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1. Properties of the increasing transformation.

Lemma 1.1. Let h be a increasing transformation and g be a closed
proper convex function with dom g = Rd

+ such that∫
Rd+
h ◦ gdx = C <∞.

Then the following are true:

1. For a sublevel set levy g with y > y0 we have:

µ[(levy g)c] ≤ C/h(y).

2. For any point x0 ∈ Rd
+ and any subgradient a ∈ ∂g(x0) all coordinates

of a are nonpositive. If in addition g(x0) > y0 then all coordinates of
a are negative.

3. For any point x0 ∈ Rd
+ such that g(x0) > y0 we have:

h ◦ g(x0) ≤ Cd!
ddV (x0)

,

where V (x) ≡
∏d
k=1 xk for x ∈ Rd

+.
4. The function h reverses partial order on Rd

+: if x1 < x2 then g(x1) ≥
g(x2) and the last inequality is strict if g(x1) > y0.

5. The supremum of g on Rd
+ is attained at 0.
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2 ARSENI SEREGIN AND JON A. WELLNER

Proof. 1. Since h is nondecreasing we have h(y) > 0 and:

C =
∫

Rd+
h ◦ gdx ≥

∫
(levy g)

c
h ◦ gdx ≥ h(y)µ[(levy g)c].

2. Consider the linear function l(x) = aT (x−x0)+g(x0). We have g ≥ l. If
the vector a has a nonnegative coordinate ai then consider a closed ball
B = B̄(x0) ⊂ Rd

+. If m is a minimum of the function l on B then the
minimum of the function h◦ l on B+λei is equal to h(m+λai), where
ei is the element of the basis which corresponds to the ith coordinate.
For λ > 0 we have B + λei ⊂ Rd

+.
If ai > 0 then:∫

Rp+
h ◦ gdx ≥

∫
Rp+
h ◦ ldx ≥

∫
B
h ◦ ldx ≥ µ[B]h(m+ λai)→ +∞

as λ→∞, which contradicts the assumption.
If ai = 0 and g(x0) = l(x0) > y0, then we can choose the radius of the
ball small enough so that m > y0. Then:∫

Rp+
h ◦ gdx ≥

∫
Rp+
h ◦ ldx ≥

∫
K
h ◦ ldx ≥ µ[K]h(m) = +∞

where K ≡ ∪λ>0(B+λei), and this again contradicts the assumption.
3. Consider the subgradient a ∈ ∂g(x0). For the linear function l(x) =
aT (x−x0)+g(x0) we have g ≥ l and l(x0) = g(x0) therefore (levg(x0) l)

c ⊆
(levg(x0) g)c. From the previous statement we have that (levg(x0))

c is
a simplex and using inequality of arithmetic and geometric means we
have:

µ[(levg(x0) l)
c] =

(aTx0)d

d!V (a)
≥ ddV (x0)

d!

which together with 1. proves the statement.
4. Since x1 ∈ Rd

+ and x1 < x2 we have x2 ∈ Rd
+ = ri(dom g). For any

subgradient a ∈ ∂g(x2) we have

g(x1)− g(x2) ≥ aT (x1 − x2) ≥ 0

from the previous statement. Now, if g(x1) > y0 then we can assume
that g(x2) > y0 since otherwise the statement is trivial. In this case
all coordinates of a are negative and:

g(x1)− g(x2) ≥ aT (x1 − x2) > 0.
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CONVEX TRANSFORMED DENSITIES 3

5. From the previous statement we have that h◦g ≤ h◦g(0) on Rd
+ which

together with continuity of h ◦ g implies the statement.

Lemma 1.2. Let h be an increasing transformation, g be a closed proper
convex function on Rd

+ and Q be a σ-finite Borel measure on Rd
+. Then:∫

leva g
h ◦ gdQ =

∫ a

−∞
h′(y)Q[(levy g)c ∩ leva g]dy.

Proof. Using the Fubini-Tonelli theorem we have:∫
leva g

h ◦ gdQ =
∫
leva g

∫ h(a)

0
1{z ≤ h ◦ g(x)}dzdQ(x)

=
∫
leva g

∫ h(a)

0
1{h−1(z) ≤ g(x)}dzdQ(x)

=
∫
leva g

∫ a

−∞
h′(y)1{y ≤ g(x)}dydQ(x)

=
∫ a

−∞
h′(y)

∫
leva g

1{y ≤ g(x)}dQ(x)dy

=
∫ a

−∞
h′(y)Q[(levy g)c ∩ leva g]dy.

Lemma 1.3. Let h be an increasing transformation and let g be a poly-
hedral convex function with dom g = Rd

+ such that:∫
Rd+
h ◦ gdx <∞.

Then g(0) < y∞.

Proof. For y∞ = +∞ the statement is trivial so we assume that y∞ is
finite. If g(0) > y∞ then since g is continuous there exists a ball B ⊂ Rd

+

small enough such that g > y∞ on B and therefore∫
Rd+
h ◦ gdx =∞.

Let us assume that g(0) = y∞. By Lemma A.13 there exists a ∈ ∂g(0) and
therefore g(x) ≥ l(x) ≡ aTx + y∞. Let am be the minimum among the
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4 ARSENI SEREGIN AND JON A. WELLNER

coordinates of the vector a and −1. Then on Rd
+ we have l(x) ≥ l1(x) ≡

am1Tx+ y∞ where am < 0 and thus l1(x) ≤ y∞. By Lemma 1.2 we have:∫
Rd+
h ◦ gdx ≥

∫
Rd+
h ◦ l1dx =

∫ y∞

−∞
h′(y)µ[(levy l1)c ∩ Rd

+]dy.

The set Ay = (levy g)c ∩ Rd
+ is a simplex and:

µ[Ay] =
(y∞ − y)d

d!(−am)d

for y ≤ y∞. By assumption M.I.2 we have h′(y) � (y∞ − y)−β−1 as y ↑ y∞
where β > d and therefore:∫

Rd+
h ◦ g1dx =

∫
Rd+
h ◦ gdx = +∞.

This contradiction proves that g(0) < y∞.

Lemma 1.4. Let h be an increasing transformation and let l(x) = aTx+b
be a linear function such that all coordinates of a are negative and b < y∞.
Then: ∫

Rd+
h ◦ ldx <∞.

Proof. We have l ≤ b on Rd
+ and by Lemma 1.2:∫

Rd+
h ◦ ldx =

∫ b

−∞
h′(y)µ[(levy l)

c ∩ Rd
+]dy.

The set Ay = (levy l)
c ∩ Rd

+ is a simplex and:

µ[Ay] =
(b− y)d

d!V (−a)

for y ≤ b. By assumption M.I.1 we have h′(y) = o(y−α−1) as y → −∞ for
α > d and therefore the integral is finite.

