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Suppose one observes a sample of size i from the mixture density f plx|z) dny(z)
and a sample of size n from the distribution 5. The kernel p(x|z) is known. We
show existence of the maximum likelihood estimator for #, characterize its support,
and prove consistency as my, i — 00. € 1992 Academic Press, Inc.

1. INTRODUCTION

If one observes a sample of independent, identically distributed variables
Z,, ... Z, from a completely unknown distribution #, then the usual
estimator for # is the empirical distribution f=n""3"_, .. Consider the
situation wherein the observed Z,, .., Z, are actually part of a larger
number m + n of replications of some experiment. Unfortunately, m out of
the m + n times the Z value is not observed, but instead one gets to see X
which conditionally on Z =z has a known density p(x|z) with respect to
a fixed measure . Hence the total set of observations is X, .., X,
Z,, ... Z,: all observations are independent and their joint distribution can
formally be written as

" s "
[T | p(xil2) dn(z) T] dn(z).
=il F=1
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(The first factor in the product is a density with respect to p”; the second
factor is just formal notation.) For definiteness let (%, #/) and (Z, ) be
the sample spaces for each X; and Z,, respectively. It is assumed
throughout that the function (x,z)— p(x|z) is (jointly) measurable and
also that & contains the one-point sets in %. The density of X, is (with
abuse of notation) written as p(x|n)=| p(x|z) dy(z); it is assumed to be
finite for every x.

In this situation the set Z,, .., Z, clearly contains much more infor-
mation about n than the set X, .., X, if m and »n are of comparable
magnitude. Nevertheless, one would certainly want to take all information
available in X, .., X,, into account and obtain improved estimator for #
relative to using #, the empirical distribution of the second sample. Formal
calculations in the manner of semi-parametric theory (cf. Bickel, Klaassen,
Ritov, and Wellner [37]) show that a decrease in asymptotic variance of as
much as m/(m +n) percent is possible, depending of course on the aspect
of n# one is interested in. Surprisingly enough there may even be con-
siderable gain in using X, .., X, in situations where the information (in
the technical sense of semi-parametric theory) in X, .., X, alone is zero
and \;/r-rrv consistent estimators based on the first sample do not exist.

It is thus of interest to study estimators for x based on the whole set of
observations X, .., X,., Z,, .- Z,. In this paper we limit ourselves to
showing that maximum likelihood estimators exist and are asymptotically
consistent under weak conditions on the “kernel” p(x|z). We intend to
study asymptotic efficiency of the maximum likelihood estimator in a later
paper, using different methods.

The model as defined here, or special cases thereof, has been studied by
Has’'minskii and Ibragimov [6], Bhanja and Ghosh [2], Vardi [14], and
Vardi and Zhang [157]. In the literature the type of distribution of each X
is called a mixture model and sometimes a struciural model. Estimation of
# based on X, .., X,, alone has been considered by among others Kiefer
and Wolfowitz [9], Laird [107], Jewell [8], Heckman and Singer [7], and
van der Vaart [13]. The problem of existence of the maximum likelihood
estimator in mixture models is solved by Lindsay [11] and the problem of
consistency of Pfanzagl [ 12]. Roughly, the proofs in the present paper are
carried through by conditioning on the “good” observations Z,, ..., Z, and
next extending the arguments as developed for mixture models by these
authors. We do not discuss computation of the maximum likelihood
estimator. However, modifications of methods developed for pure mixture
models, for instance those motivated by the EM-algorithm or the methods
of Groeneboom [5], apply.



MLE IN UPGRADED MIXTURE MODELS 133
2. EXISTENCE AND SUPPORT

For a measure # write #{z} for the mass that # gives to the one-point
set {z}. In this section x,, .., X,,, z;, .., Z, are fixed (observed) values. For
our purposes the likelihood function is the map

n— [ p(x:in) [1 n{z}-
=il =1

A maximum likelihood estimator # is a probability distribution that
maximizes the likelihood function. In this section it is shown that 7 always
exists {(in other words the supremum is achieved) and can be taken finitely
discrete with no more than m +n support points. (We do not address
uniqueness, but note that in some examples the maximum likelihood
estimator is clearly nonunique and also distributions with a continuous
component may maximize the likelihood.) :

The main conditions are expressed in terms of the following subsets of
Rm,

U= lplxlz),..plx,)z]) ze 2}

V={ow:0<a<1,uel}
W= {(p(x(|0), o P(x,]m)): €AY,

where # is the set of all subprobability measures on (%, €). (The positive
measures with total mass less than or equal to 1.) Tt is clear that
U< V< W. Furthermore, for every finitely discrete subprobability distribu-
tion 5 the corresponding element in W is a convex linear combination of
elements of V. If we write conv(V) for the convex hull of ¥ and conv(V)
for its closure, then it is also true that

conv( V)< Wceconv( V).

