0}.

We can rearrange:

$$
\begin{align*}
0 \leq & \mathbb{L}_{n} \hat{g}_{n}-\mathbb{L}_{n} g_{0}=\int \log \left[h \circ \hat{g}_{n}\right] d \mathbb{P}_{n}-\int \log \left[h \circ g_{0}\right] d \mathbb{P}_{n} \\
\leq & \int \log \left[\varepsilon+h \circ \hat{g}_{n}\right] d \mathbb{P}_{n}-\int \log \left[h \circ g_{0}\right] d \mathbb{P}_{n} \\
\leq & \int \log \left[\varepsilon+h \circ \hat{g}_{n}\right] d\left(\mathbb{P}_{n}-P_{0}\right) \tag{1.1}\\
& +\int \log \left[\frac{\varepsilon+h \circ \hat{g}_{n}}{\varepsilon+h \circ g_{0}}\right] d P_{0} \tag{1.2}\\
& +\int \log \left[\varepsilon+h \circ g_{0}\right] d P_{0}-\int \log \left[h \circ g_{0}\right] d \mathbb{P}_{n} . \tag{1.3}
\end{align*}
$$

The term (1.1) converges almost surely to zero by assumption.
For the term (1.2) we can apply the analogue of Lemma 1 from Pal et al. [2007]:

$$
I I \equiv \int \log \left[\frac{\varepsilon+h \circ \hat{g}_{n}}{b+h \circ g_{0}}\right] d P_{0} \leq 2 \int \sqrt{\frac{\varepsilon}{\varepsilon+h \circ g_{0}}} d P_{0}-2 H^{2}\left(h \circ \hat{g}_{n}, h \circ g_{0}\right) .
$$

For the term (1.3), the SLLN implies that:

$$
\begin{aligned}
I I I & =\int \log \left[\varepsilon+h \circ g_{0}\right] d P_{0}-\int \log \left[h \circ g_{0}\right] d \mathbb{P}_{n} \\
& \rightarrow \text { a.s. } \int \log \left[\varepsilon+h \circ g_{0}\right] d P_{0}-\int \log \left[h \circ g_{0}\right] d P_{0}=\int \log \left[\frac{\varepsilon+h \circ g_{0}}{h \circ g_{0}}\right] d P_{0} .
\end{aligned}
$$

Thus we have:

$$
\begin{aligned}
& 0 \leq \lim \inf (I+I I+I I I) \\
& \leq \text { a.s. } \\
& \quad-\lim \sup 2 H^{2}\left(h \circ \hat{g}_{n}, h \circ g_{0}\right) \\
&+2 \int \sqrt{\frac{\varepsilon}{\varepsilon+h \circ g_{0}}} d P_{0}+\int \log \left[\frac{\varepsilon+h \circ g_{0}}{h \circ g_{0}}\right] d P_{0} .
\end{aligned}
$$

This yields

$$
\begin{aligned}
& \lim \sup H^{2}\left(h \circ \hat{g}_{n}, h \circ g_{0}\right) \\
& \quad \leq_{\text {a.s. }} \quad \int \sqrt{\frac{1}{1+h \circ g_{0} / \varepsilon}} d P_{0}+\frac{1}{2} \int \log \left[\frac{\varepsilon+h \circ g_{0}}{h \circ g_{0}}\right] d P_{0} \rightarrow 0
\end{aligned}
$$

as $\varepsilon \downarrow 0$ by monotone convergence.
Lemma 1.13 (M.3.15). Let \mathcal{A} be a class of sets in \mathbb{R}^{d} such that class $\mathcal{A} \cap[-a, a]^{d}$ has finite bracketing entropy with respect to Lebesgue measure μ for any a large enough:

$$
\log N_{[\square}\left(\varepsilon, \mathcal{A} \cap[-a, a]^{d}, L_{1}(\mu)\right)<+\infty
$$

for every $\varepsilon>0$. Then for any Lebesgue absolutely continuous probability measure P with bounded density we have that \mathcal{A} is a Glivenko-Cantelli class:

$$
\left\|\mathbb{P}_{n}-P\right\|_{\mathcal{A}} \rightarrow_{a . s .} 0
$$

Proof. Let C be an upper bound for the density of P and a be large so that for the set $D \equiv[-a, a]^{d}$ we have $P\left([-a, a]^{d}\right)>1-\varepsilon / 2 C$. By assumption the class $\mathcal{A} \cap D$ has a finite set of $\varepsilon / 2$-brackets $\left\{\left[L_{i}, U_{i}\right]\right\}$. Then for any set $A \in \mathcal{A}$ there exists index i such that:

$$
L_{i} \subseteq A \cap D \subseteq U_{i}
$$

Therefore:

$$
L_{i} \subseteq A \subseteq U_{i} \cup D^{c}
$$

and:

$$
\begin{aligned}
\left\|1\left\{U_{i} \cup D^{c}\right\}-1\left\{L_{i}\right\}\right\|_{L_{1}(P)} & \leq\left\|1\left\{U_{i}\right\}-1\left\{L_{i}\right\}\right\|_{L_{1}(P)}+\left\|1\left\{D^{c}\right\}\right\|_{L_{1}(P)} \\
& \leq C\left(\left\|1\left\{U_{i}\right\}-1\left\{L_{i}\right\}\right\|_{L_{1}(\lambda)}+\left\|1\left\{D^{c}\right\}\right\|_{L_{1}(\lambda)}\right) \leq \varepsilon
\end{aligned}
$$

Thus the set $\left\{\left[L_{i}, U_{i} \cup D^{c}\right]\right\}$ is the set of ε-brackets for our class \mathcal{A} in $L_{1}(P)$. This implies that \mathcal{A} is a Glivenko-Cantelli class and the statement follows from Theorem 2.4.1 van der Vaart and Wellner [1996].
2. Consistency of the MLE for an increasing model. To prove consistency for increasing models we begin with a general property of lower layer sets (see Dudley [1999], Chapter 8.3). Recall that a lower lay set $B \subset \mathbb{R}^{d}$ is a set satisfying $y \leq x$ coordinate-wise with $x \in B$ implies $y \in B$.