Lemma 1.5. Let h be an increasing transformation and suppose that
K ⊂ Rd

+ is a compact set. Then there exists a closed proper convex function
g ∈ G(h) such that g > y0 on K.
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CONVEX TRANSFORMED DENSITIES 5

Proof. If y0 = −∞ then consider the function T (c) defined as:

T (c) =
∫

Rd+
h ◦ (−1Tx+ c)dx.

By Lemma 1.4, T (c) is finite for c < y∞, and by Lemma 1.3, we con-
clude that T (y∞) = +∞. By monotone convergence T is left-continuous
for c ∈ (−∞, y∞] and by dominated convergence is right-continuous for
c ∈ (−∞, y∞). Since T (−∞) = 0 there exists c1 < y∞ such that T (c1) = 1
and thus the linear function l(x) = −1Tx+ c1 belongs to G(h).

If y0 < −∞ then choose M such that 1Tx < M on K. Consider the
function T (c) defined as:

T (c) =
∫

Rd+
h ◦ (c(−1Tx+M) + y0)dx.

By Lemma 1.4, T (c) is finite for c < (y∞−y0)/M and by Lemma 1.3, T ((y∞−
y0)/M) = +∞. By monotone and dominated convergence T is continuous
for c ∈ [0, (y∞ − y0)/M ]. Since T (0) = 0 there exists c1 ∈ (0, (y∞ − y0)/M)
such that linear function l(x) = c1(−1Tx + M) + y0 belongs to G(h). By
construction l > y0 on K.

Lemma 1.6. If X1, . . . , Xn are i.i.d. p0 = h ◦ g0 ∈ P(h) for a mono-
tone transformation h, then the observations X are in general position with
probability 1.

Proof. Points are not in general position if at least one subset Y of X
of size d + 1 belongs to a proper linear subspace of Rd. This is true if and
only if X as a vector in Rnd belongs to a certain non-degenerate algebraic
variety. Since with probability 1 we have X ⊂ dom g0 and by definition
dim(dom g0) = d, the statement follows from Okamoto [1973].

Below we assume that our observations are in general position for any
n. For an increasing model we also assume that all Xi belong to Rd

+. This
assumption holds with probability 1 since µ

[
Rd

+ \ Rd
+

]
= 0.

Lemma 1.7 (M.3.6). Consider an increasing transformation h. For any
convex function g with dom g = Rd

+ such that:∫
Rd+
h ◦ gdx ≤ 1

and Lng > −∞, there exists g̃ ∈ G(h) such that g̃ ≥ g and Lng̃ ≥ Lng. The
function g̃ can be chosen as a minimal element in ev−1

X p̃ where p̃ = evX g̃.
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6 ARSENI SEREGIN AND JON A. WELLNER

Proof. Let p = evX g. Since Lng > −∞ we have g(Xi) > y0 for all
1 ≤ i ≤ n and therefore g(x) > y0 for x ∈ conv(X). Consider any minimal
element g1 among convex functions in ev−1

X p (which exists by Lemma A.15).
Then: ∫

Rd+
h ◦ g1dx ≤

∫
Rd+
h ◦ gdx ≤ 1.

Since g1 is polyhedral we have g1 = max li for some linear functions li(x) =
aTi x + bi and for each function li there exists some facet of g1 such that
g1 = li on it.

By Lemma A.15 the interior of the facet of g1 which corresponds to li
contains some Xji ∈ X. We have ∂g1(Xji) = {ai} and g1(Xji) = g(Xji) >
y0. Thus by Lemma 1.1, all coordinates of ai are negative and the supremum
M of g1 is attained at 0. Therefore bi = li(0) ≤M . By Lemma 1.3 we have
M < y∞. Thus by Lemma 1.4 the functions h ◦ (li + c) are integrable for
all c < y∞ −M . Since g1 has only a finite number of facets we have that
h ◦ (g1 + c) is also integrable for all c < y∞ −M . Finally, for c = y∞ −M
the function h ◦ (g1 + c) is not integrable by Lemma 1.3.

The function T (c) defined as:

T (c) ≡
∫

Rd+
h ◦ (g1 + c)dx

is increasing, finite for c ∈ [0, y∞−M) and continuous for c ∈ [0, y∞−M ] by
monotone and dominated convergence. Since T (0) ≤ 1 and T (y∞ −M) =
+∞, there exists c1 ∈ (0, y∞ − M) such that T (c1) = 1. Since g1 is the
minimal element in ev−1

X (p), the function g̃ ≡ g1 + c1 is minimal in ev−1
X (p+

c1). Then g̃ satisfies the conditions of our lemma.

Theorem 1.8 (M.3.7). If an MLE ĝ0 exists for the increasing model
P(h), then there exists an MLE ĝ1 which is a minimal element in ev−1

X q
where q = evX ĝ0. In other words ĝ1 is a polyhedral convex function such that
dom g1 = Rd

+, and the interior of each facet contains at least one element of
X. If h is strictly increasing on [y0, y∞], then ĝ0(x) = ĝ1(x) for all x such
that ĝ0(x) > y0 and thus defines the same density from P(h).

Proof. Let ĝ0 be any MLE. Then by Lemma 1.5 applied toK = conv(X)
it follows that Lnĝ0 > −∞. By Lemma 1.7 there exists a function ĝ1 ∈ P(h)
such that ĝ1 is a minimal element in ev−1

X q1 where q1 = evX ĝ1 and ĝ1 ≥ ĝ0.
Since ĝ0 is a MLE we have evX ĝ0 = evX ĝ1 which together with Lemma A.15
proves the first part of the statement.
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CONVEX TRANSFORMED DENSITIES 7

By Lemma 1.3 we have ĝ0 < y∞ and ĝ1 < y∞. Since h ◦ ĝ0 and h ◦ ĝ1 are
continuous functions, for the strictly increasing h the equality:∫

R+

(h ◦ ĝ1 − h ◦ ĝ0)dx = 0

implies that ĝ1(x) = ĝ0(x) for x such that ĝ0(x) > y0.

Lemma 1.9 (M.3.8). Consider a decreasing transformation h. For any
convex function g such that: ∫

Rd
h ◦ gdx ≤ 1

and Lng > −∞ there exists g̃ ∈ G(h) such that g̃ ≤ g and Lng̃ ≥ Lng. The
function g̃ can be chosen as the maximal element in ev−1

X q̃ where q̃ = evX g̃.

Proof. Let p = evX g. Since Lng > −∞ we have g(Xi) < y0 for all
1 ≤ i ≤ n and therefore g(x) < y0 for x ∈ conv(X). Consider the maximal
element g1 among convex functions in ev−1

X p (which exists and is unique by
Lemma A.14). Then: ∫

Rd
h ◦ g1dx ≤

∫
Rd
h ◦ gdx = 1.

By Lemma M.3.1 there exists x0 and m > −∞ such that g1 ≥ g1(x0) = m.
By Lemma M.3.3 we have m > y∞. By Lemma A.14 we have dom g1 =
conv(X) and therefore:∫

Rd
h ◦ (g1 + c)dx ≤ h(m+ c)µ[conv(X)] <∞,

for c ∈ (y∞ −m, 0]. By Lemma M.3.3 we have:∫
Rd
h ◦ (g1 + y∞ −m)dx =∞.