Here the last inclusion is a consequence of the geometric form of Jensen’s
inequality: the random variable ( p(x,|Z), ... p(x,,| Z)) takes its values in
the closed convex set conv( V), so its expectation under # is in this set too.
It is well known that the convex hull of a compact subset of R™ is
automatically compact, hence closed. Consequently, if V' is compact, then
so is W and the inclusions in the last display are equalities. It may be noted
also that if I/ is compact, then so is V.

TueoreM 2.1. If W is compact in R", then there exists a probability
distribution i which maximizes the likelihood function. Moreover, If V is
compact in R™, then i can be taken a discrete distribution with between n and
W+ i1 Support points.
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Proof. Maximization of the likelihood can be carried out in two steps.
First fix p,, ..., p, for the point masses {z,} and maximize

mn

n plx:ln)

over all subprobability distributions 1 with #{z;} = p, for every j. Suppose
the maximum value is m, and taken for »,. Then in the second step
maximize

my n Pj

j=1

over nonnegative subprobability vectors p={(p;, ..., p,). If the maximum
value is taken for p, then 7, is a maximum likelihood estimator.

For fixed p,, .., p, the first problem is equivalent to maximization of the
function v — [ |7, v, over all vectors v in the set W, given by

WP:(Z p_,r ]|4 Z p;p{xm|‘-‘ ) (1_2 p)”/-
j=1 -

(Here u+ oW is the set of all vectors of the form u+ ol with we W.) If
W is compact, then so is W,. Consequently, the maximum is taken for
some ve W,. Also, the set W, depends continuously on p, so that the
maximum value of the everywhere continuous function v—T17, v,
depends continuously -on p. This implies that the second maximization
problem, consisting of maximizing p — m, [[;_, p; over the compact set of
all subprobability vectors p, has a solution too. This concludes the proof of
existence of the maximum likelihood estimator.

For the proof of the second part of the theorem let p be the vector of
probabilities ({z,}, ... f{z,}) and let st W be such that v > TI_, v; 1s
maximized at

(5 i )15 )

J=1 i=1

in the first maximization problem. Thus the function

e ﬁ (Ji Biplxilz) + (1 = Z ﬁf) “’f\)

i=1 Ni=1 i=1

is maximized over W at w=#. Since this function is convex and W is
convex, the point W must be on the boundary of W. Since W is the closed
convex hull of the compact set V, every point on its boundary is expressible
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as a convex linear combination of at most m elements of . Hence W can
be written

W= : g p(xi ] ¥i)y o P(x,] 30))

for a subprobability vector q and suitable y,, .., v,. Then the discrete
measure 7 with 7{z;} =p; and f{y;} =(1 -7, p;) ¢, for each j and i
maximizes the likelihood function. Renorming the vector q so that it is a
probability vector will lead to a likelihood that is certainly not smaller.
Hence # may be assumed to be a probability measure. [

The conditions on ¥ and W in the existence theorem are usually satisfied
and can easily be checked directly. (The pictures one can draw for m=2
often give a good indication of how to approach the problem.)
Alternatively, a large class of examples can be handled through continuity
of the functions z— p(x|z). Recall that a metric space is called locally
compact if every point has a compact neighbourhood (a compact set
containing a ball around the point). Any such space has a one-point
compactification, written % U {oo}. A function f: % — R is said to vanish
at infinity if lim__ . f(z)=0. More explicitly / vanishes at infinity if for
every £ >0 there is a compact K= % with |f(z)| <z if z¢ K. The set of all
continuous functions that vanish at infinity is denoted Cy(Z'). Examples of
locally compact metric spaces are R¥, closed or open subsets of R* and
cells (¢,d]. Each of these examples is also separable and a function
vanishes at infinity if its value converges to zero as the argument
approaches an open boundary. (The open boundary as a whole, if there is
one, may be considered the point oo.)

