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UNIFORM DONSKER CLASSES OF FUNCTIONS

By ANNE SHEEHY! AND JON A. WELLNER?

Eidgendossiche Technische Hochschule and University of Washington

A class % of measurable functions on a probability space (A, A, P) is
called a P-Donsker class and we also write % € CLT(P), if the empirical
processes X2 = yn (P, — P) converge weakly to a P-Brownian bridge Gp
having bounded uniformly continuous sample paths almost surely. If this
convergence holds for every probability measure P on (A, A), then & is
called a universal Donsker class and we write % € CLT(M), where M = {all
probability measures on (A, A)}. If the convergence holds uniformly in all
P, then ¥ is called a uniform Donsker class and we write &€ CLT,(M).
For many applications the latter concept is too restrictive and it is useful to
focus instead on a fixed subcollection & of the collection M of all probabil-
ity measures on (A, A). If the empirical processes converge weakly to Gp
uniformly for all P € &, then we say that & is a $-uniform Donsker
class and write & € CLT,(£). We give general sufficient conditions for the
Z-uniform Donsker property and establish basic equivalences in the uni-
form (in P € &) central limit theorem for X, including a detailed study of
the equivalences to the ‘‘functional’ or “process in n’’ formulations of the
CLT. We give applications of our uniform convergence results to sequences
of measures {P,} and to bootstrap resampling methods.

0. Introduction. Limit theory for empirical processes has grown and
developed enormously in the past ten years. Most of the recently developed
central limit theorems for general empirical processes are for a fixed underly-
ing probability measure P on the given sample space (A, A). Dudley (1987) has
investigated classes of functions & for which the central limit theorem holds
for all probability measures P on (A,A), and calls such classes universal
Donsker classes. Giné and Zinn (1991) have studied classes % for which the
central limit theorem holds uniformly in all P on (A, A) and call such classes
uniform Donsker classes. For many applications in statistics, uniformity of the
convergence in P is of interest and importance, but requiring convergence
uniformly in all P is too restrictive. Instead, it is useful to focus on some fixed
subcollection & of all measures and ask that the convergence be uniform over
P in this subcollection. We call such a class of functions & a P-uniform
Donsker class.
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Our goal in this paper is to study various equivalent conditions for the
P-uniform Donsker property of a class of functions % and to indicate briefly
how the properties of such classes can be exploited to study the behavior of
bootstrap methods.

Here is how the paper is organized: We begin in Section 1 with a review of
equivalences in the central limit theorem (CLT) for a fixed P. Most of the
results in this section are known, but we make one addition to the list of
equivalent formulations. Section 2 presents corresponding equivalences in the
P-uniform CLT and useful sufficient conditions. Section 3 gives applications
to sequences of probability measures {P,}, with regularity properties of the
empirical measure as corollaries.

Section 4 contains applications to bootstrap methods in statistics. We show
that for certain Z-uniform Donsker classes %, the bootstrap works for the
empirical process if the bootstrap sample size m and the original sample size n
both go to infinity (in an arbitrary way). Proofs for the main results in Section
2 are presented in Sections 5 and 6.

1. P-Donsker classes .. This section introduces notation and terminol-
ogy and reviews what is known about equivalences in the definition of the
central limit theorem (CLT) for the empirical process for a fixed probability
measure P.

Let P be a fixed probability measure on the measurable space (A, A). Let
Gp be a P-Brownian bridge process and let W, be a P-Brownian motion
process; that is, G, and W, are Gaussian processes indexed by L?(A, A, P) =
L?(P) with mean zero and covariances

Cov(Gp(f),Gp(g)) = P(fg) — P(f)P(g) forall f,g < L*(P),
Cov(Wp(f),Wp(g)) = P(fg) forall f,g € L*(P),
where P(f) = [fdP. We let

pi(f,8) = E(Gp(f) — Gp(8))" = Varp( f(X) — g(X))
and

e2(f,8) = E(Wp(f) — Wp(g))" = En(f(X) — 8(X))*,

where X has distribution P. Gp is coherent if each sample function Gp(-Xw)
is bounded and uniformly continuous on % with respect to pp; and a collec-
tion Fc L% P)is P-pregaussian (& € PG(P)) (earlier this was called G, BUC)
if and only if a coherent Gp process exists. Let

(Q,3,Prp) = (A°, A", P*) x ([0,1],B, Lebesgue),

and let X, X,,... be the coordinate functions on (A”,A”, P*) so that
X,, X,,... are ild P. The empirical measure of the first n X’s is

n
-1
Pn n ZSXL-’
i=1
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and the empirical process X, = X% is
XP = yn (P, - P).
Of course for any finite collection { fi, ..., f,,} < L*(P),
(Xn( f1)s- - X( fm)) —d (GP( f1)s---Gp( fm))
~ N, (0, (P(fif;) = P(FIP(1)),

but our main concern in this section is the central limit theorem for larger
collections % c L?(P) for a fixed P. We assume that sup; . #lf(x) — P(f)| <
for all x € A; then we view X, as an element in [*(%), the space of all
bounded functions from & to R. We let C(%,pp) denote the set of all
functions x in [®(%) that are uniformly continuous with respect to pp.

Here are several definitions related to the central limit theorem for X,,.

DEeFINITION 1.1. %€ CLT(P) (or & is P-Donsker) if & is P-pregaussian
and X, = X ~ Gp in I(F).

Here the weak convergence = is in the sense of Hoffman-Jgrgensen
(1984); see, for example, Anderson and Dobrié (1987), Anderson (1985), Dudley
(1985) and van der Vaart and Wellner (1990):

E*h(X,) = Eh(X) forall h € C,(I*(F)),
where E* denotes the upper (or outer) integral computed under Pr, and
C,(1°(%)) is the set of all bounded || || s#-continuous real-valued functions on
(). We suppress the dependence of X, = XF on P since it is fixed.
We now let
F'={f-gfecF), (F)V={f-8"fsgecT})
and for a pseudometric d on L?(P) and & > 0,
- F(5,d)=((f.8) € Fx F:d(f,g) <5}
Then for any real-valued function ¢ on %,

Wls= sup lv(F), Wlswa=  sup  |w(f) - v(g)l.
fe F (f,8)e F'6,d)

DeFINITION 1.2. We say that {X,,}, . is asymptotically equicontinuous with
respect to d on &, or € AEC(P, d), if and only if for every £ > 0,

lim lim sup Pr{lIX, [l#s,q) > €} = 0.
810 n—o

DEFINITION 1.8. We say that % admits a weak gaussian approximation of

. the empirical process X, or & WGA(P), if and only if there exists a

sequence of coherent Gp processes X, X®, ... such that for every & > 0,
lim Pri{IX, — X®lls> &} = 0.

n—oo
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DErInITION 1.4. We say that & admits a weak functional gaussian approx-
imation of the empirical process(es) and write & € WFGA(P), if and only if
there exists a sequence of independent coherent G, processes Y;,Y,,... such
that for every ¢ > 0,

m(P, —P) - LY,
i=1

>£}=0.
F

If the convergence to zero in probability is replaced by convergence in L, for
some p > 0, then we say that & admits an L, (Q, 3, Prp)-functional gaussian
approximation and write & € L,FGA(P); that is,

lim Pr}{n~'/? max
n—o m<n

m p
m(Pm_P)_ZYL =0.
i=1

n~1/2 max
m<n

lim E}

n— o

B

Another gaussian process with which we will be concerned is the P-Kiefer
process Z p; it is a gaussian process indexed by [0, 1] X L2(P) = I x L?(P) with
mean zero and covariances

Cov(Zp(s, f),Zp(t,8)) = (s At)(P(fg) — P(f)P(8))
for all f, g € L*(P).

A class &< L%(P) will be called a functional pregaussian class, and we write
& < FPG(P) if there is a version of Z, with bounded and uniformly pp-con-
tinuous sample functions on %=1 X F; here p((s, f),(t,g) =1s —t| v
pP( f » 8 )

For our last definition, we let I = [0, 1] and define the sequential empirical
process Z,: I X & — R by

[ns]

1
Zi(s: 1) = 7= L (F(X) = P(f)

[ns]
= Pg = P)(), (s, ) €IX T
Thus Z, can be regarded as an element of I*(I X ) = [(F).

DEFINITION 1.5. We say that 7 satisfies the functional central limit theo-
rem_and write &€ FCLT(P) if and only if <€ FPG(P) and Z, = Z in
I(F).

The following theorem is due to Dudley (1984), (1985), Dudley and Philipp
(1983) and Hoffman-Jgrgensen (1984); also see Andersen and Dobrié (1987)
‘and Giné and Zinn (1986), Theorem 1.3. Although (E) and (F) are clearly very
closely related, we have not seen it stated before with the Z, part (statement
F) included. ‘



UNIFORM DONSKER CLASSES 1987

THEOREM 1.1. The following are equivalent:

(A) ¥ CLT(P).

(B) ¥ AEC(P, pp) and F is P-pregaussian.

(BY ¥ € AEC(P, pp) and & is pp-totally bounded.
(C) F € WGA(P).

(D) ¥ WFGA(P).

(B) ¥ € L,FGA(P) forall 0 <p < 2.

(F) < FCLT(P).

Proor. All the conditions except (B) imply that & is P-pregaussian by
definition. Dudley [(1984), Theorem 4.1.1] proves (B) equivalent to (D). The
equivalence of (A), (B) and (D) was shown by Dudley [(1985), Theorem 5.2,
page 158]. Since (D) implies (C) trivially (take X™ = n=1/2%"_Y,) and (C)
implies (B) [by Dudley’s (1984), Theorem 4.1.1 proof], (C) can be included in
the list. (E) implies (D) trivially, while (D) implies (E) was proved by Dudley
and Philipp [(1983), Theorem 1.3, pages 525-526]. Note that (F) implies (A)
trivially.

It remains only to show that (E) implies (F). We will prove this by noting
that (F) is equivalent to % € FPG(P) and

(a) sup |E*h(Z,) — Eh(Z)| >0 asn — o,
heBL,
where
BL, = BL(%) = {h: I"(F) - R; Al v IRl < 1},
IRl = sup{|2(x)[: x € 1°(F)},
|h(x) — k(y)I
Ikl = SUP—'_)—-
xry X =yl
See Dudley [(1990), Theorem B] or van der Vaart and Wellner [(1990), Corol-

lary 1.5].

We first show that %€ FPG(P). Since %€ PG(P), (¥, pp) is totally
bounded [see, e.g., Dudley (1984), page 28] and hence M? = = sup;e s pe(f,0)
= sup;c #(P(f?) — (Pf)?) < ». Furthermore, there exist both a sample con-
tinuous Brownian motion process B indexed by I = [0, 1], and a pp-uniformly
continuous Gp which we may take to be independent. Define Z;, = Z, on
Ix F= F and Zy(s, f) = Gp(f) + MB(s) for (s, f) € X F= &. Then, Z,
has bounded and pp-uniformly continuous sample functions on & and, for

(s, ), (t,8) € &,
E(Zy(s, f) - Z(t,8))"
= (s At)Varp(f—g) + (t —s) Varp(g) + (s — 2) Varp(f)
<Varp(f—g) + It — sIM?
= E(Zy(s, ) — Zo(t, 8))".
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It then follows from a gaussian comparison theorem due to Marcus and Shepp
[Jain and Marcus (1978), page 145, and, for a convenient statement, Giné and
Zinn (1986), Theorem 4.4, pages 73 and 74, where (4.7) should read (4.10)]
that Z, = Zp can be chosen to be bounded and pp-uniformly continuous on
F=1x F, or F FPG(P).