Thus the function T (c) defined as:

T (c) ≡
∫

Rd
h ◦ (g1 + c)dx

is decreasing, finite for c ∈ (y∞ −m, 0] and continuous for c ∈ [y∞ −m, 0]
by monotone and dominated convergence. Since T (0) ≤ 1 and T (y∞−m) =
+∞, there exists c1 ∈ (y∞ − m, 0) such that T (c1) = 1. Since g1 is the
maximal element in ev−1

X (p), the function g̃ ≡ g1 +c1 is maximal in ev−1
X (p+

c1). Then g̃ satisfies the conditions of our lemma.
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8 ARSENI SEREGIN AND JON A. WELLNER

Theorem 1.10 (M.3.9). If the MLE ĝ0 exists for the decreasing model
P(h), then there exists another MLE ĝ1 which is the maximal element in
ev−1
X q where q = evX ĝ0. In other words ĝ1 is a polyhedral convex function

with the set of knots Kn ⊆ X and domain dom ĝ1 = conv(X). If h is strictly
decreasing on [y∞, y0], then ĝ0(x) = ĝ1(x).

Proof. Let ĝ0 be any MLE. Then by Lemma M.3.5 applied to K =
conv(X) we have that Lnĝ0 > −∞. By Lemma 1.9 there exists a function
ĝ1 ∈ Gh such that ĝ1 is the maximal element in ev−1

X q1 where q1 = evX ĝ1
and ĝ1 ≤ ĝ0. Since ĝ0 is a MLE we have evX ĝ0 = evX ĝ1, which together
with Lemma A.14 proves the first part of the statement.

By Lemma M.3.3 we have ĝ0 ≥ ĝ1 > y∞. Since h ◦ ĝ0 and h ◦ ĝ1 are
continuous functions, for the strictly decreasing h, the equality:∫

Rd
(h ◦ ĝ1 − h ◦ ĝ0)dx = 0

implies that ĝ1(x) = ĝ0(x) for x ∈ conv(X). Therefore ĝ0(x) ≥ y∞ for
x /∈ conv(X). Since ĝ0 is convex we have ĝ0 = ĝ1.

Lemma 1.11 (M.3.11). Consider a decreasing model P(h). Let {gk} be
a sequence of convex functions from G(h), and let {nk} be a nondecreasing
sequence of positive integers nk ≥ nd such that for some ε > −∞ and ρ > 0
the following is true:

1. Lnkgk ≥ ε;
2. if µ[levak gk] = ρ for some ak, then Pnk [levak gk] < d/nd.

Then there exists m > y∞ such that gk ≥ m for all k.

Proof. Suppose, on the contrary, that mk → y∞ where mk = min gk.
The first condition implies thatXd ≡ {X1, . . . , Xnd} ∈ domhk, and therefore
by Corollary A.4 the function µ[levy gk] as a function of y admits all values
in the interval [µ[levmk gk], µ[conv(Xd)]]. If the second condition is true for
some ρ then it is also true for all ρ′ ∈ (0, ρ), and therefore we can assume
that ρ < µ[conv(Xd)].

By Lemma M.3.1 we have µ[levmk gk] → 0, and thus there exists such
ak that µ[levak gk] = ρ for all k large enough. We define Ak = levak gk.
By Lemma M.3.1 we have: h(ak) ≤ 1/ρ and therefore the sequence {ak} is
bounded below by some a > y∞.

Consider tk > mk such that tk → y∞. We will specify the exact form of
tk later in the proof. Since ak are bounded away from y∞, it follows that for
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CONVEX TRANSFORMED DENSITIES 9

k large enough we will have tk < ak. Using Lemma A.3 we obtain:

ρ = µ[Ak] ≤ µ[levtk gk]
[
ak −mk

tk −mk

]d
≤ 1
h(tk)

[
ak −mk

tk −mk

]d
which implies:

ak ≥ mk + (tk −mk)[ρh(tk)]1/d.

We have:

gk ≥ mk1{Ak}+ ak(1− 1{Ak}),

and hence:

Lnkgk ≤ Pnk(Ak) log h(mk) + (1− Pnk(Ak)) log h(ak)

≤ Pnk(Ak) log h(mk) + (1− Pnk(Ak)) log h(mk + (tk −mk)[ρh(tk)]1/d).

Case y∞ = −∞. Choose tk = (1−δ)mk where δ ∈ (0, 1). Then starting from
some k we have mk < tk, h(mk) > 1, h(−Cmk) < 1 and δ[ρh(tk)]1/d > C+1.
This implies:

mk + (tk −mk)[ρh(tk)]1/d = mk(1− δ[ρh(tk)]1/d) ≥ −Cmk,

and hence:

Lnkgk ≤ Pnk(Ak) log h(mk) + (1− Pnk(Ak)) log h(−Cmk)

≤ d

nd
log h(mk) +

nd − d
nd

log h(−Cmk) =
d

nd
log [h(mk)h(−Cmk)γ ]→ −∞.

Case y∞ > −∞. Without loss of generality we can assume that y∞ = 0.
Choose tk = (1 + δ)mk where δ > 0. Then:

mk + (tk −mk)[ρh(tk)]1/d ≥ mkδ[ρh((1 + δ)mk)]1/d � m
−β−d

d
k → +∞

which implies

h(mk + (tk −mk)[ρh(tk)]1/d) = o

(
m

α(β−d)
d

k

)
.

This in turn yields

exp(Lnkgk) = o

(
m
− βd
nd

+
α(β−d)(nd−d)

dnd
k

)
= o(1).

Therefore in both cases we obtained Lnkgk → −∞. This contradiction
concludes the proof.
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10 ARSENI SEREGIN AND JON A. WELLNER

Lemma 1.12 (M.3.13). Consider a monotone model P(h). Suppose the
true density h ◦ g0 and the sequence of MLEs {ĝn} have the following prop-
erties: ∫

(h| log h|) ◦ g0(x)dx <∞,

and ∫
log[ε+ h ◦ ĝn(x)]d(Pn(x)− P0(x))→a.s. 0,

for ε > 0 small enough. Then the sequence of the MLEs is Hellinger consis-
tent:

H(h ◦ ĝn, h ◦ g0)→a.s. 0.

Proof. For ε ∈ (0, 1) we have:

0 ≥
∫
{h◦g0(x)≤1−ε}

log(ε+ h ◦ g0)dP0 ≥ log(ε)P0{h ◦ g0(x) ≤ 1− ε} > −∞

0 ≤
∫
{h◦g0(x)≥1}

log(ε+ h ◦ g0)dP0 ≤
∫
{h◦g0(x)≥1}

log(2h ◦ g0)dP0

≤
∫

(h log h) ◦ g0(x)dx+ log 2 <∞.

Thus the function log(ε + h ◦ g0) is integrable with respect to probability
measure P0.