LemMa 2.2. Let % be a locally compact separable metric space with
Borel o-field €. Suppose that for each fixed x the function z— p(x|z) is
continuous and vanishes at infinity. Then the set Uv {0} and consequently
the seis V and W are compact in R™.

Proof. Under the stated conditions the one-point compactification
Z v {oo} is a metrizable compact space. Thus both the set of all proba-
bility measures on % and the set of all one-point probability measures on
Z are compact for the weak topology. Set p(x|oc) =0 for each x. Then
z— p(x|z) is continuous on the one-point compactification. Hence so is
the map

n = (plx; 1), . p(x,,|1))

from the Borel measures on Z U {oo} to R™ The set Uw {0} is the image
of all one-point probability measures under this map. The set W is the
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image of all probability measures. The set FV is the image of
(Uu {0})x [0, 1] under the map (u, o) — ou, so is compact. J

3. CONSISTENCY

Throughout this section let # be a locally compact, separable metric
space and let % be its Borel o-field. The set # of all Borel subprobability
measures on Z can be equipped with the vague topology. This can be
determined by defining that ,=-n, or #, converges vaguely to #, if and
only if

[ fdn,~[fdn,  every fecy2)

(The set 45(Z) of continuous functions that vanish at infinity was defined
at the end of Section 2.) It is well known that under the stated on & the
vague topology is metrizable; the set of all subprobability measures is
vaguely compact; and for probability measures #, and » vague convergence
n,=# is equivalent to the more usual weak convergence. (See, e.g.,
Bauer [1].)

Assume that the kernel p(x|z) satisfies the weak smoothness condition

lim p(x|#n,)=p(x|n), for p-almost all x. (3.1)
Ho=0
(The exceptional set of x may depend on #, but not on the sequence #,,.)
Moreover, assume that

the map x — sup p(x|y)is measurable
rELL

—
[ot
[§%]

—

for every sufficiently small open ball U c 2. These conditions are certainly
satisfied if z — pix|z) is in Cy(Z') for every x. Since convergence need only
hold almost everywhere, the conditions actually cover a much larger class
of examples.

Secondly, assume that # is identifiable in the pure mixture model in the
sense that

plx: p(xln)# plx|n) =0 forevery #n' #n. (3.3)

These conditions suffice for consistency.

TuroreM 3.1. Let & be a locally compact, separable metric space and
let the kernel p(x|z) satisfy (3.1) for every ne i, (3.2), and (3.3) for the
true n. Then any sequence of maximum likelihood estimators #,, , satisfies
Bl =1 almost surely under n if m— cc.
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Progf. Case 1. Both m—oc and n—oo. Let /i be the empirical
distribution of Z,, .., Z,. 1t is well known that /=5 for almost every
realization z,, z,, .... (Varadarajan’s theorem, see Dudley [4, p.313].) Fix
such a sequence throughout the remainder of this part of the proof. It will
be shown that #=47, (X,,.. X,,2,.,2,)=# conditionally on the
sequence z,, z,, ....

Since 7 18 the maximum likelihood estimator for 5 based on i
alone,

"

:a

iz }.

Mt}

1

i

From this and concavity of the function # — log # we obtain that

; log[l—i-oc(gt ’i 1)])20? (3.4)

for every a € (0, 1). Fix such an « throughout the remainder of the proof.

The true parameter x is also identifiable in the sense that P (p(X|y)+#
p(X|5)) > 0 for every subprobability & # . Indeed, if this probability were
zero, then it would follow that u(x: p(x|y)# p(x|#), p(x|#)>0)=0. So
for p-almost x with p(x|#) >0 the densities p(x|n) and plx|y) are equal
Since the total mass of the second density is not larger than 1, the total
mass of the first density, it must be that p(x|y)=0 at almost all x where
p(x[n) = 0. Combination yields that u(x: p(x|y) # p(x|%)) = 0, in
contradiction to the identifiability condition (3.3).