Lemma 2.1. Let $\mathcal{L L}$ be the class of closed lower layer sets in \mathbb{R}_{+}^{d} and P be a Lebesgue absolutely continuous probability measure with bounded density. Then:

$$
\left\|\mathbb{P}_{n}-P\right\|_{\mathcal{L} \mathcal{L}} \rightarrow_{\text {a.s. }} 0
$$

Proof. By Theorem 8.3.2 Dudley [1999] we have

$$
\log N_{\square}\left(\varepsilon, \mathcal{L} \mathcal{L} \cap[0,1]^{d}, L_{1}(\mu)\right)<+\infty .
$$

Since the class $\mathcal{L L}$ is invariant under rescaling, the result follows from Lemma 1.13

Note that Lemma 1.1 implies that if $h \circ g$ belongs to an increasing model $\mathcal{P}(h)$ then $\left(\operatorname{lev}_{y} g\right)^{c}$ is a lower layer set and has Lebesgue measure less or equal than $1 / h(y)$. Let us denote by A_{δ} the set $\left\{V(x) \leq \delta, x \in \mathbb{R}_{+}^{d}\right\}$. Then by Lemma 1.1 part 3 we have:

$$
\begin{equation*}
\left(\operatorname{lev}_{y} g\right)^{c} \subset A_{c / h(y)} \tag{2.4}
\end{equation*}
$$

for $c \equiv d!/ d^{d}$.
Theorem 2.2 (M.2.15). For an increasing model $\mathcal{P}(h)$ where h satisfies assumptions M.I. 1 - M.I. 3 and for the true density $h \circ g_{0}$ which satisfies assumptions M.I. 4 - M.I.6, the sequence of MLEs $\left\{\widehat{p}_{n}=h \circ \hat{g}_{n}\right\}$ is Hellinger consistent: $H\left(\widehat{p}_{n}, p_{0}\right)=H\left(h \circ \hat{g}_{n}, h \circ g_{0}\right) \rightarrow_{\text {a.s. }} 0$.

Proof. By Assumption M.I. 6 and Lemma 1.12 it is enough to show that:

$$
\int \log \left[\varepsilon+h \circ \hat{g}_{n}(x)\right] d\left(\mathbb{P}_{n}(x)-P_{0}(x)\right) \rightarrow_{\text {a.s. }} 0 .
$$

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010

Indeed, applying Lemma 1.2 for the increasing transformation $\log [\varepsilon+h(y)]-$ $\log \varepsilon$ we obtain:

$$
\begin{aligned}
& \int \log \left[\varepsilon+h \circ \hat{g}_{n}(x)\right] d\left(\mathbb{P}_{n}(x)-P_{0}(x)\right) \\
& =\int_{-\infty}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left(\mathbb{P}_{n}-P_{0}\right)\left(\left(\operatorname{lev}_{z} \hat{g}_{n}\right)^{c}\right) d z \\
& \leq\left\|\mathbb{P}_{n}-P_{0}\right\|_{\mathcal{L} \mathcal{L}} \int_{-\infty}^{M}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right] d z+\int_{M}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left|\mathbb{P}_{n}-P_{0}\right|\left(\left(\operatorname{lev}_{z} \hat{g}_{n}\right)^{c}\right) d z \\
& \leq\left\|\mathbb{P}_{n}-P_{0}\right\|_{\mathcal{L}} \log \left[\frac{\varepsilon+h(M)}{\varepsilon}\right]+\int_{M}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left(\mathbb{P}_{n}+P_{0}\right)\left(\left(\operatorname{lev}_{z} \hat{g}_{n}\right)^{c}\right) d z .
\end{aligned}
$$

The first converges to zero almost surely by Lemma 2.1. For the second term we will use the inclusion 2.4:
$\int_{M}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left(\mathbb{P}_{n}+P_{0}\right)\left(\operatorname{lev}_{z} \hat{g}_{n}\right)^{c} d z \leq \int_{M}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left(\mathbb{P}_{n}+P_{0}\right) A_{c / h(z)} d z$.
Now, we can apply Lemma 1.2 again for $g_{A}(x)=h^{-1}(c / V(x))$. We have $\left(\operatorname{lev}_{z} g_{A}\right)^{c}=A_{c / h(z)}$ and therefore:

$$
\begin{aligned}
\int_{M}^{+\infty}\left[\frac{h^{\prime}(z)}{\varepsilon+h(z)}\right]\left(\mathbb{P}_{n}+P_{0}\right) A_{c / h(z)} d z & =\int_{A_{c / h(M)}} \log (\varepsilon+c / V(x)) d\left(\mathbb{P}_{n}+P_{0}\right) \\
& \leq \int_{A_{c / h(M)}} \log (2 c / V(x)) d\left(\mathbb{P}_{n}+P_{0}\right)
\end{aligned}
$$

for M large enough. Assumption M.I. 5 and the SLLN imply that:

$$
\int_{A_{c / h(M)}} \log (2 c / V(x)) d\left(\mathbb{P}_{n}+P_{0}\right) \rightarrow_{\text {a.s. }} 2 \int_{A_{c / h(M)}} \log (2 c / V(x)) d P_{0} .
$$

Since M is arbitrary and $A_{c / h(M)} \downarrow\{0\}$ as $M \rightarrow+\infty$ the result follows.

3. Lower bounds.

3.1. Local deformations.

Lemma 3.1 (M.3.18). Let $\left\{g_{\varepsilon}\right\}$ be a local deformation of the function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at the point x_{0}, such that g is continuous at x_{0}, and let the function $h: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable at the point $g\left(x_{0}\right)$. Then for any $r>0$:

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x=0, \tag{3.5}\\
& \lim _{\varepsilon \rightarrow 0} \frac{\int_{\mathbb{R}^{d}}\left|h \circ g_{\varepsilon}(x)-h \circ g(x)\right|^{r} d x}{\int_{\mathbb{R}^{d}}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x}=\left|h^{\prime} \circ g\left(x_{0}\right)\right|^{r} . \tag{3.6}
\end{align*}
$$

Proof. Since $\left\{g_{\varepsilon}\right\}$ is a local deformation, for $\varepsilon>0$ small enough we have:

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|h \circ g_{\varepsilon}(x)-h \circ g(x)\right|^{r} d x & =\int_{B\left(x_{0} ; r_{\varepsilon}\right)}\left|h \circ g_{\varepsilon}(x)-h \circ g(x)\right|^{r} d x, \\
\int_{\mathbb{R}^{d}}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x & =\int_{B\left(x_{0} ; r_{\varepsilon}\right)}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x .
\end{aligned}
$$

Then: $\int_{B\left(x_{0} ; r_{\varepsilon}\right)}\left|g_{\varepsilon}-g\right|^{r} d x \leq \operatorname{ess} \sup \left|g_{\varepsilon}-g\right|^{r} \mu\left[B\left(x_{0} ; r_{\varepsilon}\right)\right]$ implies (3.5).
Let us define a sequence $\left\{a_{\varepsilon}\right\}$:

$$
a_{\varepsilon} \equiv \operatorname{ess} \sup \left|g_{\varepsilon}-g\right|+\sup _{x \in B\left(x_{0} ; r_{\varepsilon}\right)}\left|g(x)-g\left(x_{0}\right)\right| .
$$