We can rearrange:

0 ≤ Lnĝn − Lng0 =
∫

log[h ◦ ĝn]dPn −
∫

log[h ◦ g0]dPn

≤
∫

log[ε+ h ◦ ĝn]dPn −
∫

log[h ◦ g0]dPn

≤
∫

log[ε+ h ◦ ĝn]d(Pn − P0)(1.1)

+
∫

log
[
ε+ h ◦ ĝn
ε+ h ◦ g0

]
dP0(1.2)

+
∫

log[ε+ h ◦ g0]dP0 −
∫

log[h ◦ g0]dPn.(1.3)

The term (1.1) converges almost surely to zero by assumption.
For the term (1.2) we can apply the analogue of Lemma 1 from Pal et al.
[2007]:

II ≡
∫

log
[
ε+ h ◦ ĝn
b+ h ◦ g0

]
dP0 ≤ 2

∫ √
ε

ε+ h ◦ g0
dP0 − 2H2(h ◦ ĝn, h ◦ g0).
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CONVEX TRANSFORMED DENSITIES 11

For the term (1.3), the SLLN implies that:

III =
∫

log[ε+ h ◦ g0]dP0 −
∫

log[h ◦ g0]dPn

→a.s.

∫
log[ε+ h ◦ g0]dP0 −

∫
log[h ◦ g0]dP0 =

∫
log

[
ε+ h ◦ g0
h ◦ g0

]
dP0.

Thus we have:

0 ≤ lim inf(I + II + III)

≤a.s. − lim sup 2H2(h ◦ ĝn, h ◦ g0)

+ 2
∫ √

ε

ε+ h ◦ g0
dP0 +

∫
log

[
ε+ h ◦ g0
h ◦ g0

]
dP0.

This yields

lim supH2(h ◦ ĝn, h ◦ g0)

≤a.s.
∫ √ 1

1 + h ◦ g0/ε
dP0 +

1
2

∫
log

[
ε+ h ◦ g0
h ◦ g0

]
dP0 → 0

as ε ↓ 0 by monotone convergence.

Lemma 1.13 (M.3.15). Let A be a class of sets in Rd such that class
A ∩ [−a, a]d has finite bracketing entropy with respect to Lebesgue measure
µ for any a large enough:

logN[](ε,A ∩ [−a, a]d, L1(µ)) < +∞

for every ε > 0. Then for any Lebesgue absolutely continuous probability
measure P with bounded density we have that A is a Glivenko-Cantelli class:

‖Pn − P‖A →a.s. 0.

Proof. Let C be an upper bound for the density of P and a be large so
that for the set D ≡ [−a, a]d we have P ([−a, a]d) > 1−ε/2C. By assumption
the class A ∩D has a finite set of ε/2-brackets {[Li, Ui]}. Then for any set
A ∈ A there exists index i such that:

Li ⊆ A ∩D ⊆ Ui

Therefore:

Li ⊆ A ⊆ Ui ∪Dc
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12 ARSENI SEREGIN AND JON A. WELLNER

and:

‖1{Ui ∪Dc} − 1{Li}‖L1(P ) ≤ ‖1{Ui} − 1{Li}‖L1(P ) + ‖1{Dc}‖L1(P )

≤ C(‖1{Ui} − 1{Li}‖L1(λ) + ‖1{Dc}‖L1(λ)) ≤ ε.

Thus the set {[Li, Ui∪Dc]} is the set of ε-brackets for our class A in L1(P ).
This implies that A is a Glivenko-Cantelli class and the statement follows
from Theorem 2.4.1 van der Vaart and Wellner [1996].

2. Consistency of the MLE for an increasing model. To prove
consistency for increasing models we begin with a general property of lower
layer sets (see Dudley [1999], Chapter 8.3). Recall that a lower lay setB ⊂ Rd

is a set satisfying y ≤ x coordinate-wise with x ∈ B implies y ∈ B.

Lemma 2.1. Let LL be the class of closed lower layer sets in Rd
+ and P be

a Lebesgue absolutely continuous probability measure with bounded density.
Then:

‖Pn − P‖LL →a.s. 0.

Proof. By Theorem 8.3.2 Dudley [1999] we have

logN[](ε,LL ∩ [0, 1]d, L1(µ)) < +∞.

Since the class LL is invariant under rescaling, the result follows from
Lemma 1.13

Note that Lemma 1.1 implies that if h ◦ g belongs to an increasing model
P(h) then (levy g)c is a lower layer set and has Lebesgue measure less or
equal than 1/h(y). Let us denote by Aδ the set {V (x) ≤ δ, x ∈ Rd

+}. Then
by Lemma 1.1 part 3 we have:

(levy g)c ⊂ Ac/h(y),(2.4)

for c ≡ d!/dd.

Theorem 2.2 (M.2.15). For an increasing model P(h) where h satisfies
assumptions M.I.1 - M.I.3 and for the true density h ◦ g0 which satisfies
assumptions M.I.4 - M.I.6, the sequence of MLEs {p̂n = h◦ ĝn} is Hellinger
consistent: H(p̂n, p0) = H(h ◦ ĝn, h ◦ g0)→a.s. 0.

Proof. By Assumption M.I.6 and Lemma 1.12 it is enough to show that:∫
log[ε+ h ◦ ĝn(x)]d(Pn(x)− P0(x))→a.s. 0.
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CONVEX TRANSFORMED DENSITIES 13

Indeed, applying Lemma 1.2 for the increasing transformation log[ε+h(y)]−
log ε we obtain:∫

log[ε+ h ◦ ĝn(x)]d(Pn(x)− P0(x))

=
∫ +∞

−∞

[
h′(z)

ε+ h(z)

]
(Pn − P0) ((levz ĝn)c) dz

≤ ‖Pn − P0‖LL
∫ M

−∞

[
h′(z)

ε+ h(z)

]
dz +

∫ +∞

M

[
h′(z)

ε+ h(z)

]
|Pn − P0| ((levz ĝn)c) dz

≤ ‖Pn − P0‖LL log
[
ε+ h(M)

ε

]
+
∫ +∞

M

[
h′(z)

ε+ h(z)

]
(Pn + P0) ((levz ĝn)c) dz.

The first converges to zero almost surely by Lemma 2.1. For the second term
we will use the inclusion 2.4:∫ +∞

M

[
h′(z)

ε+ h(z)

]
(Pn + P0)(levz ĝn)cdz ≤

∫ +∞

M

[
h′(z)

ε+ h(z)

]
(Pn + P0)Ac/h(z) dz.

Now, we can apply Lemma 1.2 again for gA(x) = h−1(c/V (x)). We have
(levz gA)c = Ac/h(z) and therefore:∫ +∞

M

[
h′(z)

ε+ h(z)

]
(Pn + P0)Ac/h(z) dz =

∫
Ac/h(M)

log(ε+ c/V (x))d(Pn + P0)

≤
∫
Ac/h(M)

log(2c/V (x))d(Pn + P0),

for M large enough. Assumption M.I.5 and the SLLN imply that:∫
Ac/h(M)

log(2c/V (x))d(Pn + P0)→a.s. 2
∫
Ac/h(M)

log(2c/V (x))dP0.

