The rate of convergence in law of the maximum of
an exponential sample *
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Summnmary We derive a uniform rate of convergence of (1 —nx)" to e ® (x = 0). It provides a

uniform rate of convergence for the distribution of the largest order statistic in a sample
from an exponential distribution to the “double expenential” extreme value distribution. It likewise
provides a rale of convergence for the distribution of the smallest order statistic from a uniform
distribution.

1 Imtroduction

Let Xy, ..., X, be a random sample from a df F and let M, = max{X, ..., X,}. Then
it is well known that, after appropriate normalization, the limiting distribution of M,
is one of three types. For a recent reference see DE Haan [4] or GaLaMEBOS [3]. The
question naturally arises as to the rate of such convergence. We will focus here on a
very special case: if F(x)=1—e™*, 0 < x < oo, then

P(’Iwri_x_l logn = t) = (1 =i le_m)n }I—-a‘l log n,oo)(r) = cXp(_e—ﬂr) = Ac&(z} (l)

as n— oo. It is apparent that a uniform rate of convergence of (1—n 'x)" to e =~
would immediately provide a uniform rate of convergence in (l1). Also note that
(1—n~'x)"—e~* has an obvious probability interpretation as well: if U, ..., U, is a
sample of Uniform (0,1) rv’s and U,; = min{U,, ..., U,}, then

P02 %) = (11750 Lo ) >~ = B(¥ > %) 2)

as n— o where Y ~exponential (1).

In Section 2 of this note an extremely tight bound for the maximum difference be-
tween the left and right sides of (2) is given. In Section 3 we apply the bound to
obtain a uniform rate of convergence in (1), compare our special uniform bound to the
more general pointwise bounds of GALAMBOS [3], and mention some related work.

x

2 The uniform rate of convergence of (1—n 'x)” to e~

Let 4,(x)=|(1—n"1x) Lo m(x)—e™ 7|, 4, = supg<x< »4,(x), and let x, be such that
A, = A (x,) (1 (x)=1 if xeA, otherwise 0). It is well-known that A4,—0 as n— oo,
An inequality on page 242 of WHITTAKER and WATSON [6] leads to the uniform rate
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nd, <4e %~ .54; Lemma 1 of Aieam [1] gives nd,<e™ ' ~.37. We strengthen this
substantially (for n > 1; see table below):

PROPOSITION 1. 2¢ > <nd,<@2+n ')e™? for all n= L.

In fact (proof omitted here), the convergence of nd, to 2¢”? may be shown to be
monotone in #n. We also find:

PROPOSITION 2. 2—n ' < x,<2 for all # =1 (strict for n> 1).

PROOFS. Set = x/nsothat0 <6< 1for0<x<n. Define,forn=1and0<0<x1,

f(@=e—(1-6)"20.

Then we find A, = maxy<p<;/,(0) (since e =f,(1)). When n=1 the maximum of
£.(0) is achieved at 0, = 1 and equals e~ L Hence A, =e '. For n > 2 we proceed to
find the maximum value of f,()) and the maximizing 0-value, say 0,. Since f,(0) is
non-positive at 0 and 1 and has a unique root in (0,1), the root is 0,. The equation
£1(6,) =0 is equivalent to

e (3)
and therefore f,(0,) = 0,e7" > f,(1) = e™". Writing A(x) = xe™*, we therefore have
nd, = nf,(0,) = nf,e~"" = h(n0,). “4)

To bound 76, assume Proposition 2: 2—n~ ' < nf, < 2 (n > 1). This together with (4)
and the fact that A(x)=xe™*>2e”? for 1 < x <2 implies that i(n0,) > 2e™%. An
expansion of A(x) about x =2 yields, with nf, <o, <2, 3

nd, = h(nf,) = h(2)—h'(2,)(2—n0,) < 2e”>+e7*2—nl,) < T e

Hence only Proposition 2 remains to be proved.
Proposition 2 may be verified numerically for n=1, ..., 6 (see table below). Here-
after assume n > 6. Since