Fix a subprobability measure y##5. By convexity of the function
u— ulog(1 +a(u—1)), identifiability of » and Jensen’s inequality

o P ot
Enlogll—hx(p(my} 1)]>0‘ (3.5)

(Let the quotient of a positive number and zero be infinity.) By (3.1) one
has p(x|#)— p(x|n) for almost all x. For an open ball U around ¥ define
the expression p(x|U) as sup,.., p(x|y’). Then for a sequence of open
balls U, decreasing to y we have plx|U,)= p(x|y) by (3.1). Thus by
Fatou’s lemma and (3.5) we have for every such U, |y and M,1 o, no
matter how slowly,

i plx(7)
1 I 1 = ] ;
mzl'fnfﬁx plxln) =0} { Og[ o (13(XI U,) )] : M"}

x p(x|n) du(x)>0.
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(Note that log(1 + o(u— 1)) is bounded below by log(1 - o) if v = 0.) This
implies that there is an open neighbourhood U, of y and a constant M.,

with
e p(X])
fE. 1 1+ 1 M. >0, 2

im inf £, log | 1+ (K775 -1) ] 2,20, =)

where the expectation is to be understood as conditional on the fixed
SEqUence z,, Z,, .. This has been obtained for an arbitrary y ##.

The likelihood function is at 4 not smaller than at af + (1 — )i Using
the linearity of the map # — p(x|#) this can be expressed as

o 7} )]
= 1
2 log [1 & (pur:.m

+i102[1+0¢(ﬁ{ }—1” 0. (3.7)

T
g HiZsy

Combination with (3.4) yields that

p(X,|H)
1] |<0 3.
3, oo 142 (55 1) ] < a9

Fix a vaguely open neighbourhood U of the true #. The complement of
U in the set of subprobability measures is a vaguely closed subset of a
compact set, so vaguely compact. The open cover {U,:y¢Uj of this
complement has a finite subcover U, , ..., U, . If 7 is not in U, then it is in
one of the U, , in which case p(x| U, )= p(x|#j) for every x. Thus by (3.8)

{”“}Ckul{ Zlog[ (p(X|LJ1)J“M'*‘*g°'

i=1

The conditional probability (given z,, z,, ...) of each of the sets in the union
is the probability that an average of m uniformly bounded random
variables is nonnegative. For a fixed, sufficiently large » these variables
have a positive expectation under # by (3.6). By Hoeffding’s inequality each
of the probabilities is of order ¢ ™ for some & >0. More precisely, & can
be chosen equal to

[ B

A

(M, —log(1 — o))

and the upper bound e *" holds for every » such that the expectation in
(3.6) is larger than u, say n= N. Consequently,

o

Z Sup P{ﬁm_n é D") < oC.

n=1nz=N
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By a minor modification of the Borel-Cantelli lemma it follows that
Hm « € U, eventually, almost surely.

Case 2. n fixed and m — co. The likelihood function is at # not smaller
than at o + (1 —a)#j. Rewrite this as in (3.7), but with 5 substituted for 7.
The second term on the left is bounded below by nlog(l —x). Hence we
obtain

i log [1 e (M— 1)}% —nlog(1l —u).

p(X;14)

Though the right side of this inequality is now positive, the proof can be
finished as before, where (3.5) is now used instead of (3.6).

Note. The proof of the theorem shows that condition (3.1) may be
relaxed to the two conditions:

— n— p(x|n) is vaguely continuous at the true # for almost all x;

— 1 — plx|n) is vaguely upper semi-continuous at every # for almost
all x, where the set of exceptional set of x may depend on .

Note. The measurability condition (3.2) requires some “separability” of
the stochastic process n — p(x|#); it is satisfied if there is a countable set
" of subprobability measures such that for every x the supremum of
px|y) over ye U is the same as the supremum over all y€ Un #". One
sufficient condition for this is lower semi-continuity of the map y — p(x|y)
for every x and at every y. (Then any countable dense # qualifies.) This
is in turn true if the map z — p(x|z) is lower semi-continuous and vanishes
at infinity for every x. Other situations wherein the process n— p(x|n)is
separable occur when the map z — p(x|z) is left- or right-continuous for
every x. We exploit this in the examples rather than write up a general
lemma.

To compute a maximum likelihood estimate the hardest problem is to
find the location of the support points of 7. One way to avoid this problem
is to fix a grid of support points from the beginning and maximize the
likelihood over all distributions with support in this grid. If the number of
grid points is chosen larger and larger as the number of observations
increases, this procedure is known as the “method of sieves.”