Since M is arbitrary and Ac/h(M) ↓ {0} as M → +∞ the result follows.

3. Lower bounds.

3.1. Local deformations.

Lemma 3.1 (M.3.18). Let {gε} be a local deformation of the function
g : Rd → R at the point x0, such that g is continuous at x0, and let the
function h : R → R be continuously differentiable at the point g(x0). Then
for any r > 0:

lim
ε→0

∫
Rd
|gε(x)− g(x)|rdx = 0,(3.5)

lim
ε→0

∫
Rd |h ◦ gε(x)− h ◦ g(x)|rdx∫

Rd |gε(x)− g(x)|rdx
= |h′ ◦ g(x0)|r.(3.6)
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14 ARSENI SEREGIN AND JON A. WELLNER

Proof. Since {gε} is a local deformation, for ε > 0 small enough we
have: ∫

Rd
|h ◦ gε(x)− h ◦ g(x)|rdx =

∫
B(x0;rε)

|h ◦ gε(x)− h ◦ g(x)|rdx,∫
Rd
|gε(x)− g(x)|rdx =

∫
B(x0;rε)

|gε(x)− g(x)|rdx.

Then:
∫
B(x0;rε)

|gε − g|rdx ≤ ess sup |gε − g|rµ[B(x0; rε)] implies (3.5).
Let us define a sequence {aε}:

aε ≡ ess sup |gε − g|+ sup
x∈B(x0;rε)

|g(x)− g(x0)|.

For x ∈ B(x0; rε) and y ∈ [gε(x), g(x)] we have a.e.:

|y − g(x0)| ≤ |gε(x)− g(x)|+ |g(x)− g(x0)| ≤ aε.

Using the mean value theorem we obtain:∫
Rd
|h ◦ gε(x)− h ◦ g(x)|rdx =

∫
Rd
|h′(yx)|r|gε(x)− g(x)|rdx

inf
y∈B(g(x0);aε)

|h′(y)|r ≤
∫
Rd |h ◦ gε(x)− h ◦ g(x)|rdx∫

Rd |gε(x)− g(x)|rdx
≤ sup

y∈B(g(x0);aε)
|h′(y)|r

Since h′ is continuous at g(x0), to prove (3.6) it is enough to show that
aε → 0. By assumption we have: limε→0 ess sup |gε − g| = 0. Since g is
continuous at x0 and rε → 0 we have: limε→0 supx∈B(x0;rε) |g(x)−g(x0)| = 0.
Thus aε → 0, which proves (3.6).

Lemma 3.2 (M.3.19). Let {gε} be a local deformation of the function
g : Rd → R at the point x0, such that g is continuous at x0, and let the
function h : R→ R be continuously differentiable at the point g(x0) so that
h′ ◦ g(x0) 6= 0. Then for any fixed δ > 0 small enough, the deformation
gθ,δ = θgδ + (1− θ)g and any r > 0 we have:

lim sup
θ→0

θ−r
∫

Rd
|h ◦ gθ,δ(x)− h ◦ g(x)|rdx <∞,(3.7)

lim inf
θ→0

θ−r
∫

Rd
|h ◦ gθ,δ(x)− h ◦ g(x)|rdx > 0.(3.8)

Note that gθ,δ is not a local deformation of g.

imsart-aos ver. 2009/08/13 file: ConvexTransfSupp-v4.tex date: May 23, 2010



CONVEX TRANSFORMED DENSITIES 15

Proof. The statement follows from the argument for Lemma 3.1. For a
fixed θ the family {gθ,δ} is a local deformation of g. Thus for aθ,ε defined
by: aθ,ε ≡ ess sup |gθ,ε − g|+ supx∈B(x0;rε) |g(x)− g(x0)|, it follows that∫

Rd |h ◦ gθ,ε(x)− h ◦ g(x)|rdx∫
Rd |gθ,ε(x)− g(x)|rdx

≤ sup
y∈B(g(x0);aθ,ε)

|h′(y)|r,∫
Rd |h ◦ gθ,ε(x)− h ◦ g(x)|rdx∫

Rd |gθ,ε(x)− g(x)|rdx
≥ inf

y∈B(g(x0);aθ,ε)
|h′(y)|r.

For |θ| < 1 we have: |gθ,ε − g| = |θ||gε − g| and therefore aθ,δ ≤ aδ. Since
aε → 0 and h is continuously differentiable for all δ > 0 small enough we
have:

sup
y∈B(g(x0);aθ,δ)

|h′(y)|r ≤ sup
y∈B(g(x0);aδ)

|h′(y)|r <∞,

inf
y∈B(g(x0);aθ,δ)

|h′(y)|r ≥ inf
y∈B(g(x0);aδ)

|h′(y)|r > 0.

Thus for all θ we obtain:

θ−r
∫

Rd
|h ◦ gθ,δ − h ◦ g|rdµ ≤ sup

y∈B(g(x0);aδ)
|h′(y)|r

∫
Rd
|gδ − g|rdµ <∞,

θ−r
∫

Rd
|h ◦ gθ,δ − h ◦ g|rdµ ≥ inf

y∈B(g(x0);aδ)
|h′(y)|r

∫
Rd
|gδ − g|rdµ > 0

which proves the lemma.

Lemma 3.3 (M.3.22). For all ε > 0 small enough there exist θ+
ε , θ

−
ε ∈

(0, 1) such that the functions g+
ε and g−ε defined by:

g+
ε = (1− θ+

ε )Dε(g;x0, v0) + θ+
ε D
∗
δ (g;x1)

g−ε = (1− θ−ε )D∗ε(g;x0) + θ−ε Dδ(g;x1; v1)

belong to P(h).

Proof. By dominated convergence, the function F (θ) defined by:

F (θ) =
∫
h ◦ ((1− θ)Dε(g;x0, v0)dx+ θD∗δ (g;x1)) dx

is continuous. We have:

F (0) =
∫
h ◦Dε(g;x0, v0)dx >

∫
h ◦ gdx = 1,

F (1) =
∫
h ◦D∗δ (g;x1)dx <

∫
h ◦ gdx = 1.

Therefore there exists θ+
ε ∈ (0, 1) such that F (θ+

ε ) = 1.
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16 ARSENI SEREGIN AND JON A. WELLNER

3.2. Mode estimation.

Theorem 3.4 (M.2.26). Let h be a decreasing transformation, h ◦ g ∈
P(h) be a convex-transformed density and a point x0 ∈ ri(dom g) be a unique
global minimum of g such that h is continuously differentiable at g(x0),
h′ ◦ g(x0) 6= 0 and curvx0

g > 0. In addition let us assume that g is locally
Hölder continuous at x0: |g(x) − g(x0)| ≤ L‖x − x0‖γ with respect to some
norm ‖ · ‖. Then, for the functional T (h ◦ g) ≡ argmin g there exists a
sequence {pn} ∈ P(h) such that:

lim inf
n→∞

n
2

γ(d+4)Rs(n;T, {p, pn}) ≥ C(d)L−
1
γ

[
h ◦ g(x0)2 curvx0

g

h′ ◦ g(x0)4

] 1
γ(d+4)

,

(3.9)

where the constant C(d) depends only on the dimension d and metric s(x, y)
is defined as ‖x− y‖.