Now we prove (a). Let

[ns]
7 (s, f) = % Y Y(f) for(s,f)elx F= F.
i=1

Then
k
(b) Iz, - 2| g= n='/? max “k(Pk -P)- ¥ v“
k<n i=1 y
so that
sup |Ejh(Z,) — ER(Z™)|
heBL,
<Ejl|z, - 2|4
(c) )
=E§(n"/2rglax k(P,—P) - 2, ) [by (b)]
<n i=1 F

-0 [by E with p = 1].

But Z™ = Z in I*(¥) follows easily from Fernique [(1985), Corollary 2.2] and
this in turn implies

(d) lim sup |Eh(Z"™) — Eh(Z)| - 0.
n—® peBL,

Combining (c) and (d) yields (a) and completes the proof. O
The metric e, is sometimes useful. For it the following is straightforward:

PropPosITION 1.1. (&, ep) is totally bounded if and only if both (¥, pp) is
totally bounded and ||Plle= sup{|P(f)l: f€ F} < .

2. Z-uniform Donsker classes . Now let & be a collection of proba-
bility measures on the measurable space (A, A). For each P € £, Gp (or XF)
will denote a P-Brownian bridge process, W, will denote a P-Brownian motion
process and Z, will denote a P-Kiefer process.

Our goal in this section is to establish a result like Theorem 1.1, but with
the convergence in the central limit theorem uniform over all P € &. There-
fore we first need uniform in P € & generalizations of the definitions in
Section 1. We begin by generalizing the notion of a P-pregaussian class
Fc LXP).
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DErFINITION 2.0. A class &< L%(A,A, P) for all P € & will be called a
Z-uniform pregaussian class and we write &€ PG, (&) if and only if the
P-Brownian bridge processes Gp(fXw), f€ &, w € Q, P € & can be chosen
so that

(2.1) lim sup Prp{lGpll&> A} = 0;
A >0 PE.@
and, for every ¢ > 0,
(2.2) lim sup Prp{lGplls s, pp > €} = 0.
610 pep

If (2.1) and (2.2) hold but with p, replaced by e, in (2.2), we write F e
PG (2, ep). A class < L% A,A, P) for all P € & will be called a P-uniform
functional pregaussian class and we write &< FPG (&) if the P-Kiefer
processes Zp(s, fNw), (s, f) €I X F, w € Q, P € & can be chosen so that
(2.3) lim sup Prp{lZplls> A} = 0;
Ao® pep

and, for every ¢ > 0,

24 li P Zollss 50 > €f = 0.

29 iy s P11 > o

Here %=1 X & and

F'(8, pp)
={((5, 1), (t,8)) € FX F: fp((5, ) (t,8)) = It — 5| V pp(f,8) <5).

As noted by Giné and Zinn (1991), by Borell’s (1975) inequality [or, more
conveniently, its version for expectations given by Pisier (1986)], (2.1) and (2.2)
are equivalent to
(2.5) sup EllGpllls< » and lim sup ElGplss,,p = 0

Pe# 810 pep
for any r > 0.

Note that if & contains just a single measure P, then %€ PG, ({P)) just
means that % is a P-pregaussian class in the terminology of Dudley (1987)
and Giné and Zinn (1986), On the other hand, if &= M = {all probability
measures on A}, then Fe PG, (M) will be abbreviated to just % € PG,; this
is written as % € UPG in Giné and Zinn (1991). If M, = {P € M: P has finite
support}, then &€ PG,(M,) is written as %€ UPG,; in Giné and Zinn
(1991).

Now we give the uniform in P € & versions of Definitions 1.1-1.5. Since
the dependence on P is now important, we will now emphasize it by writing,
for example, X? and Z% rather than X, and Z, as in Section 1.

DEerFiNITION 2.1. We say that & € CLT(P) uniformly in P € & and write
. F€ CLT (&) (or, & is P-uniform Donsker), if and only if both:
(i) € PG,(L); and )
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DEFINITION 2.2. We say that {X%},., is asymptotically equicontinuous
with respect to dp on % uniformly in P € & and write ¥ € AEC (£, d,p) if
and only if for every ¢ > 0,

(2.6) (lsim lim sup sup Pr{lIX2ll 5,4, > €} = 0.

10 no0 pep

Here we have in mind usually d, = pp or sometimes dp = ep.

DeriNITION 2.3. We say that % admits a weak gaussian approximation of
the empirical process XP uniformly in P € &, or € WGA (&), if and only
if € PG,(F) and for each P, there exists a sequence of coherent Gp
processes X, X®, . such that for every ¢ > 0,

(2.7) lim sup Pri{||XZ — X™| &> ¢} = 0.
&P

n—o pc

DErFINITION 2.4. %€ WFGA (&), or & € WFGA(P) uniformly in P € 2,
if and only if F < PG,(&) and for each P € &, there is a sequence of

independent coherent Gp-processes Y;, Y,, ... such that, for every ¢ > 0,
(2.8) lim sup Prj.!‘{n’l/2 max |m(P,, — P) — Y, >£} =0.
n—o® peg m=<n i=1 F
If instead
m P
(2.9) lim sup Ef|n~Y? max||m(P, — P) — ), Yl” =0
no® pep ms<n i-1 &

for some p > 0, then we say that € L ,FGA ,(£).

DeriniTION 2.5. % € FCLT, (&), or & € FCLT(P) uniformly in P € &, if
and only if both (i) &€ FPG (£); and (i) lim, . suppc 5 dp«(ZF,7,) =
lim, ,,, SUpp ¢ & SUP, < g1 ()| E*R(Z)) — ER(Zp)| = 0.

Let F be a measurable envelope function for .%; that is, F' is measurable
and |f(x)| < F(x) for all f€ & and x € A. Thus F(x) = (sup; ¢ & f(x))* for
all x € A, where h* is the least measurable function dominating a given
function %; see, for example, Dudley (1985) or van der Vaart and Wellner
(1990).

The following theorem is a uniform in P analogue of Theorem 1.1:

THEOREM 2.1. Suppose that & has envelope function F which is P-uni-
formly square integrable:

lim supP(leleA]) =0.
A—> PeXH
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Then the following are equivalent:
(A) Fe CLT(P).
(B) Fe AEC (P, pp) and F€ PG (P).
(BY € AEC,(Z, pp) and (F, pp) is totally bounded uniformly in P.
(C) F€ WGA ().
(D) ¥ € WFGA ().
(B) € L,FGA (&) forall 0 <p < 2.
(F) ¥ < FCLT (£).

Proor. Our proof will proceed as follows:

A) —B) > D)« E)—F)
N AN Y
@By (©

The implications (E) implies (D), (D) implies (C), and (F) implies (A) are all
trivial. The proof that (E) implies (F) is similar to the proof of the same part of
Theorem 1.1, using the Lipschitz property of the bounded Lipschitz functions.
[Here we need to show that & € PG, (&) implies ¥ € FPG (&) also; we defer

this proof to Section 5.]
To see that (C) implies (B), let N(¢) be so large that

(a) sup Pri{|XZ — X®| g>e/3} <e/2, n=N(e).
PeZ

Since ¥ € PG, (&) and X™ ~ G, for each n and P € &, there is a 6 = 8(¢)
such that

(b) sup Prp{l|X®|FG,opm > £/3} < e/2.
Pe#

But

(c) IXEll55, 07 < 2] XE = XP et IXP| 7765, 0,

so combining (a), (b) and (c) shows that (B) holds.

Now we show that (A) implies (B). For fixed P, this is proved via the
portmanteau theorem; see, for example, Giné and Zinn [(1986), pages 60 and
61, and Andersen and Dobrié¢ (1987), Remark 2.13, page 168, or van der Vaart
and Wellner (1990), Lemma 1.3, for the validity of the portmanteau theorem
in the Hoffman-Jgrgensen weak convergence theory]. Here we argue directly,
taking care to obtain the needed uniformity in P.

Suppose that A holds and let ¢ > 0 and & > 0. Then the set

Fy . ={x €I”(F): lxll5,pp = €}

is'closed and

G=(xei(F)lx—F ls<e/4)



1992 A. SHEEHY AND J. A. WELLNER

is open. Further, x € G implies x € F; , , or G C F;_ ,. Now let ¢(u)=
{1 -u)A1}vOfor ueR and h(x) = ¢p(4llx — F; ll5/¢), so that

(d) 1F5’5 <h<lg< IFMM.
Then we have

limsup sup Prj{X’ e F; }

n—o PeX
< limsup sup EfR(XE)  [by (d)]
n—w PeP
(e) = limsup sup (Ejh(XF) — Eh(Gp) + Eh(Gp))
n—owo PeP
<0+ sup Prp{Gp € F;,,} [by(A)and(d)]
Pe#
= sup Prp{llGpllss,pp = €/4} = 0  [as 510],
pPe&
and hence (B) holds.

As we show in (g) below, ¥ PG,(&) implies that (&, pp) is totally
bounded uniformly in P € &, so (A) implies (BY. To show that B’ implies B,
we need to show that (B) implies & € PG, (&?). By the uniform in P € &
multivariate CLT, Theorem 5.1, for any finite subset G C %, we can pass from
X,, in the condition for # € AEC (&, p) to a similar statement for Gp; that is,
for 6 < 8(¢),

sup Prp{llGpllas, opy > £/2) < 2.

pPe®
Since 8(¢) does not depend on G or P € &, we can let G increase to a
countable dense set H, ¢ & for L?(P) and thereby obtain

sup Prp{llGpllmyes, ppy > 26} < 22
PeZ

for 8 < 8(¢). Thus Gp defined for f € & by
lim{Gp(h): h € Hp, pp( f, k) 0}

exists a.s. and defines a (family of) version(s) of G, satisfying (2.2).

To prove that (2.1) holds, let %(8) be a §-net for (F, pp) with & = #(F(5))
independent of P € & by the uniform in P € & total boundedness of (F, pp).
Also, note that the -uniform square integrability of F' implies that there is a
constant M satisfying supp . » P(F?) < M2 < . Let II; denote a map from
& to a nearest point in #(8). Then, since

||GP||ys(|GP — Gpo n" + 1Gpll 55y < 1Gpllss. ppy + Gl 559,
s g
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it follows, for 0 < £/2 < A, that
sup Prp(llGplls> A)
PP

£ t4
sup PI'P{”GP“y'(g’pP) > 5} + sup PrP{IIGpllgr(a) >\ - E}

= PeZ PeP
EM?
< % + [by(2.2) for&sb‘(i)]
(r = (¢/2)) 4
<eg

for A > /2 + (2kM?/¢)'/?, s0 (2.1) holds and ¥ € PG ().

It remains only to prove that (B) implies (D) and that (D) implies (E).