For $x \in B\left(x_{0} ; r_{\varepsilon}\right)$ and $y \in\left[g_{\varepsilon}(x), g(x)\right]$ we have a.e.:

$$
\left|y-g\left(x_{0}\right)\right| \leq\left|g_{\varepsilon}(x)-g(x)\right|+\left|g(x)-g\left(x_{0}\right)\right| \leq a_{\varepsilon}
$$

Using the mean value theorem we obtain:

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left|h \circ g_{\varepsilon}(x)-h \circ g(x)\right|^{r} d x=\int_{\mathbb{R}^{d}}\left|h^{\prime}\left(y_{x}\right)\right|^{r}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x \\
& \inf _{y \in B\left(g\left(x_{0}\right) ; a_{\varepsilon}\right)}\left|h^{\prime}(y)\right|^{r} \leq \frac{\int_{\mathbb{R}^{d}}\left|h \circ g_{\varepsilon}(x)-h \circ g(x)\right|^{r} d x}{\int_{\mathbb{R}^{d}}\left|g_{\varepsilon}(x)-g(x)\right|^{r} d x} \leq \sup _{y \in B\left(g\left(x_{0}\right) ; a_{\varepsilon}\right)}\left|h^{\prime}(y)\right|^{r}
\end{aligned}
$$

Since h^{\prime} is continuous at $g\left(x_{0}\right)$, to prove (3.6) it is enough to show that $a_{\varepsilon} \rightarrow 0$. By assumption we have: $\lim _{\varepsilon \rightarrow 0}$ ess sup $\left|g_{\varepsilon}-g\right|=0$. Since g is continuous at x_{0} and $r_{\varepsilon} \rightarrow 0$ we have: $\lim _{\varepsilon \rightarrow 0} \sup _{x \in B\left(x_{0} ; r_{\varepsilon}\right)}\left|g(x)-g\left(x_{0}\right)\right|=0$. Thus $a_{\varepsilon} \rightarrow 0$, which proves (3.6).

Lemma 3.2 (M.3.19). Let $\left\{g_{\varepsilon}\right\}$ be a local deformation of the function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at the point x_{0}, such that g is continuous at x_{0}, and let the function $h: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable at the point $g\left(x_{0}\right)$ so that $h^{\prime} \circ g\left(x_{0}\right) \neq 0$. Then for any fixed $\delta>0$ small enough, the deformation $g_{\theta, \delta}=\theta g_{\delta}+(1-\theta) g$ and any $r>0$ we have:

$$
\begin{align*}
& \limsup _{\theta \rightarrow 0} \theta^{-r} \int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \delta}(x)-h \circ g(x)\right|^{r} d x<\infty \tag{3.7}\\
& \liminf _{\theta \rightarrow 0} \theta^{-r} \int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \delta}(x)-h \circ g(x)\right|^{r} d x>0 \tag{3.8}
\end{align*}
$$

Note that $g_{\theta, \delta}$ is not a local deformation of g.

Proof. The statement follows from the argument for Lemma 3.1. For a fixed θ the family $\left\{g_{\theta, \delta}\right\}$ is a local deformation of g. Thus for $a_{\theta, \varepsilon}$ defined by: $a_{\theta, \varepsilon} \equiv \operatorname{ess} \sup \left|g_{\theta, \varepsilon}-g\right|+\sup _{x \in B\left(x_{0} ; r_{\varepsilon}\right)}\left|g(x)-g\left(x_{0}\right)\right|$, it follows that

$$
\begin{aligned}
& \frac{\int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \varepsilon}(x)-h \circ g(x)\right|^{r} d x}{\int_{\mathbb{R}^{d}}\left|g_{\theta, \varepsilon}(x)-g(x)\right|^{r} d x} \leq \sup _{y \in B\left(g\left(x_{0}\right) ; a_{\theta, \varepsilon}\right)}\left|h^{\prime}(y)\right|^{r} \\
& \frac{\int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \varepsilon}(x)-h \circ g(x)\right|^{r} d x}{\int_{\mathbb{R}^{d}}\left|g_{\theta, \varepsilon}(x)-g(x)\right|^{r} d x} \geq \inf _{y \in B\left(g\left(x_{0}\right) ; a_{\theta, \varepsilon}\right)}\left|h^{\prime}(y)\right|^{r}
\end{aligned}
$$

For $|\theta|<1$ we have: $\left|g_{\theta, \varepsilon}-g\right|=|\theta|\left|g_{\varepsilon}-g\right|$ and therefore $a_{\theta, \delta} \leq a_{\delta}$. Since $a_{\varepsilon} \rightarrow 0$ and h is continuously differentiable for all $\delta>0$ small enough we have:

$$
\begin{aligned}
& \sup _{y \in B\left(g\left(x_{0}\right) ; a_{\theta, \delta}\right)}\left|h^{\prime}(y)\right|^{r} \leq \sup _{y \in B\left(g\left(x_{0}\right) ; a_{\delta}\right)}\left|h^{\prime}(y)\right|^{r}<\infty \\
& \inf _{y \in B\left(g\left(x_{0}\right) ; a_{\theta, \delta}\right)}\left|h^{\prime}(y)\right|^{r} \geq \inf _{y \in B\left(g\left(x_{0}\right) ; a_{\delta}\right)}\left|h^{\prime}(y)\right|^{r}>0
\end{aligned}
$$

Thus for all θ we obtain:

$$
\begin{aligned}
& \theta^{-r} \int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \delta}-h \circ g\right|^{r} d \mu \leq \sup _{y \in B\left(g\left(x_{0}\right) ; a_{\delta}\right)}\left|h^{\prime}(y)\right|^{r} \int_{\mathbb{R}^{d}}\left|g_{\delta}-g\right|^{r} d \mu<\infty \\
& \theta^{-r} \int_{\mathbb{R}^{d}}\left|h \circ g_{\theta, \delta}-h \circ g\right|^{r} d \mu \geq \inf _{y \in B\left(g\left(x_{0}\right) ; a_{\delta}\right)}\left|h^{\prime}(y)\right|^{r} \int_{\mathbb{R}^{d}}\left|g_{\delta}-g\right|^{r} d \mu>0
\end{aligned}
$$

which proves the lemma.
LEMMA 3.3 (M.3.22). For all $\varepsilon>0$ small enough there exist $\theta_{\varepsilon}^{+}, \theta_{\varepsilon}^{-} \in$ $(0,1)$ such that the functions g_{ε}^{+}and g_{ε}^{-}defined by:

$$
\begin{aligned}
& g_{\varepsilon}^{+}=\left(1-\theta_{\varepsilon}^{+}\right) D_{\varepsilon}\left(g ; x_{0}, v_{0}\right)+\theta_{\varepsilon}^{+} D_{\delta}^{*}\left(g ; x_{1}\right) \\
& g_{\varepsilon}^{-}=\left(1-\theta_{\varepsilon}^{-}\right) D_{\varepsilon}^{*}\left(g ; x_{0}\right)+\theta_{\varepsilon}^{-} D_{\delta}\left(g ; x_{1} ; v_{1}\right)
\end{aligned}
$$

belong to $\mathcal{P}(h)$.
Proof. By dominated convergence, the function $F(\theta)$ defined by:

$$
F(\theta)=\int h \circ\left((1-\theta) D_{\varepsilon}\left(g ; x_{0}, v_{0}\right) d x+\theta D_{\delta}^{*}\left(g ; x_{1}\right)\right) d x
$$

is continuous. We have:

$$
\begin{aligned}
& F(0)=\int h \circ D_{\varepsilon}\left(g ; x_{0}, v_{0}\right) d x>\int h \circ g d x=1 \\
& F(1)=\int h \circ D_{\delta}^{*}\left(g ; x_{1}\right) d x<\int h \circ g d x=1
\end{aligned}
$$

Therefore there exists $\theta_{\varepsilon}^{+} \in(0,1)$ such that $F\left(\theta_{\varepsilon}^{+}\right)=1$.

3.2. Mode estimation.

Theorem 3.4 (M.2.26). Let h be a decreasing transformation, $h \circ g \in$ $\mathcal{P}(h)$ be a convex-transformed density and a point $x_{0} \in \operatorname{ri}(\operatorname{dom} g)$ be a unique global minimum of g such that h is continuously differentiable at $g\left(x_{0}\right)$, $h^{\prime} \circ g\left(x_{0}\right) \neq 0$ and $\operatorname{curv}_{x_{0}} g>0$. In addition let us assume that g is locally Hölder continuous at $x_{0}:\left|g(x)-g\left(x_{0}\right)\right| \leq L\left\|x-x_{0}\right\|^{\gamma}$ with respect to some norm $\|\cdot\|$. Then, for the functional $T(h \circ g) \equiv \operatorname{argmin} g$ there exists a sequence $\left\{p_{n}\right\} \in \mathcal{P}(h)$ such that:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{\frac{2}{\gamma(d+4)}} R_{s}\left(n ; T,\left\{p, p_{n}\right\}\right) \geq C(d) L^{-\frac{1}{\gamma}}\left[\frac{h \circ g\left(x_{0}\right)^{2} \operatorname{curv}_{x_{0}} g}{h^{\prime} \circ g\left(x_{0}\right)^{4}}\right]^{\frac{1}{\gamma(d+4)}} \tag{3.9}
\end{equation*}
$$

where the constant $C(d)$ depends only on the dimension d and metric $s(x, y)$ is defined as $\|x-y\|$.

Proof. The proof is similar to the proof for a point estimation lower bounds. The deformation we will construct will resemble g_{ε}^{-}.

Our statement is not trivial only if the curvature curv $x_{0} g>0$ or equivalently there exists such positive definite $d \times d$ matrix G so that the function g is locally G-strongly convex. For $a>0$ small enough $h^{\prime} \circ g(x)$ is negative and decomposition (M.3.16) is true on $B\left(x_{0} ; a\right)$. Let us fix some $v_{0} \in \partial g\left(x_{0}\right)$, some $x_{1} \in B\left(x_{0} ; a\right)$ such that $x_{1} \neq x_{0}$ and some $y_{1} \in \partial g\left(x_{1}\right)$. We fix δ such that equation (M.3.14) of Lemma M.3.19 is true for the transformation \sqrt{h} and $r=2$ and also $x_{0} \notin \overline{B_{G}\left(x_{1} ; \sqrt{2 \delta}\right)}$.

Let us consider the deformation $D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)$ where $u \in \mathbb{R}^{d}$ is an arbitrary fixed vector in \mathbb{R}^{d} with $\|u\|=1$ and

$$
\xi(\varepsilon)=g\left(x_{0}\right)-g\left(x_{0}+\varepsilon u\right)+\varepsilon^{\gamma+1} .
$$

Since the value of $D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)$ at any point x is a convex combination of $g(y)$ for some $y, g(x) \geq g\left(x_{0}\right)$ and

$$
D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)\left(x_{0}+\varepsilon u\right)=g\left(x_{0}\right)+\varepsilon^{\gamma+1}
$$

the global minimum of $D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)$ is $x_{0}+\varepsilon u$. By Lemma M.3.21 for all $\varepsilon>0$ small enough we have

$$
\operatorname{supp}\left[D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)-g\right] \subseteq B_{G}\left(x_{0}+\varepsilon u, \sqrt{2 \xi(\varepsilon)}\right) .
$$

Since, by assumption

$$
\xi(\varepsilon) \leq L \varepsilon^{\gamma}+\varepsilon^{\gamma+1}
$$

the support of $\operatorname{supp}\left[D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)-g\right]$ converges to a point x_{0} and thus does not intersect $\operatorname{supp}\left[D_{\varepsilon}\left(g ; x_{1}, y_{1}\right)-g\right]$ for ε small enough i.e. these two deformations do not interfere.

The same argument as in Lemma M.3.22 shows that there exists $\theta_{\varepsilon}^{m} \in$ $(0,1)$ such that the deformation g_{ε}^{m} defined as:

$$
g_{\varepsilon}^{m}=\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} D_{\delta}\left(g ; x_{1}, y_{1}\right)
$$

belongs to $\mathcal{P}(h)$. Also $g_{\varepsilon}^{m} \geq D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)$ and the global minimum of g_{ε}^{m} is $x_{0}+\varepsilon u$. We have:

$$
\varepsilon^{-1} s\left(T g_{\varepsilon}^{m}, T g\right) \equiv 1
$$

Next, we will show that θ_{ε}^{m} goes to zero fast enough so that g_{ε}^{m} is very close to $D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)$. We have:

$$
\begin{aligned}
0= & \int\left(h \circ g_{\varepsilon}^{m}-h \circ g\right) d x \\
= & -\int\left(h \circ g-h \circ\left(\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} g\right)\right) d x \\
& +\int\left(h \circ\left(\theta_{\varepsilon}^{m} D_{\delta}\left(g ; x_{1}, y_{1}\right)+\left(1-\theta_{\varepsilon}^{m}\right) g\right)-h \circ g\right) d x
\end{aligned}
$$

where both integrals have the same sign. For the first integral by Lemma M.3.18 we have:

$$
\begin{aligned}
& \int\left|h \circ g-h \circ\left(\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} g\right)\right| d x \\
& \leq \int\left|h \circ g-h \circ D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)\right| d x \sim \int\left|D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)-g\right| d x \\
& \leq \xi(\varepsilon) \mu\left[B_{G}\left(x_{0}+\varepsilon u ; \sqrt{2 \xi(\varepsilon)}\right)\right]=O\left(\xi(\varepsilon)^{1+d / 2}\right)
\end{aligned}
$$