In the present problem the likelihood at # is positive only if 5 gives
positive mass to every of the points z,, .., z,. Therefore assume that our
sieves 7, , are stochastic subsets of .#, possibly depending on z,, ..., z,,
but not on X, .., X, that contain #, for every m, n. This already suffices
to render the sequence of maximum likelihood estimators over Ay
consistent.
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THEOREM 3.2. Let & be a locally compact, separable, metric space and
let the kernel p(x|z) satisfy (3.1) for every ne #, (3.2), and (3.3) for the
true v. Let 3, ,, be subsets of # that depend on z |, ..., z,,, m, and n only and
contain 1,. Let 7j satisfy

m

IT pxild) I1 iz} 2 ¢ sup ] p(Xiln) T1 niz}
i=1

i=1 NEHmy i=1 J=1
for some ¢ >0. Then ij =¥ almost surely if both m, n — .

Proof. This is almost identical to the proof of Case | in the previous
theorem. [

4. EXAMPLES

ExampLE 1 (Shifted Uniform). Let p(x|z)=1 ., ,,(x) be the density
of the uniform distribution on (z, z+ 1) and let # equal & or (0, so). Then
U and V are compact, the maximum likelihood estimator exists, has finite
discrete support, and is consistent.

First note that every point in the set ¥ defined in Section 2 is a vector
of zeros and ones. Hence U is a finite set and certainly compact. Next the
map 7 — p(x|n)=n(x—1, x) is vaguely continuous at every » that does
not charge the points x and x — 1. Hence (3.1) is satisfied for all #. The map
n —n(x—1, x) is also lower semi-continuous for every x. This implies that

sup p(x|y)= sup p(x|y)

pe L e lim s
for every vaguely dense subset of #. Take a countable dense # to verify
(3.2). Finally, suppose p(x|#') = p(x|#) for Lebesgue almost all x. In terms
of the cumulative distribution function this equality becomes n(x—)—
Hlx—1)=n'(x—)—#n'(x—1). Approach an arbitrary y from above by a
suitable sequence x, to find that g(y—1, y1=n(y—1, y] for every y,
whence #(— oo, ¥] =x'(—o0, y] for every y, and n=4".

ExamMpPLE 2 (Shifted Exponential). Let & =[0, o) and let the kernel
be the shifted exponential density p(x|z)=e¢ “~71.... Then the set V is
compact and the conditions of the consistency theorem satisfied.

To see the first, define for 1 <i<m

U, = {(P(x; Gl e X <Zs Xy }

Here for i=0 read x,=0— so that z ranges over [0, x,;,]. Then
U=(J7 , U,u {0} and to show that I is compact it suffices to show that
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cach V;= {au:0<a<1, ue U,} is compact. Each element of U, has (i — 1)
coordinates equal to zero. Assume for simplicity that x; <x,< --- <x,,.
Then

=4e(0, .0le ™, e )y j<zan}

and

Vi={a(0,... 0, %, .y e™™): 0<a<e ™},

This completes the proof of compactness of V.

Since z — p(x|z) has only one discontinuity point for every fixed x and
vanishes at infinity, one has p(x|#n,) — p(x|7n) as n,= 1y for every x where
1 does not have a jump; hence, for fixed # certainly for Lebesgue almost all
x. This verifies (3.1). If p(x|n") = p(x|n) for Lebesgue almost all x, then

| edrz)= [ e
[0,x] ~[0.x]
for almost all x. By right continuity of these functions equality must hold
for every x. Hence ' =#. This verifies (3.3).

Finally for verification of (3.2) let #" be the set of all discrete probability
measures with finite support and point masses in the rationals. Since
z— p(x|z) is right continuous and bounded for every x, it follows that for
every nes# and x there is a sequence 5, in #’ with n,=# and
p(xin,) — p(x|n). (Discretize n on a grid z,<z,< --- <z, putting the
mass of 7 in (z; ,, z,] at z, for every i.) This implies that

sup p(x|y)= sup p(x|y)

pe lf pe Um

for every open set U. Since # is countable this function is measurable.