The proof that (B) implies (D) (given that & € PG, (&) and the envelope F
is P-uniformly square integrable) is lengthy, but follows the argument used by
Dudley (1984) to prove the corresponding part of Theorem 1.1, after prepara-
tion in the form of a uniform extension of the results of Philipp (1980) to
handle the finite-dimensional laws. The only major modification of Dudley’s
(1984) proof which we use here is the following: We argue that % < PG (&)
implies that (%, pp) is totally bounded uniformly in P € &. By the Sudakov
(1971) minorization theorem [see, e.g., Giné and Zinn (1986), page 73] and
(2.5),

(f) o> sup ElGplls= Csup e(log N(e, F, pp))/> forall e > 0
PeP- Pe&

for some constant C, and hence there is a constant K < » such that

K
(g) sup log N(&, &,pp) < —
PeP €
for all £ > 0, and this gives the total boundedness of (#, pp) uniformly in
Pe .
The proofs of (B) implies (D) and of (D) implies (E) are given in Sections 5
and 6. O

To provide sufficient conditions for the Z-uniform central limit theorem,
our methods of proof will need & to satisfy enough measurability so that, for
each P € Z, [X,,|lss,0p) is completion measurable and Fubini’s theorem can
be applied to [IX7_,Y;3x 5,0, Where the Y; are iid real-valued symmetric
rv’s independent of the X,’s and defined on ([0, 1], B, Lebesgue). In the termi-
nology of Giné and Zinn (1986), we require ¥ € NLDM(P) for each P € &.
When this holds, we say & is $-measurable or & NLDM(X). If & is M-
measurable, we abbreviate this to simply saying that & is measurable. It is
well-known that & is measurable if it is countable, or if the empirical
" processes X% are stochastically separable or if % is image admissible Suslin
[see, e.g., Dudley (1984), Section 10.3].

If we insist on uniformity of convergence over all P € M, then of
course ¥ CLT(P) for all P M or & is universal Donsker in the
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terminology of Dudley (1987). As shown by Dudley (1987), this implies that
sup; ¢ o diam(f) < « [where diam(f) = sup,., f(x) — inf, ., f(x)]. For
classes of this type, Giné and Zinn (1991) used Gaussian comparison methods
to prove the following beautiful characterization of classes & satisfying the
CLT, = CLT,(M). Recall that M = {all probability measures on A} and M, =
{P € M: P has finite support}. ‘

THEOREM 2.2 [Giné and Zinn (1991)]. Suppose that & is measurable. Then
€ PG,(M;) implies ¥ € CLT,.

Note that CLT, implies &€ PG,(M) c PG,(M/), so the converse is triv-
ially true.

Combining the Giné and Zinn Theorem 2.2 with Theorem 2.1 shows that if
&€ PG,(M;) and is measurable and, with ¢ = 1/sup; . p(diam(f)), ¢, =
inf, f(x), & = {c(f — c;): f € F}, then all of (A)~(E) of Theorem 2.1 hold for
& with #=M and hence for & with &= M. In particular, (A)-(E) of
Theorem 2.1 hold with =M if &= {1,: C € C}, where C is a measurable
Vapnik—Chervonenkis class of subsets of A.

When the function class % has sup; . &(diam(f)) unbounded, then the
uniform Donsker property cannot hold for all measures M, but it may still
hold for a very substantial subcollection &Zc M. To state our first result in
this direction, for r > 0, let NS (e, &), € > 0, denote Pollard’s (1982) (rth
power) combinatorial entropy of # relative to an envelope function F of &;
also see Dudley [(1984), Chapter 11]. The following definition is due to Pollard
(1982).

DerFINITION 2.6. We say that (&, F) is sparse (or & is F-sparse) if and
only if

(2.10) [ (tog N® (e, 7)) " de < .
0

By extending Pollard’s (1982) argument, Sheehy and Wellner (1988) proved
the following theorem for classes of functions satisfying (2.10).

THEOREM 2.3. Suppose that & is P-measurable and satisfies: (1) F is
P-uniformly square integrable. (ii) (%, F) is sparse. Then all of (A)-(F) in
Theorem 2.2 hold.

Theorem 2.3 will be proved in the second half of Section 5.

Note that for uniformly bounded classes % with F' = 1, all the classes . in
Dudley’s (1987) Theorem 2.1 and Figure 1 except (1.4), (1.4)°° and (1.6) (and,
of course, universal Donsker itself) satisfy (ii) in Theorem 2.3, so Theorem 2.3
shows that all of those classes are, in fact, M-uniform Donsker as well as
universal Donsker. Giné and Zinn (1991) show that Dudley’s classes (1.4)
(F={f}};., with diam(f;) = o((log j)~'/?)) satisfy &€ PG,(M;) and hence
€ CLT, by Theorem 2.2.
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Also note that Theorem 2.3 allows classes % for which sup, . (diam( f)) is
infinite; for example, %= {Flc C € C} satisfies both (i) and (ii) if the
function F satisfies (i) and C is any measurable VC class of subsets of A, even
though sup. . ¢ diam(F1.) may be infinite if F is unbounded.

Massart [(1986), Theorem 5.10, page 411], has established rates of conver-
gence for (C) in Theorem 1.1 under growth rate hypotheses on N®(¢, %) and
additional moment hypotheses on the envelope function F. In view of Theo-
rem 2.3 it is quite plausible, although not yet proved, that the same rates apply
to (C) in Theorem 2.1.

3. {Pn}-Donsker classes #. Now we consider sequences of measures on
(A,A). Foreach n = 1,2, ..., we suppose that X,-..,X,,, are row indepen-
dent, iid P,, (A-valued) random variables and m = m(n) is any sequence of
integers T® as n — . We assume that the resulting triangular array is
defined on a common probability space

(Q,3,Pr)
(3.1) = (Am(l)’Am(l)’ le(l)) X oo X (AM(n)’Arn(n), an(”))
- X ([0,1],B, 1),

where A denotes Lebesgue measure. We define the empirical measure P,, of
the m random variables in the nth row of the array by

(3.2) rgn:

1
m
and the empirical process by
(33) Xin EALE M(Pm - Pn)

Suppose that a collection of real-valued functions & on A is P-uniform
Donsker for a collection & of probability measures on A as defined in Section
2; ¥ € CLT (Z). Then if {P,} is any sequence in &, we deduce from Theorem
2.1 that, for example: For every ¢ > 0,

(3.4) lim Pr{||XZ - G¢"| > ¢} = 0,

n—w
where G§™ = Gg"™) is a P,-Brownian bridge process for each n > 1, even if
the sequence {P, } does not converge. If {P,} converges in one of severa.l senses
to a measure P,, then we can replace G(’”) in (3.4) by a sequence G of
P,-Brownian bridges and deduce that XZ- = Gp,- Our goal in this section is to
make this more precise.

DEeFINITION 3.1. € CLT({P = o) (or F is (P}, . o-Donsker) if and only
if & is P,-pregaussian and X%» = X, ~ Gp, in I"(F) for some fixed probabil-
ity measure P,,.
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For a given class &, set G = U 92 U (¥)2 Note that for P,Q € & and
f.g €

(3.5) le2(f.g) — e2(f,8)| <IIP - Qlig.

Here is a basic theorem of the type we need.

THEOREM 3.1. Suppose that:

() Fis {P,} — uniformly square integrable:

lim limsupP,(F*15,,)) = 0.

Ao n—o

(i) |1P, — Pyllg = 0 as n > .
(iii) (&, pp,) is totally bounded and ¥ < AEC({P,}, p): That is, for every
e >0,
lim lim sup Pr;’fn{llxinlly,(a’pn) > z—:} =0,

510 5o
where ,(8,p,) = F'(8, pp ).
Then &€ CLT({P,},. ).

Now we can use the sufficient conditions given in Section 2 to verify
hypothesis (iii) for various classes %. The following corollary is a consequence
of Theorems 2.3 and 3.1:

CoroLLARY 3.1. Suppose that & NLDM(P,}) and that:

() Fis {P,}-uniformly square integrable.
(i) (&, F) is sparse; that is, (2.10) holds.
@iD) [P, — Pylle = 0 as n — .

Then &€ CLT(P,}, . ).

While the preceding corollary handles unbounded classes of functions under
a Pollard type entropy condition, the following corollary assumes the uniform
Donsker property and therefore yields somewhat more for classes & with
sup; ¢ s-(diam( f)) finite.

COROLLARY 3.2. Suppose that & is measurable and that:
() e CLT,.
() 1P, — Pyllc = 0 as n — .
Then &€ CLT({P,},. ).
Proor. We first need a lemma concerning normal distributions in R<. Let

m and d g+ denote the Prohorov and bounded Lipschitz metrics for probability
measures; see, for example, Dudley [(1989), Section 11.3].
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LEmmA 3.1.  Suppose that 2, = (0;;) and 3 =(5, ;) are two d X d covari-
ance matrices on R® and let N(0,3), N(O 3) be the correspondzng mean zero
gaussian laws. Then

7(N(0,3), N(0,3)) < M,lI> — 3i7* < M,|Is, — SI/*
and
dpr+(N(0,3), N(0,3)) < C,lI% - SII* < C,lIs — SI%,

where M, M, C,;, C, are constants depending only on d and

d
I5 — 3l = max o, — T, 5 —3l= max |o;—a;|
”1 1<j<d lgll ij l]l’ ” ”oo lsi’jsdl ij LJ|

Proor. This follows from Theorem 7 of Dehling (1983) (by using 1 +
llog x|"/? < constant x~/'2, x < 1) upon noting that dz;«(P,Q) < 2m(P, @),
where 7 denotes the Prohorov distance; see, for example, Dudley (1989),
Corollary 11.6.5, page 322. O

Proor orF THEOREM 3.1. First note that (ii) and (iii) imply that Fe
AEC({P,}, pp,); for every & > 0,

N N P, _
(a) lim lim sup Prt (Xl 55,y > &) = O
Now let & = {f,,..., f,} be any finite subset of % and let F, denote the laws

of (XPr( f1 XPH( fs) on R¢ Note that if 3, =(Covp(f, f}), 3=
(Covp(f;, fj)), then by (i) and (ii),

IZ, — 3ol < constant||P, — Pyllg — 0.

Hence it follows from Theorem 5.1 and Lemma 3.1 that 7(F,, N40,2,)) - 0
as n — «, where N(0,3,) is the law of (Gp(fy),...,Gp(fy)); that is, the
finite- dlmensmnal laws of XP converge to those of GP

(b) . X =, Xo ~ Gp,

But (a) and (b) together with total boundedness of (%, pp ) yield XPr =

~ Gp, by a standard argument; see, for example, Giné and Zinn (1986)
Theorem 1.8, (ii) implies (i), or Pollard (1989), Theorem 10.2. Furthermore, (a)
and (b) imply that % is P, pregaussian by the same argument as given for (BY
implies & € PG (&) in the proof of Theorem 2.1. O

Proor oF CorOLLARY 3.1. It suffices to check the hypotheses of Theorem
3.1: (i) and (ii) hold by assumption. By (i) and (ii) of Corollary 3.1, (i) and (ii) of
the hypotheses of Corollary 2.2 hold for #= {P,} and hence Corollary 2.2
* yields (iii) of Theorem 3.1. Theorem 8.1 then yields the conclusion. O

Proor oF COROLLARY 3.2. Agajn: we check the hypotheses of Theorem 3.1:
(i) holds trivially, since we can without loss of generality suppose that F' = 1.
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(ii) holds by assumption. But assumption (i) of Corollary 3.2 implies that
Z € CLT, and hence & € AEC,(M, p) by Theorem 2.1. Thus (iii) of Theorem
3.1 holds and the conclusion follows from Theorem 3.1. O

4. Applications to bootstrap and estimation. Now we examine some
of the consequences of the F-uniform Donsker theorems in Sections 2 and 3
for various versions of the bootstrapped empirical process.

To begin, suppose that X,,...,X,,... are independent and identically
distributed with distribution P on (A, A) and let

n
(4.1) P,=n"1) 8x
i=1
be the empirical measure of the first n X’s. Efron’s nonparametric bootstrap

(ENPB) proceeds by sampling from P? = P,(-, »): Suppose that X7,..., X?

are independent and identically distributed with distribution P on (A, A) and
let

m
(4.2) Pi=m' Y 85, X% (0)=Vm(Pi—P2).
i=1

Thus X7,..., X7 is the “bootstrap sample”’, PZ is the “bootstrap empirical
measure” and X? (o) is the “bootstrap empirical process.”