The second integral is monotone in θ_{ε}^{m} and by Lemma M.3.19 we have:

$$
\int\left(h \circ\left(\theta_{\varepsilon}^{m} D_{\delta}\left(g ; x_{1}, y_{1}\right)+\left(1-\theta_{\varepsilon}^{m}\right) g\right)-h \circ g\right) d x \sim \theta_{\varepsilon}^{m}
$$

thus we have $\theta_{\varepsilon}^{+}=O\left(\varepsilon^{\gamma(1+d / 2)}\right)$.
For Hellinger distance we have:

$$
\begin{aligned}
H\left(h \circ g_{\varepsilon}^{m}, h \circ g\right)= & H\left(h \circ\left(\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} g\right), h \circ g\right) \\
& \left.+H\left(h \circ\left(\theta_{\varepsilon}^{m} D_{\delta}\left(g ; x_{1}, y_{1}\right)+\left(1-\theta_{\varepsilon}^{m}\right) g\right)\right), h \circ g\right) .
\end{aligned}
$$

For the first part we can apply Lemma M.3.18:

$$
\begin{gathered}
H^{2}\left(h \circ\left(\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} g\right), h \circ g\right) \leq H^{2}\left(h \circ D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right), h \circ g\right) \\
\lim _{\varepsilon \rightarrow 0} \frac{H^{2}\left(h \circ D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right), h \circ g\right)}{\int\left(D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)-g\right)^{2} d x}=\frac{h^{\prime} \circ g\left(x_{0}\right)^{2}}{4 h \circ g\left(x_{0}\right)} \text { and } \\
\int\left(D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)-g\right)^{2} d x \leq \xi(\varepsilon)^{2} \mu\left[B_{G}\left(x_{0} ; \sqrt{2 \xi(\varepsilon)}\right)\right] \\
=\xi(\varepsilon)^{2+d / 2} \frac{2^{d / 2} \mu[S(0,1)]}{\sqrt{\operatorname{det} G}}
\end{gathered}
$$

which gives:

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0} \varepsilon^{-\gamma(1+d / 4)} H\left(h \circ\left(\left(1-\theta_{\varepsilon}^{m}\right) D_{\xi(\varepsilon)}^{*}\left(g ; x_{0}+\varepsilon u\right)+\theta_{\varepsilon}^{m} g\right), h \circ g\right) \\
& \quad \leq C(d) L^{1+d / 4}\left[\frac{h^{\prime} \circ g\left(x_{0}\right)^{4}}{h \circ g\left(x_{0}\right)^{2} \operatorname{det} G}\right]^{1 / 4}
\end{aligned}
$$

where $S(0,1)$ is d-dimensional sphere of radius 1 .
For the second part by Lemma M.3.19 we obtain:

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left(\theta_{\varepsilon}^{+}\right)^{-2} H^{2}\left(h \circ\left(\left(1-\theta_{\varepsilon}^{+}\right) g+\theta_{\varepsilon}^{+} D_{\delta}\left(g ; x_{1}, y_{1}\right)\right), h \circ g\right)<\infty \\
& H\left(h \circ\left(\left(1-\theta_{\varepsilon}^{+}\right) g+\theta_{\varepsilon}^{+} D_{\delta}\left(g ; x_{1}, y_{1}\right)\right), h \circ g\right)=O\left(\varepsilon^{\gamma(1+d / 2)}\right) .
\end{aligned}
$$

Thus:

$$
\limsup _{\varepsilon \rightarrow 0} \varepsilon^{-\gamma(1+d / 4)} H\left(h \circ g_{\varepsilon}^{+}, h \circ g\right) \leq C(d) L^{1+d / 4}\left[\frac{h^{\prime} \circ g\left(x_{0}\right)^{4}}{h \circ g\left(x_{0}\right)^{2} \operatorname{det} G}\right]^{1 / 4}
$$

Finally, we apply Corollary M.2.21:

$$
\liminf _{n \rightarrow \infty} n^{\frac{2}{\gamma(d+4)}} R_{1}\left(n ; T,\left\{p, p_{n}\right\}\right) \geq C(d) L^{-\frac{1}{\gamma}}\left[\frac{h \circ g\left(x_{0}\right)^{2} \operatorname{det} G}{h^{\prime} \circ g\left(x_{0}\right)^{4}}\right]^{\frac{1}{\gamma(d+4)}} .
$$

Taking the supremum over all $G \in \mathcal{S C}\left(g ; x_{0}\right)$ we obtain the statement of the theorem.

APPENDIX A: SOME RESULTS FROM CONVEX ANALYSIS

We will use the following general properties of convex sets and convex functions. We use Rockafellar [1970] as a reference.

Lemma A.1. For any convex set A in \mathbb{R}^{d} we have:

1. The boundary of A has Lebesgue measure zero.
2. A has Lebesgue measure zero if and only if it belongs to a d-1 dimensional affine subspace.
3. A has Lebesgue measure $+\infty$ if and only if it is unbounded and has dimension d.

Proof.

1. If A is such that $\operatorname{cl}(A)$ has finite Lebesgue measure then:

$$
\begin{aligned}
& \partial A \subseteq(1+\varepsilon) \operatorname{cl}(A) \backslash(1-\varepsilon) \operatorname{cl}(A), \quad \varepsilon \in(0,1) \\
& \mu[\partial A] \leq 2 \varepsilon \mu[\operatorname{cl}(A)]
\end{aligned}
$$

and thus $\mu[\partial A]=0$. Since \mathbb{R}^{d} is a countable union of closed convex cubes B_{i} the result for an arbitrary convex set A follows from:

$$
\partial A \subseteq \bigcup_{i} \partial\left(A \cap B_{i}\right)
$$

2. If A has dimension $k \leq d$ then its affine hull V has dimension k and A contains a k-dimensional simplex D (Theorem 2.4 Rockafellar [1970]). Then if $k=d$ we have $\mu[D]>0$ and if $k<d$ we have $\mu[V]=0$.
3. Part 1 implies that it is enough to consider closed convex sets. Part 2 implies that it is enough to prove that an unbounded closed convex set of dimension d has Lebesgue measure $+\infty$. Let A be such a set; i.e. an unbounded closed convex set. Then A contains d-dimensional simplex D (Theorem 2.4 Rockafellar [1970]) which has non-zero Lebesgue measure. Since A is unbounded then its recession cone is non-empty (Theorem 8.4 Rockafellar [1970]) and therefore we can choose a direction v such that $D+\lambda v \subset A$ for all $\lambda \geq 0$ which implies $\mu[A]=+\infty$.