Proof. The proof is similar to the proof for a point estimation lower
bounds. The deformation we will construct will resemble g−ε .

Our statement is not trivial only if the curvature curvx0
g > 0 or equiva-

lently there exists such positive definite d× d matrix G so that the function
g is locally G-strongly convex. For a > 0 small enough h′ ◦ g(x) is negative
and decomposition (M.3.16) is true on B(x0; a). Let us fix some v0 ∈ ∂g(x0),
some x1 ∈ B(x0; a) such that x1 6= x0 and some y1 ∈ ∂g(x1). We fix δ such
that equation (M.3.14) of Lemma M.3.19 is true for the transformation

√
h

and r = 2 and also x0 /∈ BG(x1;
√

2δ).
Let us consider the deformation D∗ξ(ε)(g;x0 + εu) where u ∈ Rd is an

arbitrary fixed vector in Rd with ‖u‖ = 1 and

ξ(ε) = g(x0)− g(x0 + εu) + εγ+1.

Since the value of D∗ξ(ε)(g;x0 + εu) at any point x is a convex combination
of g(y) for some y, g(x) ≥ g(x0) and

D∗ξ(ε)(g;x0 + εu)(x0 + εu) = g(x0) + εγ+1

the global minimum of D∗ξ(ε)(g;x0 + εu) is x0 + εu. By Lemma M.3.21 for
all ε > 0 small enough we have

supp[D∗ξ(ε)(g;x0 + εu)− g] ⊆ BG(x0 + εu,
√

2ξ(ε)).

Since, by assumption
ξ(ε) ≤ Lεγ + εγ+1
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the support of supp[D∗ξ(ε)(g;x0 + εu)− g] converges to a point x0 and thus
does not intersect supp[Dε(g;x1, y1) − g] for ε small enough i.e. these two
deformations do not interfere.

The same argument as in Lemma M.3.22 shows that there exists θmε ∈
(0, 1) such that the deformation gmε defined as:

gmε = (1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε Dδ(g;x1, y1)

belongs to P(h). Also gmε ≥ D∗ξ(ε)(g;x0 + εu) and the global minimum of gmε
is x0 + εu. We have:

ε−1s(Tgmε , T g) ≡ 1.

Next, we will show that θmε goes to zero fast enough so that gmε is very
close to D∗ξ(ε)(g;x0 + εu). We have:

0 =
∫

(h ◦ gmε − h ◦ g)dx

= −
∫ (

h ◦ g − h ◦ ((1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε g)
)
dx

+
∫

(h ◦ (θmε Dδ(g;x1, y1) + (1− θmε )g)− h ◦ g) dx,

where both integrals have the same sign. For the first integral by Lemma M.3.18
we have:∫ ∣∣∣h ◦ g − h ◦ ((1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε g)

∣∣∣ dx,
≤
∫ ∣∣∣h ◦ g − h ◦D∗ξ(ε)(g;x0 + εu)

∣∣∣ dx ∼ ∫ ∣∣∣D∗ξ(ε)(g;x0 + εu)− g
∣∣∣ dx

≤ ξ(ε)µ[BG(x0 + εu;
√

2ξ(ε))] = O(ξ(ε)1+d/2)

The second integral is monotone in θmε and by Lemma M.3.19 we have:∫
(h ◦ (θmε Dδ(g;x1, y1) + (1− θmε )g)− h ◦ g) dx ∼ θmε ,

thus we have θ+
ε = O(εγ(1+d/2)).

For Hellinger distance we have:

H(h ◦ gmε , h ◦ g) = H(h ◦ ((1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε g), h ◦ g)

+H(h ◦ (θmε Dδ(g;x1, y1) + (1− θmε )g)), h ◦ g).
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18 ARSENI SEREGIN AND JON A. WELLNER

For the first part we can apply Lemma M.3.18:

H2(h ◦ ((1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε g), h ◦ g) ≤ H2(h ◦D∗ξ(ε)(g;x0 + εu), h ◦ g)

lim
ε→0

H2(h ◦D∗ξ(ε)(g;x0 + εu), h ◦ g)∫
(D∗ξ(ε)(g;x0 + εu)− g)2dx

=
h′ ◦ g(x0)2

4h ◦ g(x0)
and

∫
(D∗ξ(ε)(g;x0 + εu)− g)2dx ≤ ξ(ε)2µ[BG(x0;

√
2ξ(ε))]

= ξ(ε)2+d/2 2d/2µ[S(0, 1)]√
detG

which gives:

lim sup
ε→0

ε−γ(1+d/4)H(h ◦ ((1− θmε )D∗ξ(ε)(g;x0 + εu) + θmε g), h ◦ g)

≤ C(d)L1+d/4

[
h′ ◦ g(x0)4

h ◦ g(x0)2 detG

]1/4

where S(0, 1) is d-dimensional sphere of radius 1.
For the second part by Lemma M.3.19 we obtain:

lim sup
ε→0

(θ+
ε )−2H2(h ◦ ((1− θ+

ε )g + θ+
ε Dδ(g;x1, y1)), h ◦ g) <∞

H(h ◦ ((1− θ+
ε )g + θ+

ε Dδ(g;x1, y1)), h ◦ g) = O(εγ(1+d/2)).

Thus:

lim sup
ε→0

ε−γ(1+d/4)H(h ◦ g+
ε , h ◦ g) ≤ C(d)L1+d/4

[
h′ ◦ g(x0)4

h ◦ g(x0)2 detG

]1/4

.

Finally, we apply Corollary M.2.21:

lim inf
n→∞

n
2

γ(d+4)R1(n;T, {p, pn}) ≥ C(d)L−
1
γ

[
h ◦ g(x0)2 detG
h′ ◦ g(x0)4

] 1
γ(d+4)

.

Taking the supremum over all G ∈ SC(g;x0) we obtain the statement of the
theorem.

APPENDIX A: SOME RESULTS FROM CONVEX ANALYSIS

We will use the following general properties of convex sets and convex
functions. We use Rockafellar [1970] as a reference.
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Lemma A.1. For any convex set A in Rd we have:

1. The boundary of A has Lebesgue measure zero.
2. A has Lebesgue measure zero if and only if it belongs to a d−1 dimen-

sional affine subspace.
3. A has Lebesgue measure +∞ if and only if it is unbounded and has

dimension d.

Proof.