Giné and Zinn (1990) use Poissonization and symmetrization techniques
together with recent results of Ledoux and Talagrand [(1986), (1988)] to prove
the following theorem.

THEOREM 4.1 [Giné and Zinn (1990)]. Suppose that & < M(P). Then:
(A) The following are equivalent:

(i) P(F?) < w and &< CLT(P);

(ii) P* a.s., X} () = X} ~ Gp in I(F).

(B) The following are equivalent:

(i) Fe CLT(P),

(i) d g (X% (),Gp)-— 0 in Pr*.

In particular, if either & has P(F?) < » and (%, F) is sparse so that
Pollard’s (1982) CLT holds [see, e.g., Dudley (1984), Theorem 11.3.1] or if &
satisfies

['(og N&(e, 7, P))'/* de < =,
0

where NP(e, &, P) is the L*-entropy of & with bracketing [see, e.g., Dudley
(1984), Section 6.1] so that Ossiander’s (1987) CLT holds, then A.(i) holds, and
hence P~ as., X} (@) = X&'~ Gp in I°(F) by Theorem 4.1.A.

Giné and Zinn [(1990), page 852] say the main feature of their theorem,
“aside from its generality, is that no assumptions are made on local uniformity
(about P) of the CLT ... .” Our goal here is to briefly explore several related
results. We want to know if we can decouple the bootstrap sample size m and
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the original sample size n: Does the bootstrap empirical process still converge
if just m A n - ©? (Note that the Giné and Zinn, Theorem 4.1, sets m = n.)
Here we do make uniformity assumptions on &%. We then prove bootstrap
central limit theorems when m A n — o, which, as far as we know, have not
been proved in the setting of Theorem 4.1.

The methods developed in Sections 2 and 3 also have applications-to the
stability of bootstrap methods (i.e., when the underlying P depends on n with
P, converging to P); and to parametric or model-based bootstrap resampling
methods as suggested by Efron [(1982), Sections 5.2 and 5.3]. We intend to
elaborate on these elsewhere.

Here is a limit theorem for the bootstrap empirical process which allows
m — « and n — o in any way.

THEOREM 4.2 (A bootstrap limit theorem for & € CLT, with m # n). Sup-
pose that & is measurable and that & < CLT,. Then, for almost all sample
sequences X (o), ..., X,(w),..., X}, (0) = X§ ~Gpinl(F)asm An —> .

Proor. Suppose that & € CLT,. We first claim that it suffices to prove the
theorem for classes & that are uniformly bounded by 1; that is, such that
F(x) <1 for all x € A. To see this we argue as in Claim 1 of the proof of
Theorem 2.3 of Giné and Zinn (1991): %< CLT, if and only if &€ CLT,,
where F={f=c(f- ¢s): f€ &} for some ¢ # 0 and arbitrary finite con-
stants c¢,. Furthermore, X}, (w)= X§ in [*(¥) as. P” if and only if
X?# (w) = X} in () as. P”. Since & € CLT, implies that & is universal
Donsker, it follows from Dudley (1987) that sup,. s diam(f) < . Hence
taking ¢, = inf(f) and ¢ = {sup; c &~ diam(f )} ! yields a class of functions &
with0 <f< 1.

It remains only to prove the theorem for a class ¥ CLT, with 0 < f<1
for all f < %. We do this by verifying the hypotheses of Theorem 3.1: Since
F < 1, it follows that

P:(F?I[Fz)‘]) < Pr(:)(]'[lz)\]) =120

so P¥-uniform square integrability of F holds trivially for each fixed w. By
Theorem 2.1, ¥ € AEC,(M, pp). In particular, & € AEC, ({P2}, pp) for all w.
Furthermore, as in Giné and Zinn (1991),

IP, — Pll& >, 0 asn — .

Thus for P>-a.e. w, the hypotheses of Theorem 3.1 are satisfied by % for the
sequence {Py} of probability measures on (A, A). Hence the conclusion follows
. from Theorem 3.1 with P, =P O

Here is a variant of the previous theorem for classes % which may not have
sup ¢ g(diam f) < .
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THEOREM 4.3 (A bootstrap limit theorem for sparse classes & with m # n).
Suppose that & is measurable and that: (1) P(F?) < «. (ii) (&, F) is sparse.
Then, for almost all sample sequences X(w),..., X (»),..., X7 (o) =
XE~Gpinl™(F)asm An >

Proor. First note that F is a.s. {P,}-uniformly square integrable: By the
strong law of large numbers,

(a) Hm P, F?lp., = P(F*Lp.,) as.,

n— oo

for any countable collection of A’s and the right side — 0 as A — » by (i).
Furthermore, by Pollard [(1982), Theorem 12, page 243], (i) and (ii) imply that

(b) IP, — Pllg »,, 0 asn — o.

Thus for P”-a.e. w, the hypotheses of Corollary 3.1 are satisfied by % for the
sequence {P} of probability measures on (A, A). Hence the conclusion follows
from Corollary 3.1. O

5. Proofs for Section 2: Main steps. What remains is to complete the
proof of Theorem 2.1 and to prove Theorem 2.3. We first show that e
PG (Z) implies & € FPG,(2) if supp. » P(F?) = M? <

ProrosiTiON 5.1. If € PG,(Z) and has envelope function F satisfying
SUpp c » P(F?) = M? < o, then F € FPG(P).

Our proof of the proposition will depend on the following lemma.
Lemma 5.1. If € PG, (P), then

lim{ sup 8‘/log N(8, F, pp) } =0.
310 \pep

Proor. Let 8,& > 0. Let #(¢) ={f1,..., f,,} be an e-net for (Z, pp) with
m = N(e, &, pp). If .

(2) By=(fe F:pp(f, fi) <¢} for f € F(s),
then ¥ c U}, B,. Furthermore,

N(5,F,pp) SN(S, U Bk,pp)

Let

(b) ko1

< mmaxN(5, By, pp) = N(e, F, pp) maxN(3, By, pp).
© B, ={f-fu: f€ F pp(f, i) <)
and ’

(d) ?"(s,pp)={f—gi f,gég,pp(f,g)<€}.
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Then for each %, we have

(e) B, c F" (e, pp)
and
(f) N(SyB;pr) =N(57Bk7pP)'

Hence, using Sudakov’s inequality [(f) in Section 2 above] repeatedly,
6y/log N(3, %, pp) < 8/log N(e, F,pp) + 6 max yflog N(3, B}, pp)
[by (b) and (f)]
< 8y/log N(¢, &, pp) + Cln}eax ElGpliB,
<k<m

g
&) [by Sudakov’s inequality applied to the second term]

Cé
< —ElGpls+ CENGl 57, o)

[by Sudakov’s inequality applied to the first term and (e)],

where C is an absolute constant. Taking the supremum over P € & and then
letting 6 | 0 yields, by (2.5),

(h) lim< sup 5\/log N(5, F, pp) } < Csup ElGpllse,pp
510 \pecp Pe®?

for every & > 0; letting ¢ | 0 yields the conclusion, again using (2.5). O
ProOoF OF PRrOPOSITION 5.1. Let Z(s, f) = Zp(s, f) and Zys, f) =
Gp(f) + MB(s), where Gp is bounded and pp-uniformly continuous uni-

formly in P € & and B is standard Brownian motion. Then, as in the proof of
Theorem 1.1, for (s, f),(¢, g) € &,

dl((s’ f)’(t’g)) < d2((s’ f)’(t’g)),
where
d¥((s, ), (t,8)) = E(Zy(s, ) — Zy(t, 8))"
= (s At)Varp(f—g) + (t — s) Varp(g)
+(s —t) Varp(f),
d3((s, f),(t,8)) = E(Zy(s, f) — Zy(t,8))" = Varp(f — g) + |t — sIM?

and

sup Varp( f) < sup P(F?) = M? < .
pPex . PeZ#

’ Thﬁs it follows from the Gaussian comparison theorems [e.g., Giné and Zinn
(1986), Theorem 4.4, page 74] that

E|lZplls= E|Z\ll# < 2ElZ,l|ls < 2{E|lGpll >+ MEI B},
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and hence, by (2.5),

(a) sup EllZpllg < oo.
pPe&#

Furthermore, by an inequality of Fernique (1985) [see, e.g., Giné and Zinn
(1986), Theorem 4.4.(c), page 74, where (4.7) should read (4.10)],

ElZpll g5,y = ENZ|l 55, a,)
(b) 3 1/2
< 4E|Z,)| 5,4, + 138(log N(6/2, F, d,))
Since d2 > p% v M?| - |, the first term in (b) is bounded by
(c) ElGpll#s,ppy + ME| Bll1¢52/m2).

Furthermore,

- 0 352
N((s,g-,dz)SN(—,g—,pP)N —M—z_,I,l-l

[since (a) 6/2-net for (F, pp) and a 356/(4M?)-net for I yield a &-net for
(%, d,)], so the second term on the right side of (b) is bounded by

135(\/log N(5/4, 7, pp) + /log N(35%/(16M?), 1,1 - ) }

(d)

< 138y/log N(6/4, &, pp) + 135y/log(16M?/(38%)).
Combining (c) and (d) with (b) yields

sup EllZpllss,a,)

pPeZ
(e) < 4 sup EIIGpllgr'(a ppy T 13 sup {6\/log N(5/4, %, pp) }
pPe#
+ 4ME||Bll ;52202 + 138\/log(16M /(38%))
so that
(f) hm sup EllZpll 5(5,a, = 0

810 pcp
by (2.5) and Lemma 5.1. Finally, using

p2(f,8) <P(f-g)* <4P(F?) < 4M?,
it follows that
d3((s, £),(t,8)) = pi(f,8) + M*lt — s|

(8) N
= {2M + M?}5p((s, f), (¢, 8)).
. We, conclude from (f) and (g) that
(h) lim sup EIIZPIIyI(a 5p = 0.

8l0 pep
The conclusion follows from (a) and (h). O
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To complete the proof of Theorem 2.1, it remains to prove that (B) implies
(D) and that (D) implies (E). The first of these is the big job. As we noted
before, the proof of (B) implies (D) is long, but follows closely the “if”’ part of
Dudley’s (1984) proof of his Theorem 4.1.1, pages 27-31. The main tools
needed are: (i). Uniform in P € & bounds on the Prohorov distance between
the finite-dimensional laws of the process X, and the corresponding P-
Brownian bridge X = Gp. These are obtained from Theorem 5.1 below which
is derived from the bounds of Yurinskii (1977). (ii) A uniform in P € & weak
approximation for sums of mean-zero uniformly square integrable random
vectors based on the bounds of (i). This result adds uniformity in P to the
weak approximation result of Philipp (1980) [see Dudley (1984), Theorem
1.1.3, page 7] and extends (without interpolation to continuous time) the
uniform in P € & weak approximation result of Lai (1978) from R! to R?.

THEOREM 5.1. For P € &, let X,,..., X, be iid P in R? with EpX; =0
and 3p = Ep(X;XT). Suppose that |X| is uniformly square integrable over

P € & (where | - | denotes the usual Euclidean norm):
(5.1) sup Ep|X|21[|X|Z,\] -0 asA > oo,
Pe&H

Let F, denote the law of n™ /%S, = n='/?L7_, X, on R? and let Fy, 5, denote
the N4 (0,3p) law on R®. Then for every & >0, the Prohorov distance
m(F,, Fno, 3, is bounded by

7T(Fn, Fyo, Ep)) < 2{8_2EPIX|21“X|28‘/;] Vv 5}

1/3
(5.2) + 22/3(EP|X'21[|X|25\/E])

+ C(dM)*e74(1 + |log(2% M /d)| ),
(

where C is an absolute constant and supp c » EplX|? < M [which follows for
some constant M from (5.1)]. Hence

(5.3) sup m(F,, Fyo,s,) > 0 asn — .
pPe#

Theorem 5.1 is the basic result needed to prove the following uniform in P
weak approximation for sums of independent random variables in R<.