ExampLE 3 (Uniform Scale). Let 2 = (0, o0) and p(x|z) = (1/z2) Lo, (x).
This example is treated in detail in Vardi [14] and Vardi and Zhang [157;
the latter paper also derives the asymptotic distribution of the maximum
likelihood estimator. Here we show briefly that this example also falls
under the present set-up.

Again V' is compact and the conditions of the consistency theorem are
satisfied. To see the first, set x,,.,,= o0 and for 1 <i<m

U,= {(P(xl [2)i=s plx %)) XnSz<X, 1)}-

Then U= {0}uJ7, U,. Every element of U, has / nonzero coordinates.

=1

Assume for simplicity that x; < x, < --+ <x,,. Then

Dvr'= {(If’flz}(}-: s la 13 03 Oa Eesd 0.}) x{i—l}<3<x(ij}3
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where the first zero occurs at the (/4 1)th spot. The set ¥, = {oau: 0<a <1,
ue U,} satisfies

Vi={e(l,.,1,1,0,0,.,0):0< < (1/x,}}.

Hence each V;, and consequently V, is compact.

Validity of (3.1) follows from the fact that z— p(x|z) has only one
discontinuity point and vanishes at infinity, as in the shifted exponential
example. By the same method as in that example, (3.2) follows from right
continuity of z— p(x|z) and identifiability (3.3) follows from right
continuity of x — p(x|#n).

A closer look reveals that the support points of the maximum likelihood
estimator can be taken equal to the totality of observed values

Kpn s Xpes Z1g wes 2y

ExaMpPLE 4 (Exponential Family). Let p(x[z) be the density of a
one-dimensional exponential family of the form
pix|z) =c(z) h(x) ™.
The function 2 can always be absorbed into the dominating measure g,
so it is not restrictive to assume that it is strictly positive. Let
fZ":{z:_[h(x)e““’du(x)<oo } be the natural parameter space of the
family. This is an interval that may or may not be closed at its endpoints.
In many examples the function z — p(x|z) is contained in Cy(Z) for
every x, but this is not necessarily the case if 2 is unbounded.

LemMMa 4.1. Let h be stricily positive. The function z— p(x|z) is
contained in Cyo(Z) for every x if and only if both of the following statements
are true:

— % is bounded below or p{t:t(t) <t(x)} >0 for every x;
— & is bounded above or p{t: (1) >1t(x)} >0 for every x.

Proof. Tt is well known that the function z — ¢(z) ' =] h(x) ™ du(x)
is continuous where it is defined and finite, hence so are z — ¢(z) and
z — p(x|z). The latter vanishes at infinity if and only if it converges to zero
as z converges to an open boundarty of Z. If & is bounded from above
and is open on the right, then it must be that | A(x) ™ du(x) — o0 as z
increases to the boundary of Z. Consequently, ¢(z) = 0 and p(x|z) = 0. If
% is unbounded from above, then

p{x | :’) = h(x} ( iﬂ €.-"(1(f] —z(x)} h[{) du(r}) =iy
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converges to zero as z — oc if and only if u{s: t(r) > (x)} > 0. This takes
care of the right boundary of Z. The argument for the left boundary is
analogous. [

In the case that t(x)=x the condition for z — p(x|z) to be in Co(Z)
may be summarized as: on both ends either & is bounded or the support
of u is unbounded.

If the conclusion of the lemma holds, then the set ¥ is compact, so the
maximum likelihood estimator exists and may be taken to have finite
support. Furthermore, of the conditions for consistency only (3.3) remains
to be checked.

LemMMA 4.2. Suppose that for every p null set A the set {t(x):x¢ A}
contains a converging sequence with limit not equal to inf t(x) or sup 7(x)
where x runs through the set of all such that p(x|n) is finite. Then n
is identifiable in the sense of (3.3). In particular, if ©(x)=x then
1 is identifiable if u is equivalent to Lebesgue measure on an open interval
or Is discrete with a limit peint in the interior of its supporl.

Proof. The equality p(x|5n')= p(x|n) leads immediately to

Je:z[_f} d’?:{z}zje::[xl dn(z).

If p(x|n')= p(x|n) almost everywhere, then n’' and 7 have the same
Laplace transform at almost every t(x). If the Laplace transforms are equal
on a converging sequence with limit in the interior of the interval where
they are finite, then the two measures are equal. This interval includes all
values t(x) for which p(x|#) is finite, whence the result. §
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