1. If A is such that cl(A) has finite Lebesgue measure then:

∂A ⊆ (1 + ε) cl(A) \ (1− ε) cl(A), ε ∈ (0, 1)
µ[∂A] ≤ 2εµ[cl(A)]

and thus µ[∂A] = 0. Since Rd is a countable union of closed convex
cubes Bi the result for an arbitrary convex set A follows from:

∂A ⊆
⋃
i

∂(A ∩Bi).

2. If A has dimension k ≤ d then its affine hull V has dimension k and A
contains a k-dimensional simplex D (Theorem 2.4 Rockafellar [1970]).
Then if k = d we have µ[D] > 0 and if k < d we have µ[V ] = 0.

3. Part 1 implies that it is enough to consider closed convex sets. Part 2
implies that it is enough to prove that an unbounded closed convex
set of dimension d has Lebesgue measure +∞. Let A be such a set; i.e.
an unbounded closed convex set. Then A contains d-dimensional sim-
plex D (Theorem 2.4 Rockafellar [1970]) which has non-zero Lebesgue
measure. Since A is unbounded then its recession cone is non-empty
(Theorem 8.4 Rockafellar [1970] ) and therefore we can choose a direc-
tion v such that D + λv ⊂ A for all λ ≥ 0 which implies µ[A] = +∞.

The following lemma shows that convergence of convex sets in measure
implies pointwise convergence.

Lemma A.2. Let A be a convex set in Rd such that dim(A) = d and
ri(A) 6= ∅. Then:

1. Suppose a sequence of convex sets Bn is such that A ⊆ Bn and limµ[Bn\
A] = 0 then lim sup cl(Bn) = cl(A);

2. Suppose a sequence of convex sets Bn is such that Cn ⊆ A and limµ[A\
Cn] = 0 then lim inf ri(Cn) = ri(A).
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Proof. By Lemma A.1 we can assume that A, Bn and Cn are closed
convex sets.

1. If on the contrary, there exists a subsequence {k} such that for some
x ∈ Ac we have x ∈ ∩k≥1Bk then for xA = conv({x} ∪A) we have:

xA ⊆ Bk
µ[Bk \A] ≥ µ[xA \A].

Since A is closed there exists a ball B(x) such that B(x) ∩ A = ∅.
Since ri(A) 6= ∅ there exists a ball B(x0) such that B(x0) ⊆ A for
some x0 ∈ ri(A). Then for xB = conv({x} ∪B(x0)) we have:

xB ⊆ xA
µ[xA \A] ≥ µ[xB ∩B(x)] > 0.

This contradiction implies lim supBi = A.
2. If on the contrary, there exists a point x ∈ ri(A) and subsequence {k}

such that x /∈ Ck for all k then for each Ck there exists a half-space Lk
such that x ∈ Lk and Ck ⊆ Lck. Let B(x) be a ball such that B(x) ⊆ A.
We have:

µ[A \ Ci] ≥ µ[A ∩ Lk] ≥ µ[B(x) ∩ Lk] = µ[B(x)]/2 > 0.

This contradiction implies ri(A) ⊆ lim inf Ci.

Our next lemma shows that the Lebesgue measure of sublevel sets of a
convex function grows at most polynomially.

Lemma A.3. Let g be a convex function and values y1 < y2 < y3 are
such that levy1 g 6= ∅. Then we have:

µ[levy3 g] ≤
[
y3 − y1

y2 − y1

]d
µ[levy2 g].(A.10)

Proof. By assumption we have:

µ[levy3 g] ≥ µ[levy2 g] ≥ µ[levy1 g] > 0.

Let us consider the set L defined as:

L = {x1 + k(x− x1) |x ∈ levy2 g},
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where x1 is any fixed point such that g(x1) = y1 and

k =
y3 − y1

y2 − y1
> 1.

Then:

µ[L] = kdµ[levy2 g].

and therefore it is enough to prove that levy3 g ⊆ L.
If x3 ∈ levy3 g then for x2 = x1 + (x3 − x1)/k we have:

x3 = x1 + k(x2 − x1),
g(x2) ≤ (1− 1/k)g(x1) + (1/k)g(x3) = y2

and thus x2 ∈ levy2 g.

Corollary A.4. If g is a convex function then function µ[levy g] is
continuous on (inf g, sup g).

A.1. Maximal convex minorant. In this section we describe the con-
vex function fc which is in some sense the closest to a given function f .

Definition A.5. The maximal convex minorant fc of a proper function
f is a supremum of all linear functions l such that l ≤ f .

It is possible that fc does not majorate any linear function and then
fc = −∞. However if it is not the case the following properties of the
maximal convex minorant hold. Recall that for any function f , the convex
conjugate f∗ of f is defined by f∗(y) ≡ supx∈Rd(〈y, x〉 − f(x)).

Lemma A.6. Let f be a function and fc 6= −∞ its maximal convex
minorant. Then:

1. fc is a closed proper convex function;
2. if f is proper convex function then fc is its closure;
3. fc ≤ f ;
4. (fc)∗(y) = f∗(y).

Proof. This follows from Corollary 12.1.1 Rockafellar [1970].

The maximal convex minorant allows us to see an important duality be-
tween operations of pointwise minimum and pointwise maximum.
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Lemma A.7. Let fi be a proper convex functions and let g = infi fi be
the pointwise infinum of fi. Then (gc)∗ = supi f∗i .

Proof. This follows from Theorem 16.5 Rockafellar [1970].

A.2. Subdifferential.

Definition A.8. The subdifferential ∂h(x) of a convex function h at the
point x is the set of all vectors v which satisfy the inequality

h(z) ≥ 〈v, z − x〉+ h(x) for all x.

Obviously ∂h(x) is a closed convex set. It might be empty, but if it is not,
the function h is called subdifferentiable at x.

Lemma A.9. Let h be a proper convex function then for x ∈ ri domh
subdifferential ∂h(x) is not empty.

Proof. This follows from Theorem 23.4 Rockafellar [1970].

Lemma A.10. Let h be a closed proper convex function. Then the fol-
lowing conditions on x and x∗ are equivalent:

1. x∗ ∈ ∂h(x);
2. l(z) = 〈x∗, z〉 − h∗(x∗) is a support plane for epi(h) at x;
3. h(x) + h∗(x∗) = 〈x∗, x〉;
4. x ∈ ∂h∗(x∗);
5. l(z) = 〈x, z〉 − h(x) is a support plane for epi(h∗) at x∗;

Proof. This follows from Theorem 23.5 Rockafellar [1970].

Lemma A.11. Let h1 and h2 be proper convex functions such that ri domh1∩
ri domh2 6= ∅. Then ∂(h1 + h2) = ∂h1 + ∂h2 for all x.

Proof. This follows from Theorem 23.8 Rockafellar [1970].

A.3. Polyhedral functions.