THEOREM 5.2. Let & be a collection of laws on R® with mean zero and
covariance matrices 3, = Ep(XXT) and suppose that (5.1) holds. Then there
exists a family of probability spaces {(Q, 3, Prp): P € P} with random vari-
ables {X.};., and {Z}, ., defined thereon ( for each P € &) such that: X, are
‘itd R, Z; are iid N0, 3,) and, for every ¢ > 0,

LX, - YLZ

28) -0 asn — oo,
i=1 i=1

(5.4) sup Prp(n_l/2 max
PeZ m=n
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Complete proofs of Theorems 5.1, 5.2 and the proof of (B) implies (D) in
Theorem 2.1 are given in Section 6.

Proor orF (D) iMpLIES (E) IN THEOREM 2.1. We first show that (D) implies

(a) lim sup sup E,lIX, |5 <« foreach0 <p < 2.
n—oo PeP

The following proof of (a) follows Pisier [(1975), Proposition 2.1]; or see
Hoffman-Jgrgensen [(1976), Lemma 4.9, page 94]. Write X, = n~1/22?_V, (so
V, =8y — P). Let Xj, Xj,... be independent copies of X, X,,..., let
X' =n"1/2L"_ V! denote the corresponding empirical process and let X; =
X, = X, =n"12L" (V, — V) =n"'2L?_VF denote the symmetrized pro-
cess. Let Gp, G denote independent P-Brownian bridge processes and Gp =
Gp — G%. Then it follows from (D) and G} =; V2 Gp that

A
limsup sup Prj(IIX;ll#= ) < sup PrP(IIGf,llgrz ——)

now PeP PeP 2
(b) - A
< sup Prp|lGplls= —)
Pe# P( i 2‘/§

for each A > 0. Hence, for every 0 < & < 1/4, there is a A = A(¢) > 0 such
that
(c) sup sup Pri(IIX¢lls> 1) <e.

n>1Pe?#
Then, by Lévy’s inequality [see, e.g., Araujo and Giné (1980), Theorem 2.6,
page 10; for the first part of this for nonmeasurable maps, see Dudley (1984),
Lemma 3.2.11; the analogue of the second inequality in Araujo and Giné’s
Theorem 2.6 for nonmeasurable maps which we use here can be proved
similarly],

(d) sup sup PrP( max [|V7|[%> )\\/17) < 2¢,

n>1 Pe& l<i<n
and (d) implies that

log 2
(e) sup Prp(IIVil%>avn) <1 - (1 - 26)"" <
pPes

for all n > 1 since ¢ < 1/4. But (e) yields, by monotonicity,
(f) sup {tz sup Prp(lIVilI%> t)} < 23 log2,

t>Ag Pe#

where A, = A(1/4). Now the argument proceeds by scaling on sample size: For
a fixed integer % > 1, define

. ' Zy = {mxik - V(n -1k X?n—l)k}/\/};
(8) &
= (1/‘/17) Y V7.

Jj=(n—Dk+1
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Then Z%, Z%,... are iid and can play the role of {Y7: i = 1,2,...} in (c) and (f)
with the same A = A(¢) since we have

1 n
(h) T lef = X7es
=

and hence (D) implies that (b) holds with X¢ replaced by X? ,. The conclusion
is that (f) holds, with Y; replaced by Z* for every & = 1,2,... . But since
Z* = X3, we conclude that

6] sup {tz sup Prp(IX;l%> t)} < 2% log2
t>Ag pPe&#
for every £ = 1,2,... . But

. Prp(IXC %> ¢
G) Prpo(IX, %>t + a) < Pr:((IIX ”:; a))

for ¢,a > 0 and, by D,
lim inf 1nf PrP(IIX 1% < a) =1- limsup sup Prp(l1X, %> a)

n—ow n—oo PeH
(k) >1- sup Prp(||Gp||9”> a/Z)
Pe®
>1/2

for any a > a, sufficiently large. It follows easily from (i)-(k) that

sup {(t +a)’ sup Prp(IX, %> t + a)} <4(Ay +a)’log2, n > some N,

>,

for a > a,, and hence, with b = A, + a,, that

)] sup {82 sup Prp(I1X,, 15> s)} < 4b%log 2, n > some N,.
s>b Pe#

But (1) implies that

EplX, % = j;)ptp_lPrP(IIanl}> t) dt
b [ee]

m < tP~1dt + 4b2%log 2 tP3dt
(m) <p g2p |

)
<
p

uniformly in P € & and n > N,; that is, (a) holds.
" Next, Ottaviani’s inequality yields uniform integrability of

= b”(l + 4log22

p
(n=172 maxllk(P, ~ P)I%)
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uniformly in P € & and hence uniform integrability of
P

£y |

i=1 F

uniformly in P € & just as in Dudley and Philipp [(1983), page 526] and

Philipp [(1980), page 80], but with the additional uniformity in P € &. Hence

(n~'2max, _, kP, — P) — L*_Y,[%)? is uniformly integrable uniformly in
P e & and (E) follows via the following elementary proposition.

n~ 12 max
k<n

ProposITION 5.2. Suppose that Y, are nonnegative rv’s defined on
{(Q, 2,Prp): P € &} and that:

(i) lim sup Prp(Y, >¢) =0 foreverye > 0.
nox ped
(ii) lim limsup sup EpY, 1y ., =0.

Ao® e pep
Then lim, _,, supp. » EpY, = 0; that is, Y, —, 0 uniformly in P € £.

Proor. Now for any A > 0,
EPYn < EPYnl[YnS)t] + EPYIL]'[Y”ZA]

a
(@) < Prp(Y, 2¢)dt + EpY, 1y .,
(0, A] "
Hence
(b) sup E,Y, < sup Prp(Y, > ¢)dt + sup EPY Ly, s
Pe& 0, \lpez

This yields, by dominated convergence and (i),
() lim sup EpY, < limsup sup EPY Ly s

n—o© pey n—-o PeP

for any A > 0; letting A — « yields the conclusion by (ii). O

To prove Theorem 2.3, we first need to establish the following Z-uniform
Glivenko-Cantelli theorem. The measurability condition we will need is that
& be nearly linearly supremum measurable for all P € & [see, e.g., Giné and
Zinn (1984), Definition 2.3, page 935]; when this holds we write €
NLSM(&). Recall that for r > 0, N (e, &), € > 0, denotes Pollard’s (1982)
(rth power) combinatorial entropy of % relative to an envelope function F
of Z.

THEOREM 5.3. Suppose & € NLSM(Z) and that:
() NO(s, F) < o for every 8 > 0 and K > 0, where
Fx={fLpexif € F).
(i) Fis P-uniformly integrable; that is, sup,c » EpFlip., = 0 as A - .
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Then, for every ¢ > 0,

(5.5) sup Pr;{maxllllj’m — Pllg=> s} -0 asn —> .
PeP mzn

Recall that G = FU F2 U (F')2.

CoRrOLLARY 5.1. Suppose that G € NLSM(%) and that:
() NP8, F) < o for every & > 0.
(ii) Fis P-uniformly square integrable.

Then, for every & > 0,

(5.6) sup PrP<ma\x||[P> —PII(;>5} -0 asn > x,
prPe&

Our proofs of Theorem 5.3 and Corollary 5.1 depend on the following
lemmas.

LemmMa 52. If N{X8, F) <w and Fyx={flp_x; f€ F), then
NZX8, Fy) < NS, F) < .

Proor. Since NS5, F) < =, given a set S we can find {f,..., f,,} € F
so that for each f € &, there is an i with

P |f(x)1[F(x)sK]_fi(x)l[F(x)sK]|r= > lf(x) _fz(x)|r

xeS xeSN[F(x)<K]

<8 y F(x)"
xeSN[F(x)<K]

<" Y K
xeSN[F(x)<K]

< 5" Z Kr,
xS

where

m <N<r>(a,s,3TK) < N$(8, F) < o, 0

LeEMMA 5.3. Suppose that & has envelope function K. If N5, F) < »
forall 8 >0 and F=({fg: f,g € F), then NSJ(3, F) < forall §>0.

Proor. We show, in fact, that

N@(8, F) + 1) _ (N;;")(a, F)
_ 2 2

* Let {f,..., fn} =% be chosen so that given any fe& &, there exists
"€ % so that

(a) Y [f(x) - f(x)]* <8 L K2,

xeS xS

N®(28, F) < (

) + N@(8, F).
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where m < N@(8, &). Then for any f, g € & with f, and g, chosen so that

13

(a) is true (if f = g we can choose f; = g;), we have, with n = #(S),

1 1 1
—~ )y | fe ~ figil < — Zlfllg—gil+; Y lgil If = £l

xS xeS xeS

1 1
sK{— Ylg—gl+— Zlf—fil}
n n

xS xS
1 1/2 1 1/2
SIK’{(—Zlg—g,«I2 +(— Z|f_fi|2) }
xS xeS
< K{26K} = 28K2. O

LEmMMA 5.4. Suppose that & € NLSM(Z) and has envelope function K, a
constant, and that N$ (8, ) <  for all 8 > 0. Then, for every ¢ > 0,

(5.7 sup Pr}",{maxlll]ﬂ’m — Pllg> s} -0 asn — o,
Pe& mzn

Proor. Let ¢ > 0. We will prove (5.7) by showing that we can choose n(s)
so large that

(a) sup Pr}",{maxllﬂj’m — Pllg> s} <e forn =n(e).
pPe&# mzn

In fact, a choice of n(¢) that works is

8K? 256K? o &
(b) n(s)zmax ——8—2—,7—10gNK (ﬁ,?),n(s,K) ,
where n(e, K) is so large that
o m e
(c) 8 ) exp(——z) <e.
m=nle, K) 256 K .

First, note that since %€ NLSM(Z), for each P € &, there exists (& =,%p
. € & with (& € LSM(P) satisfying

Prﬁ{ggjncllﬂj’m — Pllg> g} = Prp{maxllle — Pll,5> g}

- “\m=>=n
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and hence

(d) sup Prﬁ{maxlll]j’m — Pllg> s} = sup Prp{ max/||P,, — Pll,&#> s}.
PeZF mzn PeP m=n

For simplicity of notation we will not distinguish between % and & in the
rest of this proof and we will write Pr instead of Pr* except in the final line.
The proof uses the symmetrized empirical measure

1 n
Pr?(A) = W E a;14(X;),
i=1

where oy, 0,,... are iid Rademacher rv’s [so that P(s; = +1) = 1/2]. By
symmetrization [e.g., Pollard (1984), equation (11), page 15, or Giné and Zinn
(1986), Lemma 2.3, page 63] it follows that

sup Prp{lP, — Pll&=> &}
Pe&#

o)

(e) £ €
< 4 sup PrP{II[P’SIIy> —} = 4 sup E[PrP{II[P’,?IIy> —
PeP 4 Pe 4

for n > 8K? /&2 The inequality in (e) depends on
E
sup sup Pry{|(, ~ P)(1)| > 3
PeF feF
4Ep f?