The following lemma shows that convergence of convex sets in measure implies pointwise convergence.

Lemma A.2. Let A be a convex set in \mathbb{R}^{d} such that $\operatorname{dim}(A)=d$ and $\operatorname{ri}(A) \neq \emptyset$. Then:

1. Suppose a sequence of convex sets B_{n} is such that $A \subseteq B_{n}$ and $\lim \mu\left[B_{n} \backslash\right.$ $A]=0$ then $\limsup \operatorname{cl}\left(B_{n}\right)=\operatorname{cl}(A)$;
2. Suppose a sequence of convex sets B_{n} is such that $C_{n} \subseteq A$ and $\lim \mu[A \backslash$ $\left.C_{n}\right]=0$ then $\liminf \operatorname{ri}\left(C_{n}\right)=\operatorname{ri}(A)$.

Proof. By Lemma A. 1 we can assume that A, B_{n} and C_{n} are closed convex sets.

1. If on the contrary, there exists a subsequence $\{k\}$ such that for some $x \in A^{c}$ we have $x \in \cap_{k \geq 1} B_{k}$ then for $x A=\operatorname{conv}(\{x\} \cup A)$ we have:

$$
\begin{aligned}
& x A \subseteq B_{k} \\
& \mu\left[B_{k} \backslash A\right] \geq \mu[x A \backslash A] .
\end{aligned}
$$

Since A is closed there exists a ball $B(x)$ such that $B(x) \cap A=\emptyset$. Since $\operatorname{ri}(A) \neq \emptyset$ there exists a ball $B\left(x_{0}\right)$ such that $B\left(x_{0}\right) \subseteq A$ for some $x_{0} \in \operatorname{ri}(A)$. Then for $x B=\operatorname{conv}\left(\{x\} \cup B\left(x_{0}\right)\right)$ we have:

$$
\begin{aligned}
& x B \subseteq x A \\
& \mu[x A \backslash A] \geq \mu[x B \cap B(x)]>0 .
\end{aligned}
$$

This contradiction implies $\lim \sup B_{i}=A$.
2. If on the contrary, there exists a point $x \in \operatorname{ri}(A)$ and subsequence $\{k\}$ such that $x \notin C_{k}$ for all k then for each C_{k} there exists a half-space L_{k} such that $x \in L_{k}$ and $C_{k} \subseteq L_{k}^{c}$. Let $B(x)$ be a ball such that $B(x) \subseteq A$. We have:

$$
\mu\left[A \backslash C_{i}\right] \geq \mu\left[A \cap L_{k}\right] \geq \mu\left[B(x) \cap L_{k}\right]=\mu[B(x)] / 2>0 .
$$

This contradiction implies $\operatorname{ri}(A) \subseteq \lim \inf C_{i}$.

Our next lemma shows that the Lebesgue measure of sublevel sets of a convex function grows at most polynomially.

Lemma A.3. Let g be a convex function and values $y_{1}<y_{2}<y_{3}$ are such that $\operatorname{lev}_{y_{1}} g \neq \emptyset$. Then we have:

$$
\begin{equation*}
\mu\left[\operatorname{lev}_{y_{3}} g\right] \leq\left[\frac{y_{3}-y_{1}}{y_{2}-y_{1}}\right]^{d} \mu\left[\operatorname{lev}_{y_{2}} g\right] \tag{A.10}
\end{equation*}
$$

Proof. By assumption we have:

$$
\mu\left[\operatorname{lev}_{y_{3}} g\right] \geq \mu\left[\operatorname{lev}_{y_{2}} g\right] \geq \mu\left[\operatorname{lev}_{y_{1}} g\right]>0
$$

Let us consider the set L defined as:

$$
L=\left\{x_{1}+k\left(x-x_{1}\right) \mid x \in \operatorname{lev}_{y_{2}} g\right\}
$$

where x_{1} is any fixed point such that $g\left(x_{1}\right)=y_{1}$ and

$$
k=\frac{y_{3}-y_{1}}{y_{2}-y_{1}}>1 .
$$

Then:

$$
\mu[L]=k^{d} \mu\left[\operatorname{lev}_{y_{2}} g\right] .
$$

and therefore it is enough to prove that $\operatorname{lev}_{y_{3}} g \subseteq L$.
If $x_{3} \in \operatorname{lev}_{y_{3}} g$ then for $x_{2}=x_{1}+\left(x_{3}-x_{1}\right) / k$ we have:

$$
\begin{aligned}
& x_{3}=x_{1}+k\left(x_{2}-x_{1}\right), \\
& g\left(x_{2}\right) \leq(1-1 / k) g\left(x_{1}\right)+(1 / k) g\left(x_{3}\right)=y_{2}
\end{aligned}
$$

and thus $x_{2} \in \operatorname{lev}_{y_{2}} g$.
Corollary A.4. If g is a convex function then function $\mu\left[\operatorname{lev}_{y} g\right]$ is continuous on $(\inf g, \sup g)$.
A.1. Maximal convex minorant. In this section we describe the convex function f_{c} which is in some sense the closest to a given function f.

Definition A.5. The maximal convex minorant f_{c} of a proper function f is a supremum of all linear functions l such that $l \leq f$.

It is possible that f_{c} does not majorate any linear function and then $f_{c}=-\infty$. However if it is not the case the following properties of the maximal convex minorant hold. Recall that for any function f, the convex conjugate f^{*} of f is defined by $f^{*}(y) \equiv \sup _{x \in \mathbb{R}^{d}}(\langle y, x\rangle-f(x))$.

Lemma A.6. Let f be a function and $f_{c} \neq-\infty$ its maximal convex minorant. Then:

1. f_{c} is a closed proper convex function;
2. if f is proper convex function then f_{c} is its closure;
3. $f_{c} \leq f$;
4. $\left(f_{c}\right)^{*}(y)=f^{*}(y)$.

Proof. This follows from Corollary 12.1.1 Rockafellar [1970].
The maximal convex minorant allows us to see an important duality between operations of pointwise minimum and pointwise maximum.

Lemma A.7. Let f_{i} be a proper convex functions and let $g=\inf _{i} f_{i}$ be the pointwise infinum of f_{i}. Then $\left(g_{c}\right)^{*}=\sup _{i} f_{i}^{*}$.

Proof. This follows from Theorem 16.5 Rockafellar [1970].

A.2. Subdifferential.

Definition A.8. The subdifferential $\partial h(x)$ of a convex function h at the point x is the set of all vectors v which satisfy the inequality

$$
h(z) \geq\langle v, z-x\rangle+h(x) \quad \text { for all } x .
$$

Obviously $\partial h(x)$ is a closed convex set. It might be empty, but if it is not, the function h is called subdifferentiable at x.