—1—x log(l—x) < Ixtixi(l—x)"
for 0 < x < 1, it follows from (3) that

(n—1)"" <40, +30;(1-6,)7"
which implies that

0, > {3+ D/[2(n— DT} {1~ (1 =8(n—)/[3(n+ D7}
Now 1—(1—)* = tu(l+4u), 0<u<1, so that

8, > {3(n-+ D/[201— D]} {4n— D/[3(n+ 12T {1+20n— 1)/[3(n+ D’}
= 2+ 1) {1+ [(r— )22 ] +,} > 2An+ 1) {L+ (= 1j2nH} = 7' C—n"Y
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since ¢, = {2(n—1)/Br+1)°1}—{(n—1)/2r*)} >0 for n>6. This completes the
proof of the left inequality of Proposition 2.
To prove the right inequality, assume it false (for some n > 3). Then 0, > 2(n, and
since the function g defined by
g(x) = —1—=x""log(1—x) = dx+4x*+...

is strictly increasing in 0 < x < 1, it follows that
90,) = gQ2[n) = ¥, (k+1)7'2/m)*> ¥ n7"
=i k=1
On the other hand, from (3)

60) == = ¥ 7"

a contradiction.
The following numerical values illustrate the propositions:

n 3o nA, @R+n He?
i 1.000 * 367879 ~e ! 406
! 1.594 324 338
3 1.748 .304 316
4 1.818 295 305
5 1.857 290 298
6 1.882 287 293
10 1.931 280 284
20 1.966 275 277
50 1.987 292 273
100 1.993 272 272
oo 2 270671 =~2e™2 =~ 270671

* AiLam’s [1] bound on n4,, for all n.

3 A uniform convergence rate for the maximum of exponential rv’s

&£x

Suppose that X, ..., X, is a sample from the exponential df F(x)=1-—-e ™,
0<x< oo and M, =max{X,, ..., X,}. The following proposition follows immedia-~
tely from Proposition 1:

PROPOSITION 3.
sup,|P(M,—a " tlogn < )—A, (O] < n”'Q+n e 2
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In contrast to the rapid rate of convergence given by Proposition 3, it is well-known
that the distribution of the maximum of a sample of normal random variables conver-
ges to its asymptotic {(double exponential) form extremely slowly; see FISHER and
TipPETT [2] or GALAMBOS [3], page 117.

GALAMBOS [3] has given a general theorem concerning the pointwise (in t) rate of
convergence of the distributions of maxima to extreme value distributions (see
Theorem 2.10.1 on page 113). In the special case considered here (with o= 1 for
simplicity) GALAMBOS’ theorem yields (Examples 2.10.1, page 115)

[P(M,—logn < )—A,(1)] < A [2n e ¥ +2n 2 (1 —q) 1]

for fixed ¢ with (2/3)e 2 < ¢ < 1. The uniform rate of convergence given by Proposi-
tion 3 does not seem to be implied by this latter pointwise bound. It would be of
interest to have a uniform version of GALAMBOS’ general pointwise bounds.

A referee has remarked that Proposition 3 might be used as a first step to obtain
rates in the general case: If F"(a,x+b,) — G(x) weakly, then, with F=1—F,

SUDIF'(a,X+b,) = G(x)| < sup,|F"(a,x+b,)—e "] L sup e @t _ G(x)|
= sup,[(L—n" "¢ ™) = 4, ()] + sup,le” @ — G(x)|

<n '@ +n e Frsuple TEER Gl

and this latter term may be easier to handle (cf. (145) on page 114 of GALAMBOS [3]).

If the above probabilistic context is abandoned and one considers approximating
e~ as closely as possible by a polynomial of degree n (1 —n~ ' x)” being a very partic-
ular such polynomial), then geometric rates of convergence are possible; see e.g.
RaHMAN and SCHMEISSER [3].
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