< sup sup 5
PeFfeF NE

4K? 1 8K?
<5 fornz=—
&

<
ne?

to obtain the factor of 4 on the right hand side. Given X,, choose functions
&1 &y M = N¥e/8K, F) so that

€
minP,|f — g;| < 3 for each fe &.
J

Write f* for a g; at which the minimum is achieved. For any function g,

IPog| - <n ' Y g(X,)| = Plgl.
i=1

n~' Y 08(X;)
i-1 .
Choose g = f —f* for each f in turn to obtain, by Hoeffding’s inequality at
the next to last step [Hoeffding (1963), Theorem 2; see, e.g., Shorack and
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Wellner (1986), Inequality A.4.6],

x,|

sProb{sl;}r)“Pr?f* | + Pnlf_f*l] >Z

Prob{supl[lj’,?fl >Z
F 4

x)

£ €
< Prob{maxlﬂj’,?gjl > g’XN} [because PIf =¥l < g]
Jj
€

< N{(e/8K, F ) max Prob{|l]3’,?gj| > — g(n}.

() j 8
i €
SNI((.I)(E/SK, t9-)Il’lax Prob{ Za‘igj(Xi) > n,g'XN}
J i=1

< 2exp[H}(1)(—88—K, 9) - 2(ne/8)* 'i1 (2gj(Xi))2]

[by Hoeffding’s inequality]
< 2exp| —ne?/256K?] [using lg;| < K and (b)].
Combining (c), (d), (e) and (f) yields, for n > n(e),

hod £
sup Pr;{maxllﬂj’m — Pll#> s} <4 ) sup Prﬁ{II[P’,‘,’LIIy> —}
PeZp mzn m=n Pe& 4

(8)

2

hod ne
<8 Y exp( ) <&,
m=n

"~ 256K?

and hence (a) holds. O
With these three lemmas as preparation we can prove Theorem 5.3.

ProoF oF THEOREM 53 In view of (ii) we can choose K so large that
&
(a) sup EpFlp, g < 1
Pe®?

Then, since

IP,, — Plls<I|P, — Pl + sup|(P, — P) f1[F>K]|
feF .

<P, — Pllg + P, Flips gy + PFlip. g,

b .
.(' ) <P, = Pligx +|(Pn — P)Flips gy| + 2PF 15, g

&€
<[P, = Pl +|(P ~P)Flipo | + 5 [y (a)],
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it follows that

sup Prp{maxll[P’ — Plle> s}
Pex

&
< sup Prﬁ{maxllﬂj’m — Pllg > Z}

PeZ mzn
(c) ©
+ sup Prp{maxl(lp P)Fl[F>K]| > _}
Pex# 4
£ E
554.5 [for n > some N(¢)],

by Lemma 5.4 [since N{(5, #x) < » by Lemma 5.2] and Chung’s (1951)
uniform strong law of large numbers, respectively. O

Proor oF CoroLLARY 5.1. Now NP8, F) <  for every & > 0 implies
that NP5, Fx) <  for every 8 > 0 by Lemma 5.2. By Lemma 5.3, this
implies that N (1)(6 ) < o for all § > 0, where

‘%( = {fgl[FstZ]: f’g € 9—}

Hence the conditions of Theorem 5.3 are satisfied with

F={fg: f. g F}

replacing . Thus (5.6) holds with |[P, — P|lg replaced by ||P, — P|ls. Since
P, — Pllg < 4lIP, — Pll#, (5.6) also holds. O

Proor orF THEOREM 2.3. Our proof of Theorem 2.3 is a modification of
Pollard’s (1982) proof of his Theorem 7. For the record, we give our proof in

detail.
First note that (i) implies that there is a constant M < « so that

(a) sup P(F?) = sup EpF2 < M? < o,
Pey Pex
This constant enters repeatedly in the remainder of the proof.
Now let 6,=27 for j>1 and set H, =log NP2, F) so that
510, H/? < ® by condition (ii). Select a sequence of positive numbers {n}
for whlch

(b) Yo <
j=1

2
so that H N )

1/2
() n; = (144M*57H,) < Taan7?

P

' o 2
Mj
(d) Y exp(————) < o,
7257 M2

j=1



2012 A. SHEEHY AND J. A. WELLNER

This is possible because of the growth condition (ii) on log N®(-, %). For
example, n; = max{;§;, 12M5, H/?} works.

We now give our choices of § = 8(¢) > 0 and n = n(s, §) (not dependent on
P € &) which yield € AEC,(Z,¢,); that is, (2.6) holds with d, =e,.
Choose an integer r = r(¢) so large that, with n = £/8,

© 2
Ur €
(e) 2 X exp(—— <—  [by(d],
- 12M%2 | © 186
i €
(1) L om<as [y ()],
j=r+1
n® &
(g) 28Xp(—W) < 1_6 [s1nce 6,"’0],
(h) n? > 144M?H, 82  [by condition (i)],

all hold. Now choose 6 = 6(¢) > 0 so that

2 £
(i) d < min{\/gﬁr(s)M, E}

With this 8 = 8(e), we choose n = n(e, §) so large that

i pes(Ip, - Plle> o | < =
6)) sup Pryq I, «> 5 1<7g
and

E

(k) sup Prp(P,F? > PF? + M?) < —.

PeZH 16

Such a choice is possible in view of the F-uniform Glivenko—Cantelli Theorem

5.3.
To prove &€ AEC, (&, pp), we will show first that this choice of § and

n(e,8) imply that
) sup Prﬁ{lIanlyr(a,eP) >¢) <e forall n>n(e,d);
Pe#
that is, that ¥ € AEC (&, ep). Write X, = {X,,..., X,,}.
Since ¥ € NLDM(Z), for each P € & there exists ,F=,% C & with
07 € LDM(P) satisfying

Pri{IX,llss,ep > £} = Prap{lX, lhss, ep) > £}
and hence '

sup Pri{I1X, [l e > £} = sup Prp{lX,logs o, > }-
N PeZF PeF

For simplicity of notation we will not distinguish between ;% and % in the
rest of this proof and we will write Pr instead of Pr* in the remainder of the
proof.
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By symmetrization [e.g., Pollard (1984), Lemma II1.8, page 14; or Giné and
Zinn (1986), Lemma 2.3, page 63]

&
m sup Prp{lX,,llss,ep) > €} < 4 sup Pr {II[F",?H (5. ep) > —}
( ) PP P{ (3,ep) } Ped P F'(8,ep) 4‘/5
for all n>1, where P? is the symmetrized empirical measure . P? =
n~1X_ig;8 x, and {g;} are iid Rademacher rv’s. The validity of (m) depends on

sup sup Pl‘p{l\/;(ﬂ)n -P)(f- g)| > 8}
PeP(f,g)e F'(5,ep)
Va-rp(f_ g) 8%
< sup sup ——% < 3 <
PeP(f,g)e F'(5,ep) €

N[ =

by the choice (i) of 6.

We use (j) to replace F'(8, ep) on the right side in (m) by % '((3 /2)1/ %5, ep ).
Let D, = |IP, — Pllg and let B¢ denote the event [P, F2 > PF? + M?] in k).
It follows from our choice of 7 and (j) and (k) that the right side of (m) is
bounded by

62
4 sup Prp{ll[}) | 575, epy > 4‘/— D, > _}

PeP 2
62
+ 4 sup Prp{lIP2lls s, ep > —
(n) pe2 P{ ’ 4‘/_

< — + 4 sup Prp{lIP?Il 1/25 ooy > }
4 Pepy p{ F'(3/2)/%3,ep) 4‘/—
° 4 4sup Ep{P b{HP I ° X}l

< —+4su To / /25 en ) > T | &, .
9 Pep.@ P F(3/2)V/%,ep,) i B,

In view of (n), the desired inequality (1) will hold if we show that

&
(0) PI‘Ob{“P,?“gr/((g,/z)l/%’epn) > —= Zn} < g on B,.
Choose finite subclasses #(1), #(2),... of & such that
(p) m;l es (f ) <8(P, F2) for each fixed f € Z.
b F (@)

By Definition 1.1, #(i) need contain at most exp(H,) functions [recall that
8;=2"" and H, =log Nf2@27", F)]. For a given fe€ &, denote by f, a
function ¢ in %(i) for which the left-hand side of (p) achieves its minimum.
Note that e (f, f;) > 0 as i — «. Thus, for any fixed r,

(@ F=fi= T (F—f)
Jj=r+1

pointwise on X,.
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The proof of (o) breaks into two parts. The first is to show that for our
choice of r > r(¢), we have
} £

= [P,F? < P(F?) + M?|.

(r) Prob{sup[IPO( f—f)>

on

The second part is to show that for our choice of r, we have

€

(s) Prob{sup{lpf( fr=8)l: .8 F((3/2)%,05,)} > 5=

€
X, <—
- 16
on B, . Since

sup{|P2(f —&)|: f,8 € 57((3/2)"%8, e5))
t
(t) < ZSI;?IP,?(}”— )|+ sup{lP,?( f.—g)l|: f.ege 9’((3/2)1/23, epn)},

the inequality (o) follows from (r)—(t).
To prove (r), use (f) and (q) to bound the left side of (r) by

]

1 0
Prob{sg|Pn(f—fr)| T h ;| X,

Jj=r+1

)

(u) < Z Prob{sup'PO(f fi- 1)'

j=r+1

2

where |%| = exp(H;). Consider one of these last conditional probabilities,
noting that

< }: | FH F_ llsupProb{IP"(f fi-1)] >

Jj=r+1

12 12
RS~ fr1) =~ Le £~ f)(X) = = Teh,
i=1 . i=1

Thus by Theorem 2 of Hoeﬁ"dlng (1963) [see, e.g., Inequality A.4.6 of Shorack
and Wellner (1986)],

2nn?
i >

Xn} < 2exp(— R

(v) Prob{ n~YV% Y eh
i=1
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where

Z h? = neﬂ%n(fj’ fj—l)

i=1
<n(es(f, ;) +en(f, ;1))
<n(P,F?)(8,+96,_,)°
<9nd?[PF%+ M?] [on B,]
< 18n82M?  [by (a)].

Therefore on B, the sum in (u) is less than

i exp(2H;)2 exp(— —i)

j=r+1 3657 M*
e 2
<2 ¥ exp(——";'—g) [by (c)]
j=r+1 72(SJM
T [by (e)];

hence (r) holds.
To prove (s), note that on the event B, N lep(f, g) < V3/2 8], we have

elp’n( fr’gr) =< eP"( fr’ f) +ePn( f’g) + ePn(g’gr)

< (2)*s + 25,(P,F2)"”

™ < (3)"* 8 +25,[P(F?) + M?]"*  [on B,]
<(1+2/2)5,M < 3/26, M

by (a) and our choice of & in (i). Recall that n = ¢/8 as in (e)-(h). Use of
Hoeffding’s inequality again allows us to bound the left side of (s) on B . by

772

F(r) su 2exp| - ———F——
#()] > p( 2e3 (f,8,)

F'(3/2)'/%, ep )

772

< 2exp(2Hr - W) [by (w)]

2

< zexp(—;z%m) [by (0]

sz y@l

Hence (s) holds and this completes the proof that %€ AEC (2, ep).
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We now show that &€ AEC (&, pp). Define
Fu={f—-c:fe F,lel <M}.
Then, under the hypotheses of the theorem, (i) and (ii) are true with &%

replaced by %, and F replaced by F + M. To see this, note that %} =
{c: lel < M} satisfies :

[ (tog N§(x, F34))* dx < ['(1 + log(1/x))"/* dx < =,
0 0

and then apply Theorem 10 of Pollard (1982). Thus by the preceding argu-
ment, %, € AEC(Z, ep).
Now define

Fp={f-Pf: fe F},

Fp(8,ep) ={(f,8) € Fp X Fpiep(f,8) <8}
and

Fu(8,ep) ={(f.8) € Fu X Fy:ep(f,8) <8}
Since |[P()| < P(F) < (P(F?)/2 <M for all f€ &% and P € &,

FIpC Fy and Fp(8,ep) € Fy(8,ep).