Lemma A.9. Let h be a proper convex function then for $x \in$ ridom h subdifferential $\partial h(x)$ is not empty.

Proof. This follows from Theorem 23.4 Rockafellar [1970].
Lemma A.10. Let h be a closed proper convex function. Then the following conditions on x and x^{*} are equivalent:

1. $x^{*} \in \partial h(x)$;
2. $l(z)=\left\langle x^{*}, z\right\rangle-h^{*}\left(x^{*}\right)$ is a support plane for $\mathrm{epi}(h)$ at x;
3. $h(x)+h^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle$;
4. $x \in \partial h^{*}\left(x^{*}\right)$;
5. $l(z)=\langle x, z\rangle-h(x)$ is a support plane for $\operatorname{epi}\left(h^{*}\right)$ at x^{*};

Proof. This follows from Theorem 23.5 Rockafellar [1970].
Lemma A.11. Let h_{1} and h_{2} be proper convex functions such that ri dom $h_{1} \cap$ ri dom $h_{2} \neq \emptyset$. Then $\partial\left(h_{1}+h_{2}\right)=\partial h_{1}+\partial h_{2}$ for all x.

Proof. This follows from Theorem 23.8 Rockafellar [1970].

A.3. Polyhedral functions.

Definition A.12. A polyhedral convex set is a set which can be expressed as an intersection of finitely many half-spaces. A polyhedral convex function is a convex function whose epigraph is polyhedral.

From Theorem 19.1 Rockafellar [1970] we have that the epigraph of the polyhedral function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has finite number of extremal points and faces. We call projections of extremal points the knots of h and projections of the nonvertical d-dimensional faces the facets of h. Thus the set of knots and the set of facets of polyhedral function are always finite. Moreover, by Theorem 18.3 Rockafellar [1970] the knots are the extremal points of the facets. Finally, let $\left\{C_{i}\right\}$ be the set of facets of a polyhedral function h then:

$$
\begin{aligned}
& \operatorname{dom} h=\bigcup_{i} C_{i} \\
& \operatorname{ri}\left(C_{i}\right) \cap \operatorname{ri}\left(C_{j}\right)=\emptyset,
\end{aligned}
$$

and on $\operatorname{dom} h$ we have $h=\max \left(l_{i}\right)$ where l_{i} are linear functions. For each C_{i} there exists l_{i} such that:

$$
C_{i}=\left\{x \mid h(x)=l_{i}(x)\right\} .
$$

Lemma A.13. Let f be a polyhedral convex function and $x \in \operatorname{dom} h$ then $\partial h(x) \neq \emptyset$.

Proof. This follows from Theorem 23.10 Rockafellar [1970].
Lemma A.14. For the set of points $x=\left\{x_{i}\right\}_{i=1}^{n}$ such that $x_{i} \in \mathbb{R}^{d}$ and any point $p \in \mathbb{R}^{n}$ consider a family of all convex functions h with $\mathrm{ev}_{x} h=p$. The unique maximal element U_{x}^{p} in this family is a polyhedral convex function with domain dom $U_{x}^{p}=\operatorname{conv}(x)$ and the set of knots $K \subseteq x$.

Proof. Points $\left(x_{i}, p_{i}\right)$ and direction $(0,1)$ belong to the epigraph of any convex function h in our family and so does convex hull U of these points and direction. By construction U is an epigraph of some closed proper convex function U_{x}^{p} such that $\operatorname{dom} U_{x}^{p}=\operatorname{conv}(x)$, by Theorem 19.1 Rockafellar [1970] this function is polyhedral, by Corollary 18.3.1 Rockafellar [1970] the set of its knots K belongs to x and since $\operatorname{epi}\left(U_{x}^{p}\right)=U \subseteq \operatorname{epi}(h)$ we have $h \leq U_{x}^{p}$. On the other hand, since $\left(x_{i}, p_{i}\right) \in U$ we have

$$
p_{i}=h\left(x_{i}\right) \leq U_{x}^{p}\left(x_{i}\right) \leq p_{i}
$$

and therefore $U_{x}^{p}\left(x_{i}\right)=p_{i}$ which proves the lemma.
Lemma A.15. For the set of points $x=\left\{x_{i}\right\}_{i=1}^{n}$, convex set C such that $x_{i} \in \operatorname{ri}(C)$ and any point $p \in \mathbb{R}^{n}$ consider a family of all convex functions h with $\mathrm{ev}_{x} h=p$ and $C \subseteq$ dom h. Any minimal element L_{x}^{p} in this family is a polyhedral convex function with dom $L_{x}^{p}=\mathbb{R}^{d}$. For each facet C of $L_{x}^{p}, \operatorname{ri}(C)$ contains at least one element of x.

Proof. For any function h in our family let us consider the set of linear functions l_{i} such that $l_{i}\left(x_{i}\right)=h\left(x_{i}\right)=p_{i}$ and $l_{i} \leq h$ and which correspond to arbitrarily chosen nonvertical support planes for epi (h) at x_{i}. Then $L=$ $\max \left(l_{i}\right)$ is polyhedral and since $l_{j}\left(x_{i}\right) \leq h\left(x_{i}\right)=p_{i}$ we have $L\left(x_{i}\right)=p_{i}$. We also have dom $L=\mathbb{R}^{d}$. If the interior of any facet C_{i} of L does not contain elements of x we can exclude corresponding linear function l_{i} from maximum. For the new polyhedral function $L^{\prime}=\max _{j \neq i} l_{j}$ we still have $\mathrm{ev}_{x} L^{\prime}=p$. Now, we repeat this procedure until interior of each facet contains at least one element of x and denote the function we obtained by L_{x}^{p}. If a closed proper convex function h is such that $\mathrm{ev}_{x} h=p$ and $h \leq L_{x}^{p}$, then consider for any facet C_{i} and corresponding linear function l_{i} we have $h \leq l_{i}$ on C_{i} and the supremum of h on the convex set C_{i} is obtained in interior point $x_{j} \in x$. By Theorem 32.1 Rockafellar [1970] $h \equiv L_{x}^{p}$ on C_{i}. Thus $h \equiv L_{x}^{p}$ and L_{x}^{p} is the minimal element of our family.

Lemma A.16. For linear function $l(x)=a^{T} x+b$ the polyhedral set $A=\{l \geq c\} \cap \mathbb{R}_{+}^{d}$ is bounded if and only if all coordinates of a are negative. In this case, if $b \geq c$ the set A is a simplex with vertices $p_{i}=\left((c-b) / a_{i}\right) e_{i}$ and 0 , where e_{i} are basis vectors. Otherwise, A is empty.