Definition A.12. A polyhedral convex set is a set which can be ex-
pressed as an intersection of finitely many half-spaces. A polyhedral convex
function is a convex function whose epigraph is polyhedral.
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From Theorem 19.1 Rockafellar [1970] we have that the epigraph of the
polyhedral function h : Rd → R has finite number of extremal points and
faces. We call projections of extremal points the knots of h and projections
of the nonvertical d-dimensional faces the facets of h. Thus the set of knots
and the set of facets of polyhedral function are always finite. Moreover, by
Theorem 18.3 Rockafellar [1970] the knots are the extremal points of the
facets. Finally, let {Ci} be the set of facets of a polyhedral function h then:

domh =
⋃
i

Ci

ri(Ci) ∩ ri(Cj) = ∅,

and on domh we have h = max(li) where li are linear functions. For each
Ci there exists li such that:

Ci = {x |h(x) = li(x)}.

Lemma A.13. Let f be a polyhedral convex function and x ∈ domh then
∂h(x) 6= ∅.

Proof. This follows from Theorem 23.10 Rockafellar [1970].

Lemma A.14. For the set of points x = {xi}ni=1 such that xi ∈ Rd

and any point p ∈ Rn consider a family of all convex functions h with
evx h = p. The unique maximal element Upx in this family is a polyhedral
convex function with domain domUpx = conv(x) and the set of knots K ⊆ x.

Proof. Points (xi, pi) and direction (0, 1) belong to the epigraph of any
convex function h in our family and so does convex hull U of these points and
direction. By construction U is an epigraph of some closed proper convex
function Upx such that domUpx = conv(x), by Theorem 19.1 Rockafellar
[1970] this function is polyhedral, by Corollary 18.3.1 Rockafellar [1970] the
set of its knots K belongs to x and since epi(Upx) = U ⊆ epi(h) we have
h ≤ Upx . On the other hand, since (xi, pi) ∈ U we have

pi = h(xi) ≤ Upx(xi) ≤ pi

and therefore Upx(xi) = pi which proves the lemma.

Lemma A.15. For the set of points x = {xi}ni=1, convex set C such that
xi ∈ ri(C) and any point p ∈ Rn consider a family of all convex functions h
with evx h = p and C ⊆ domh. Any minimal element Lpx in this family is a
polyhedral convex function with domLpx = Rd. For each facet C of Lpx, ri(C)
contains at least one element of x.
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Proof. For any function h in our family let us consider the set of linear
functions li such that li(xi) = h(xi) = pi and li ≤ h and which correspond
to arbitrarily chosen nonvertical support planes for epi(h) at xi. Then L =
max(li) is polyhedral and since lj(xi) ≤ h(xi) = pi we have L(xi) = pi. We
also have domL = Rd. If the interior of any facet Ci of L does not contain
elements of x we can exclude corresponding linear function li from maximum.
For the new polyhedral function L′ = maxj 6=i lj we still have evx L

′ = p.
Now, we repeat this procedure until interior of each facet contains at least
one element of x and denote the function we obtained by Lpx. If a closed
proper convex function h is such that evx h = p and h ≤ Lpx, then consider
for any facet Ci and corresponding linear function li we have h ≤ li on Ci
and the supremum of h on the convex set Ci is obtained in interior point
xj ∈ x. By Theorem 32.1 Rockafellar [1970] h ≡ Lpx on Ci. Thus h ≡ Lpx and
Lpx is the minimal element of our family.

Lemma A.16. For linear function l(x) = aTx + b the polyhedral set
A = {l ≥ c} ∩Rd

+ is bounded if and only if all coordinates of a are negative.
In this case, if b ≥ c the set A is a simplex with vertices pi = ((c− b)/ai)ei
and 0, where ei are basis vectors. Otherwise, A is empty.

Proof. If coordinate ai is nonnegative then the direction {λei}, λ > 0
belongs to the recession cone of A and thus it is unbounded. If all coordinates
ai are negative and b ≤ c the set A is either empty or consists of zero
vector 0. Finally, if ai are negative and b > c then for x ∈ A we can define
θi = aixi/(c− b) > 0. Then 1 ≥

∑
i θi and x =

∑
i θipi, which proves that A

is simplex.

A.4. Strong convexity. Following Rockafellar and Wets [1998] page
565 we say that a proper convex function h : Rd → R is strongly convex if
there exists a constant σ such that:

h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y)− 1
2
σθ(1− θ)‖x− y‖2(A.11)

for all x, y and θ ∈ (0, 1). There is a simple characterization of strong
convexity:

Lemma A.17. A proper convex function f : Rd → R is strongly convex
if and only if the function f(x)− 1

2σ‖x‖
2 is convex.

Since we need a more precise control over the curvature of a convex func-
tion we define a generalization of strong convexity based on the characteri-
zation above:
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Definition A.18. We say that a proper convex function h : Rd → R
is G-strongly convex if there exists a point x0, a positive semidefinite d× d
matrix G and a convex function q such that:

h(x) =
1
2

(x− x0)TG(x− x0) + q(x) for all x.(A.12)

Obviously, strong convexity is equivalent to σI-strong convexity where I
denotes the d× d identity matrix. Note that the definition does not depend
on the choice of x0.

Definition A.19. We say that a proper convex function h : Rd → R is
locally G-strongly convex at a point x0 if there exist an open neighborhood
of x0, a positive semidefinite d × d matrix G and a convex function q such
that (A.12) holds for any x in this neighborhood.

We can relate G-strong convexity to the Hessian of a smooth convex
function:

Lemma A.20. If a proper convex function h : Rd → R is continuously
twice differentiable at x0 then h is locally (1−ε)∇2h-strongly convex for any
ε ∈ (0, 1).

The last result suggests the following definition:

Definition A.21. For a proper convex function h : Rd → R we define
a curvature curvx0

h at a point x0 as:

curvx0
h = sup

G∈SC(h;x0)
det(G)(A.13)

where SC(h;x0) is the set of all positive semidefinite matrices G such that
h is locally G-strong convex at x0.

Lemma A.20 implies that:

Lemma A.22. If a proper convex function h : Rd → R is continuously
twice differentiable at x0 and Hessian ∇2h(x0) is positive definite then

curvx0
h = det(∇2h(x0)).(A.14)
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NOTATION

R = (−∞,+∞)
R = [−∞,+∞]
R+ = [0,+∞)
R+ = [0,+∞]
V (x) =

∏d
k=1 xk, x ∈ Rd

+

C = {f : Rd → R | f closed proper convex function}
D = {p : Rd → R | p density}
G(h) = {h : | g ∈ C, h ◦ g ∈ D}
Lng = Pnh ◦ g
evx f = (f(x1), . . . f(xn)), xi ∈ Rd

supp(f) = {x | f(x) 6= 0}
δ(· |C) = ∞ · 1Cc + 0 · 1C
levy g = {x | g(x) ≤ y}
µ[S] = Lebesgue measure of S
{f S a} = {x ∈ X | f(x) S a}
B(x0; r) = {x : ‖x− x0‖ < r}
BH(x0; r) = {x : (x− x0)TH(x− x0) < r2}
curvx h = curvature of a convex function h at a point x
ri(A) = the relative interior of the set A
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