Also,
(x) IX, N, pp) = X, 555, ey < X, 55, e)-
Thus for every ¢ > 0,

lim lim sup sup Pri{lIX,|lss,op > €}
510 now pep

< lim limsup sup Prj{l[X, |z, e, > €} = 0,
3l0 p50 peP

since %4, € AEC (2, ep); that is, ¥ € AEC (&, pp). O .

6. Proofs for Sections 2 and 5: Completion. In Section 5 we outlined
the proof of (B) implies (D) in Theorem 2.1 and discussed its dependence on
Theorems 5.1 and 5.2. Now we give proofs of Theorems 5.1 and 5.2 and then
use Theorems 5.1 and 5.2 to complete the proof of (B) implies (D) in Theorem
2.1.

Proor oF THEOREM 5.1. Let 0 <& < 1. Define the truncated variables
Xin =X;1jx,<./m and the corresponding centered variables X/, =X, —
E(X;),i=1,...,n. If F¥ is the law of n~'/2L7X,, and F} is the law of
n~1/28* = p~1/2xnX¢ it is easy to show (using Strassen’s theorem) that
(a0) w(F,, F}) < e 2EplXPLyx . oy V &
and that

(b0) m(Ff, F}) < e EplXI*Lyx)5 0y V &
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Furthermore,

Ep X5, P < 2%Ep| X, |° < 23%6Vn EplX|? < 2%Vn M,

since (5.1) implies that

sup EplX|> <M
pPeF

for some absolute constant M. Thus by Yurinskii’s (1977), Theorem 1 as
corrected in Dehling [(1983), Theorem B, page 395],
1/2)

1 _
%\ " Vnd

1/2
|

m(F¥, Fyo,s.,) < CdV4(2%Vn M)" 4n_1/8(1 +

238\/7_L_M)

(c0)

2%eM )

- Cd1/4(23sM)1/4(1 + log(

where 3, = E(X?, X?T). Finally,

Ep| X, — Xf, ? < 22EP'XI21[|X|26JIT]

so that

1/3
(d0) 7(Fno, 3.0 Fro, zp) < 22/3(EP|X'21[|X|26»/51)

by Dehling [(1983), Lemma 2.1, page 402].

Combining (a0)-(d0) yields (5.2), and (5.3) follows from (5.2). Alternatively,
(5.3) can be proved using a proof by contradiction from (5.1) and the classical
Lindeberg-Feller central limit theorem. 0O

ProoF oF THEOREM 5.2. Our proof follows Philipp (1980) with corrections
as indicated in Philipp (1986). Our present situation is much simpler than
Philipp’s (excepting the issue of uniformity in P) since G = N,(0, 3,) and
a(n) = n'/? throughout. The main changes are in the inequality given in (b)
" below and a somewhat more careful bookkeeping of constants involved.

Let Z ~ N,(0, 2.p); it follows from (5.1) that

(a) sup EplZ|* = sup EplX|> <M < «
’ ¥ pPex pPe&#

for some M. A simple modification of Philipp’s argument is to replace his (3.1)
by the following moment inequality [which will suffice for the present proof
and is simpler than the exponential bound suggested in Philipp (1986)]: for
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r>0,A>0,
Ep|ZI"
)\r

sup Prp(IZ] > A) < sup
pPe& Pe®?

}r/2

Eq\Z|?
(b) <C, , sup { r! r‘
" pep A
Mr/2
A
where C, , is an absolute constant; here the first inequality is Markov’s, the
second follows from Pisier [(1986), Corollary 2.5, page 179] and the third

inequality follows from (a).
Let 0 <& <1072 A (25M)~1/2 be given and set

=< Cr,2

4 k
© .\ = [(a+e9*], k=1,
0, k=0,
(d) np=1tp,1 — 1,
—log e
=4 ———| <475,
(e) s L@u+gﬁ}<£

Note that since n,/t, —> &* as k — o,

(f) max(E
m<n, \ I

LEMMA 6.1. Given any & > 0 as above, there exists K (¢) > K (&) so that
for k > K (¢),

1/2
< 2% fork > K(¢).

tpr1
sup Prp|| Y X,;|>¢&/t, | <C®
pPeZ J=tp+1
and
tp+m
6
sup Prp| max | Y X;|>&t, | < Cyeb,
PeP MENg|j=t,+1

where C; = 1 + 2'2C¢ ,M?® and C, = 2(1 + 2'8C ,M®).

Proor. We prove the second inequality first. Let S, = L7_,X;. By station-
_arity and Ottaviani’s inequality,

— 1
(al) Prp(rglsarilsml > s\/tk) <(1 —~cp)_1PrP(|Snk| > eVt ),
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where
1
¢p = max Prp(]Sn -S,|> —e‘/ﬁ)
m<n, k 2
1
= max PrP(lSmI > —¢ tk)
m<n, 2
4E,lS, ?
(b1) < max ——5——
m<n, € tk
4Mn,
e%t,

IA

1
16Me> < =d  [for k= Ky(e) by ()],
uniformly in P € & since ¢2 < (2°M)~L.
Let F, be the distribution of n~1/2S,. By Theorem 5.1,

(el) m, = sup m(F,, Fyq s,) >0 asn — o,
pPe&x

so we can choose N(¢) so large that
(d1) m, < €% for n > Ny(e).
Then, for n, > Ny(e),
Prp —‘/i—_;|Snk| > %s_l) < PrP(IZl > %s‘l) + 8
[by the definition of Prohorov distance and (c1), (d1)]
< (2'8Cg, o, M?® + 1)

[uniformly in P € & by (b) with r = 6]

(el)

= Cs®.
Hence we have, for n, > Ny(¢) and £ > K(¢),
Prp(|S,,| = 36y, ) < Prp(ni'/2[S,, | = 3e(ty/ny)"?)
(f1) < Prp(n; /%S, | = 37')  [by (D]
< Ce®  [uniformly in P € & by (el)].

Combining (al), (b1) and (f1) yields the second inequality with K(¢) > K(¢)
chosen so large that n, > Ny(¢) for £ > K(¢).

The proof of the first inequality is similar but easier, using just (c1)-(f1),
but starting with ¢ instead of £/2 in the first line of (f1). O
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Now we return to the proof of Theorem 5.2. Define, for £ > 0, H, = (¢,,t,, ]
and
(8) V,=ny'? ) X;.

JE€H,
Let ﬁk be the distribution of V},, 2 = 0, 1,2, ... . By stationarity and Theorem
5.1, ’
#, = sup w(F,, F -0 ask o .
v = 3P ( k N(o,zp))

Hence by Strassen’s (1965) theorem, we can redefine the sequence {V,; £ > 0}
on a new probability space on which there exists a sequence {Y,; & > 0} of
independent N (0, 3, ) random variables such that

(h) sup Prp(IV, — Y,| > 27,) < 27,
Pe#

Let K,(¢) be so large that 7, < &° for & > K,(e).
Let {Z,; k > 0} be a sequence of independent N,(0, 3,) rv’s and note that

L(n,;l/2 Y zj) =L(Y,), k=0
JEH,
Let Y, =n;"?L; yZ; For k=0,1,2,..., let R beacopy of R¢. Then by
Dudley [(1984) Lemma 1.2.2]with X = Y Z [15_,R¢, P = LAV, YD) . 0)
and @ = L{(Y,, Z,)},. ), We can take Y, = Y,, & > 0. Slmllarly, we can take

V, as in (g) and by Dudley [(1984), Lemma 1.2.3], we can take the new
probability space to be (2, 3, Prp) = (RY)*, (B9)*, P*) x ([0,1],B, A).

Let ‘
= Z Xj, TvmE Z Zj:

Jj<m j<m

and for £ > 1, set

S(t) =8, T(t)=T,
We need one more lemma. For a given integer J, let J' = J — s.

LEMMA 6.2. For J > J, = Jy(¢),
P S(ty) — T(ty)|=eyt,;} <(27€C, + 8
sup Prp{ max |S(5,) = T(4)| 2 e/t | < (271°C; + 8)e

for the constant C; of Lemma 6.1.

Proor. First, note that for J > some (),
k+1 k 1/2
Ty <o ZJ'<1«sz{(1"‘54) —((1+£4) - 1)}
<
1/2 =< ——

(naz) tJ . (1 + 84)J/2(1 _ (1 + 84) J)

2% <800 [y (o,
(b2) tJ—l > 2~—1 tJ
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and
(c2) tp<n;+1<2n; [by(c)-(e)].
Now the probability in question is bounded by

Pro{ max [S(t4) = S(t5) = (T(t) = T(2))| = 3ot

(42) +PrP<|S(tJ')| > ge tJ} + PrP{IT(tJ’)l > ge tJ}

Thus in view of (c2), if J > max{JO(s) K (g/8)}, by the first inequality of
Lemma 6.1 it follows that

(e2) sup I, < 2717C 8.
Pe#

Since the same argument applies to sums of the Z’s,

(f2) sup Il , < 2717C, £8.
Pe&

Now by definition of V, and Y,,

S(t) - S(ty) = ¥ JmV,

J'<j<k

T(t) —T(t,)= L n Y.

J'<j<k
Hence, for J > max{K,(e) + 4¢75 Jy(¢)}, so that J =J —s > — 465 >

Kz(g),
I,=P —&y/t
el s | T i)
‘ 1
SPrP{ )y \/_l E \/t—;}
J'<j<d
1/2
n 1 Z ’ n /t
< Prp{ Y ‘/t—|V Y| > ¢ J'<j s;(_; 7) } [by (a2)]
J'<j<dJ J
(82)
< Y Prp{ ‘/‘/: IV, - Y| > *84(71 /tJ)l/Z}
J<j<d

1
<lerr<11a§J Pr {IV; Y;I Es >28}

[usirig & < 1072 < 275/2 a5 assumed before ©)
<s2¢®  [by (h) and the definition of K,(¢) just below (h)]
<8 [by(e)]
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uniformly in P € &. Combining (e2)-(g2) with (d2) shows that the lemma
holds, with Jy(e) = max{K(¢/8), Ky(¢) + 4675, J,(e)}. O

Finally, let n be so large that J defined by ¢,_, < n < ¢, satisfies
J > Jy(e) = max{K,(¢/8) + 4e7% K,(¢) + 4675, Jy(¢)} -

[where K (¢), Ky(¢), J,(¢) are as defined in Lemma 6.1, the first line after (h)
and Lemma 6.2, respectively]. Let ' = J — s. Then

Prp{maxl.S’(m) —T(m)| > 1oe¢;7}
< PrP{ max |S(m)| > 28\/;}
mStJ/
+ Prp{ max |T(m)| > 28\/77>
m<ty
+ PrP{ngng(tk) ~ T(t,)] = 26V }

+ Prp{ max max|S(¢, +j) — S(¢,)| = 25\/77}
J'<k=<d j<n,

+ Prp{ max max|T(t, +7) — T(¢,)| = 28\/77}

J'<k<d j<n,
=Ip+Ip+ IIp + IVp + Vp.
Now ¢, <n;+ 1 by (c2) and Vn > /t,_; > 2_1\/6 by (b2), so Lemma 6.1
yields, since J > K(¢/8) > K(¢/2) without loss of generality,
)] sup I, < sup PrP{ max |[S(m)|>e tJ} < 275C,e8 < Cye.
P PeP m<n;+1
Similarly,

(k) sup IIp < Cye.
P
Now again using vn > 2_1‘/E and (e) in the last step,

sup IV < L Prp{max|S(t, +J) = S(t)| = e, )
0] Pe® J<k<d J=ny .