Proof. If coordinate a_{i} is nonnegative then the direction $\left\{\lambda e_{i}\right\}, \lambda>0$ belongs to the recession cone of A and thus it is unbounded. If all coordinates a_{i} are negative and $b \leq c$ the set A is either empty or consists of zero vector 0 . Finally, if a_{i} are negative and $b>c$ then for $x \in A$ we can define $\theta_{i}=a_{i} x_{i} /(c-b)>0$. Then $1 \geq \sum_{i} \theta_{i}$ and $x=\sum_{i} \theta_{i} p_{i}$, which proves that A is simplex.
A.4. Strong convexity. Following Rockafellar and Wets [1998] page 565 we say that a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is strongly convex if there exists a constant σ such that:

$$
\begin{equation*}
h(\theta x+(1-\theta) y) \leq \theta h(x)+(1-\theta) h(y)-\frac{1}{2} \sigma \theta(1-\theta)\|x-y\|^{2} \tag{A.11}
\end{equation*}
$$

for all x, y and $\theta \in(0,1)$. There is a simple characterization of strong convexity:

Lemma A.17. A proper convex function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is strongly convex if and only if the function $f(x)-\frac{1}{2} \sigma\|x\|^{2}$ is convex.

Since we need a more precise control over the curvature of a convex function we define a generalization of strong convexity based on the characterization above:

Definition A.18. We say that a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is G-strongly convex if there exists a point x_{0}, a positive semidefinite $d \times d$ matrix G and a convex function q such that:

$$
\begin{equation*}
h(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} G\left(x-x_{0}\right)+q(x) \quad \text { for all } x \tag{A.12}
\end{equation*}
$$

Obviously, strong convexity is equivalent to σI-strong convexity where I denotes the $d \times d$ identity matrix. Note that the definition does not depend on the choice of x_{0}.

DEFINITION A.19. We say that a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is locally G-strongly convex at a point x_{0} if there exist an open neighborhood of x_{0}, a positive semidefinite $d \times d$ matrix G and a convex function q such that (A.12) holds for any x in this neighborhood.

We can relate G-strong convexity to the Hessian of a smooth convex function:

LEMMA A.20. If a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is continuously twice differentiable at x_{0} then h is locally $(1-\varepsilon) \nabla^{2} h$-strongly convex for any $\varepsilon \in(0,1)$.

The last result suggests the following definition:
Definition A.21. For a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ we define a curvature $\operatorname{curv}_{x_{0}} h$ at a point x_{0} as:

$$
\begin{equation*}
\operatorname{curv}_{x_{0}} h=\sup _{G \in \mathcal{S C}\left(h ; x_{0}\right)} \operatorname{det}(G) \tag{A.13}
\end{equation*}
$$

where $\mathcal{S C}\left(h ; x_{0}\right)$ is the set of all positive semidefinite matrices G such that h is locally G-strong convex at x_{0}.

Lemma A. 20 implies that:
LEMMA A.22. If a proper convex function $h: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is continuously twice differentiable at x_{0} and Hessian $\nabla^{2} h\left(x_{0}\right)$ is positive definite then

$$
\begin{equation*}
\operatorname{curv}_{x_{0}} h=\operatorname{det}\left(\nabla^{2} h\left(x_{0}\right)\right) \tag{A.14}
\end{equation*}
$$

NOTATION

\mathbb{R}	$=(-\infty,+\infty)$		
$\overline{\mathbb{R}}$	$=[-\infty,+\infty]$		
\mathbb{R}_{+}	$=[0,+\infty)$		
$\overline{\mathbb{R}}_{+}$	$=[0,+\infty]$		
$V(x)$	$=\prod_{k=1}^{d} x_{k}, \quad x \in \mathbb{R}_{+}^{d}$		
\mathcal{C}	$=\left\{f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}} \mid f\right.$ closed proper convex function $\}$		
\mathcal{D}	$=\left\{p: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}} \mid p\right.$ density $\}$		
$\mathcal{G}(h)$	$=\{h: \mid g \in \mathcal{C}, h \circ g \in \mathcal{D}\}$		
$\mathbb{L}_{n} g$	$=\mathbb{P}_{n} h \circ g$		
$\operatorname{ev}_{x} f$	$=\left(f\left(x_{1}\right), \ldots f\left(x_{n}\right)\right), \quad x_{i} \in \mathbb{R}^{d}$		
$\operatorname{supp}^{d}(f)$	$=\{x \mid f(x) \neq 0\}$		
$\delta(\cdot \mid C)$	$=\infty \cdot 1_{C^{c}+0 \cdot 1}$		
$\operatorname{lev}_{y} g$	$=\{x \mid g(x) \leq y\}$		
$\mu[S]$	$=\operatorname{Lebesgue}$ measure of S		
$\{f \doteq a\}$	$=\{x \in X \mid f(x) \lesseqgtr a\}$		
$B\left(x_{0} ; r\right)$	$=\left\{x:\left\\|x-x_{0}\right\\|<r\right\}$		
$B_{H}\left(x_{0} ; r\right)$	$=\left\{x:\left(x-x_{0}\right)^{T} H\left(x-x_{0}\right)<r^{2}\right\}$		
$\operatorname{curv} h$	$=$ curvature of a convex function h at a point x		
$\operatorname{ri}(A)$	$=$ the relative interior of the set A		

REFERENCES

Dudley, R. M. (1999). Uniform central limit theorems, vol. 63 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
Окамото, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 763-765.
Pal, J. K., Woodroofe, M. B. and Meyer, M. C. (2007). Estimating a polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond, vol. 54 of IMS Lecture Notes-Monograph Series. IMS, 239-249.
Rockafellar, R. T. (1970). Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J.
Rockafellar, R. T. and Wets, R. J.-B. (1998). Variational analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin.
van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes, with Applications to Statistics. Springer Series in Statistics, Springer-Verlag, New York.

Department of Statistics, Box 354322
University of Washington
Seattle, WA 98195-4322
E-mAIL: arseni@stat.washington.edu

Department of Statistics, Box 354322
University of Washington
Seattle, WA 98195-4322
E-mAIL: jaw@stat.washington.edu

[^0]: *Research supported in part by NSF grant DMS-0804587
 ${ }^{\dagger}$ Research supported in part by NSF grant DMS-0804587 and NI-AID grant 2R01 AI291968-04

 AMS 2000 subject classifications: Primary 62G07, 62H12; secondary 62G05, 62G20
 Keywords and phrases: consistency, log-concave density estimation, lower bounds, maximum likelihood, mode estimation, nonparametric estimation, qualitative assumptions, shape constraints, strongly unimodal, unimodal