<sC,e® < 4Cye  [by Lemma 6.1, since J’ > K,(¢)]

.
“and in the same way,

(m) sup Vp < 4C,¢.
pPe#
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The remaining term is

I, = sup P S(ty) - T(t,)] =
sup I, = sup rp{ max |S(t) — T(t,)] = 2evn |

P S(ty) = T(t)| = e, |
sup. rp{nggng (4) = T(t)| = eyt

(271%C; + 8)e [by Lemma 6.2, since J > (&) > Jy(¢)].
Combining (j)—(n) with (i) yields
sup PrP{maxlS(m) - T(m)| > 108\/;}

Pe#
(0) < 2Cy¢ + 8Cye + (271°C; + 8)e
= (10C, + 27'8C; + 8)e = Cqe.
If we start with £ > 0, then

sup Prp{max|S(m) -T(m)| > s\/_}
pPes

(n)

IA

IA

10
(p) < ;:%Prp{maﬂS(m) -T(m)| > cl \/E}

[since 1 > 10/C,]
<&  [by (o) with e = 5/C,],
and this almost gives (5.4).

The remaining problem is that the constructed sequence still depends on &.
We therefore universalize as in Philipp (1986) and Major (1976) [in fact, our
argument below essentially follows Dudley (1984), pages 29-31; a similar
argument is used in the proof of Theorem 2.1] to get rid of the dependence on
¢ as follows: For given % > 1, choose sequences {X},;; j > 1} and {Y};; j > 1} of
independent random varlables with partial sums S,,, and T,,,, respectively,
such that for all n > n, = n(k),

(a) sup Prp{n_l/2 max|S,,, — Ty | = 2_"} <27k
pPeZ msn
We may suppose without loss, that the X sequences are independent of one
another for different %2 and that the Y sequences are also independent of one
another for different 2. We may also take 1 = n, <n, <
Foreach j=1,2,...,if n, <j<n,,,, write & = k(j) and set

(r) X; = Xk(j)j’ Zj=2Zy; fn,<j<ng,.

Then {X;; j > 1} and {Z;; j > 1} are sequences of independent random vari-
ables W1th common dlstrlbutions P and Fy, s, on R4, respectively. By
“another application of Dudley’s (1984) Lemmas 1.2.2 and 1.2.3, we can arrange
evérything to be defined on the probability space ({2, X, Prp).

Now we show that (5.4) holds for this (universal) choice of the X and Z
sequences. Let ¢ > 0 be given and let & = k(¢) satisfy 2°7* < ¢. Let M, > n,
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be so large that

(s) sup Prp{ max (IS | +|T,l) > 2!~ k1/—> <2'"* forn>M,.
Pe# m=<n(

Fix n > M, and choose r so that n, <n <n,, ;. Then

r—1
max|S,, — T,,| < max|S,, — T, + Y  max
m<n m<n, i=k MiSM<Pi|jop,
m
(t) + max | ) ( i
npsmsn|;i_,
r—1
=L,+ ) A +A,.
i=k

Now L, < max,, ., (S,,| + |T,,0), so

(w) sup Prp{L, >2'"*Vn} < 2'~*
pre&

by (s), since n > M,. Furthermore,

sup Prp{A; > 2" Vn}

pPe#
= sup Prp{ max Z(X Z) > 21~
(V) Pes n;<m<n;., j=n; 1
m
= sup Prp{ max | ) (X,;-Z2;)|=2"" }
Pe# n;<m<n;.,; J n;
<2'""  [by(q)sincen>n,>n,,, fori <r]

[and by writing &7, (X;; — Z;;) = (S;y — Ti) — (S, — 1 = T, — 1], and

sup Prp{A, > 2! Vn}

pPeZ
= sup Prp{ max | Y (X;,-2Z,)|>2""Vn
(w) Pep npsmsn|; '
R m
, = sup Prp{- Z ( -Z,;)|=2""Vn }
. Pe® n, smsn =

<277 [by(q) since-n > n,].
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Thus, by (t)-(w), for n > M, = M,,,,
sup Prp{maxlsm =T, > 3\/77}
m=<n

Pes
< sup Prp{L, > 2'"*Vn}
PeZ
r—1 )
+ ) sup Prp{A; > 2"""Vn} + sup Prp{A, > 21" Vn}
i=k PeP pPe#
r
<~k 4 Y gi-i
i=k
<217F(1+2) <28k <, ‘ 0

Now we have the tools to complete the proof of Theorem 2.1.

Proor or (B) mvpLIES (D) IN THEOREM 2.1. The following proof is essen-
tially the same as Dudley’s (1984) proof of his Theorem 4.1.1 with care to keep
everything uniform in P € & and with only minor corrections /changes; there
is a Vn missing in Dudley’s (4.1.9).

Suppose that (B) of Theorem 2.1 holds. For £ = 1,2,..., take ¢ = 27* in
(2.6) of Definition 2.2 with d = pp; we thereby obtain 6 = §, > 0 and N = N,,
so that (2.6) holds with d =pp, ¢ =27% and 6 =, for n > N,. For k =
1,2,..., let & p be a finite subset of % such that

sup inf{pp(f,8): & € %, p} < 8.

fe &
Let T}, p denote the finite-dimensional space of all real functions on ., p also
with supremum norm |- [l =1 - ll4,p. Let %, p = {81, 82,ps+++» &mer, P, P}-
By the Sudakov minorization (f) at the end of the proof of Theorem 2.1 in
Section 2, we know that m(k, P) < m(k) < » for all P € &. For each fe %
and P € &, let f, p =g, p for the least j such that pp(f, g, p) < 8,. For any
¢ € 17(F), let ¢, p(f) = ¢(f, p), € F. Then ¢, p € I(F). Write E; p =
8y ~P€INF), j=1.Let A, p(¢) = ¢ p and Ey; p =, p — Ay pE; 5.

The union of the finite-dimensional ranges of the App, k=1,2,..., is

included in a complete separable subspace T of (%) with C(F, pp) € Tp
for each P € &. Note that ll¢, pll = ¢, pll=< l¢ll5=lI¢]l for all %, P and all
¢ € 1"(&). Then by (2.6) with the choices made above we have

Z UEIej,P

(a3) sup PI'P{n‘l/2
Jj=1

>27%) <27%*  n>N,.
Pex :

By the same argument as in Dudley [(1984), page 29] (which involves the
. Ottaviani—Skorohod inequality), it then follows that

Z l]Ekj,P

(b3)  sup Prp{n‘l/2 max
j=1

Pe& m=n

> 2‘2"“} <227k n>2N,.
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Let P, be the law on T}, p of f — f(X,) — Pf, f € &, p. Then by Theorem
5.2, there exist random variables V,,; p iid P;, W,; p iid with a Gaussian law
Q.. p, all defined on some common probability space and some n, = n; > 2N,
k > 1, with

m

(c3) sup Prp{n‘l/2 max > 2"‘"} <27k
k

PeP m=n

Ve = Wijp
Jj=1

for all n > n,. Also, @, p must be the law of the restriction of X = Gp to
%, p- We assume that the sequences {(V,; p, W, p)lj»1 are independent of
each other for different k2. We also take 1 =ny,<n; < ---.

For each j=1,2,..., if n, <j <n,,; write £ =k(j) and set V, , =
Viiri,p» Wi, p = Wiy p and 5, p = Fijp; p- Then {V; plio g and (W plisy
are sequences of independent random variables, each with values in a count-
able product of Polish spaces which itself is Polish. Let {Z; p}; ., be iid copies
of X = Gp on Up = C(F, pp). Then W, has the law of the restriction Z; pl s, ,,
ny <j<ng.. Let T}, p beacopy of T} » and U, p a copy of U, for each j
(these are spaces—not variables!) and set T(;, p = T};);, - Then by Dudley
[(1984), Lemma 1.2.2], with

UU),P’
1

L]

X=Y=HTU),P’ Z=
j=1

~

pP= L({(VJ._P,Wj,p)}jzl)

and

Q= L({(Zj,PIfm,P’ZJ':P)>J‘21)’

we can take W, p = Z; pls;, p-
Then, for » = ({x,};,,,¢) € A" X [0,1] = Q, let S; = X as above and

Vo(w) = (£~ (x) = [dP: f& 0| €51

Jj=1

Let T, =Y X Z and
Q= L({(VJ',P»W},P’ZJ',P)}sz on S; X T;.

By Dudley [(1984), Lemma 1.2.3], the V; » and Z; p can be taken as defined on
Q with (Vp(w)); =V, p for all j. -

Now let ¢ > 0 and choose % so large that 267% < e.

Let M, > n, be large enough so that for all n > M,,

' n
(d3) sup Pri{n=V2 ¥ ||A, pE; p| +]Z; 0] > 27%) <27
Pe& j=1 :
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Fix n > M,, and choose r so that n, <n <n,,;. Then

m
m=<n | ;_
Jj=1
m
m=<n, j=1
r—1 m
e3 + m E; p— Z;
( ) Z n»<m€3§t Z J, P J, P
i=k M= 1|l j=n;
m
npSmsn|i_p
r—1
=L,+ Y A +A,.
i=k

Then

Z HEkj,P

j<m

*
+ T A s, o +nzj,pn},

Jj<m

L,< max{

m=<n,

so that, by (b3) and (d3),

(£3)- sup Prp{L} > 237 yn} < 23°%,
pPex
[The Vn is missing in Dudley’s (4.1.9); it should be inserted there, too!] Since
restriction to %, p is a linear isometry from A; p(I"(%)) to (T; p, |l - |I;), for
k <i <r we have
m
Ai= max Z IEj,P_Zj,P
NiSM<Riygq || j=p,
m * m
< E,;. + V. W,
(g3) nisrnlzagfuﬂ. j=2ni WP jgi »P »P ;
+ Z AiZj P ZJ P }
Jj=n;
=1+ II + III.
But since n > n, > 2N, it follows from (b3) and stationarity that
m *
(h3) sup Prp{ max Y Ep| >22Wn ) <227, k<i<r.
Pe& RiSMSRiyy || j=p, ’
.Similarly, by (c3),
' m
(i3) supPrP{ max |}V, p-W, , >2‘i\/;} <274 k<i<r.
P n,sm=<n, ., n; i )
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Finally,

N1~

(ni1—-n) % ¥ z

J n;

Ly = L(ZI,P) = L(Gp)

with pp-uniformly continuous sample functions uniformly in P € &. Since
n>n,;.,;—n,;fori<r,it follows from Lévy’s inequality, (2.2) and the choices
made above, that

m
(j3) sup Prp max Z Zj p— Ale p > 22—i‘/’7
P n;<m<n,.; j=n, ’ ’
n,1—1°
<2sup Prp{n™ '3 ¥ Z;p,-AZ;p|>2"""
Pe# j=nl

< 2sup Prp{|Z; p — AZ, pll > 2°77)
Pe# ’ '

<257 [by(2.2)].
Collecting terms, (g3)-(j3) imply that

(k3) sup Prp{A, >24""Vn}<2', k<i<r
R Pe#

Similarly, for i = r, replacement of n;,, by n throughout yields the same
bound. Thus, by (e3), (f3), (k3) and 267* < ¢,

ZIE

j=1

*

Z\/ES}

sup Prp{ max
PeXH m=<n

r
<23 k4 ) 24
i=k

<237R(1+4) <287 <e. o
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