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is linear. In addition, the asymptotic distribution can be characterized by a
modified invelope process. Analogous results hold when one uses the deriva-
tive of the convex LSE to perform derivative estimation. These asymptotic
results facilitate a new consistent testing procedure on the linearity against
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1. Introduction

Shape-constrained estimation has received much attention recently. The attrac-
tion is the prospect of obtaining automatic nonparametric estimators with no
smoothing parameters to choose. Convexity is among the popular shape con-
straints that are of both mathematical and practical interest. Groeneboom,
Jongbloed and Wellner (2001b) show that under the convexity constraint, the
least squares estimator (LSE) can be used to estimate both a density and a

regression function. For density estimation, they showed that the LSE f̂n of
the true convex density f0 converges pointwise at a n−2/5 rate under certain
assumptions. The corresponding asymptotic distribution can be characterized
via a so-called “invelope” function investigated by Groeneboom, Jongbloed and
Wellner (2001a). In the regression setting, similar results hold for the LSE r̂n
of the true regression function r0.

However, in the development of their pointwise asymptotic theory, it is re-
quired that f0 (or r0) has positive second derivative in a neighborhood of the
point to be estimated. This assumption excludes certain convex functions that
may be of practical value. Two further scenarios of interest are given below:

Scenario 1. At the point x0, the k-th derivative f
(k)
0 (x0) = 0 (or r

(k)
0 (x0) = 0)

for k = 2, 3, . . . , 2s − 1 and f
(2s)
0 (x0) > 0 (or r

(2s)
0 (x0) > 0), where

s is an integer greater than one;
Scenario 2. There exists some region [a, b] on which f0 (or r0) is linear.

Scenario 1 can be handled using techniques developed in Balabdaoui, Rufibach
and Wellner (2009). The aim of this manuscript is to provide theory in the
setting of Scenario 2.

We prove that for estimation of a convex density when Scenario 2 holds,
at any fixed point x0 ∈ (a, b), the LSE f̂n(x0) converges pointwise to f0(x0)

at a n−1/2 rate. Its (left or right) derivative f̂ ′
n(x0) converges to f ′

0(x0) at
the same rate. The corresponding asymptotic distributions are characterized
using a modified invelope process. More generally, we show that the processes{√

n(f̂n(x)−f0(x)) : x ∈ [a+δ, b−δ]
}
and

{√
n(f̂ ′

n(x)−f ′
0(x)) : x ∈ [a+δ, b−δ]

}
both converge weakly for any δ > 0. We remark that unlike the case of Groene-
boom, Jongbloed and Wellner (2001b), these processes are not local, because
intuitively speaking, the linear behavior of the true function is non-local, which
requires linearity on an interval with positive length. In addition, there does
not exist a “universal” distribution of f̂n on (a, b), i.e. the pointwise limit dis-
tributions at different points are in general different. In addition, we show that
the derived asymptotic processes can be used in a more practical setting where
one would like to perform tests on the linearity against a convex alternative.
Moreover, we study the adaptation of the LSE f̂n at the boundary points of the
linear region (e.g. a and b). Note that the difficulty level of estimating f0(a) and
f0(b) depends on the behavior of f0 outside [a, b]. Nevertheless, we show that

f̂n(a) (or f̂n(b)) converges to f0(a) (or f0(b)) at the minimax optimal rate up to
a negligible factor of

√
log logn. Last but not least, we establish the analogous

rate and asymptotic distribution results for the LSE r̂n in the regression setting.
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Our study yields a better understanding of the adaptation of the LSE in
terms of pointwise convergence under the convexity constraint. It is also one of
the first attempts to quantify the behavior of the convex LSE at non-smooth
points. When the truth is linear, the minimax optimal n−1/2 pointwise rate is
indeed achieved by the LSE on (a, b). The optimal rate at the boundary points
a and b is also achievable by the LSE up to a log-log factor. These results
can also be applied to the case where the true function consists of multiple
linear components. Furthermore, our results can be viewed as an intermediate
stage for the development of theory under misspecification. Note that linearity
is regarded as the boundary case of convexity: if a function is non-convex, then
its projection to the class of convex functions will have linear components. We
conjecture that the LSE in these misspecified regions converges at an n−1/2 rate,
with the asymptotic distribution characterized by a more restricted version of
the invelope process. More broadly, we expect that this type of behavior will
be seen in situations of other shape restrictions, such as log-concavity for d = 1
(Balabdaoui, Rufibach and Wellner, 2009) and k-monotonicity (Balabdaoui and
Wellner, 2007).

The LSE of a convex density function was first studied by Groeneboom,
Jongbloed and Wellner (2001b), where its consistency and some asymptotic
distribution theory were provided. On the other hand, the idea of using the
LSE for convex regression function estimation dates back to Hildreth (1954). Its
consistency was proved by Hanson and Pledger (1976), with some rate results
given in Mammen (1991). In this manuscript, for the sake of mathematical
convenience, we shall focus on the non-discrete version discussed by Balabdaoui
and Rufibach (2008). See Groeneboom, Jongbloed and Wellner (2008) for the
computational aspects of all the above-mentioned LSEs.

There are studies similar to ours regarding other shape restrictions. See Re-
mark 2.2 of Groeneboom (1985) and Carolan and Dykstra (1999) in the context
of decreasing density function estimation (a.k.a. Grenander estimator) when
the truth is flat and Balabdaoui (2014) with regard to discrete log-concave
distribution estimation when the true distribution is geometric. In addition,
Groeneboom and Pyke (1983) studied the Grenander estimator’s global be-
havior in the L2 norm under the uniform distribution and gave a connection
to statistical problems involving combination of p-values and two-sample rank
statistics, while Cator (2011) studied the adaptivity of the LSE in monotone
regression (or density) function estimation. For estimation under misspecifica-
tion of various shape constraints, we point readers to Jankowski (2014), Cule
and Samworth (2010), Dümbgen, Samworth and Schuhmacher (2011), Chen and
Samworth (2013), and Balabdaoui et.al. (2013). More recent developments on
global rates of the shape-constrained methods can be found in Guntuboyina and
Sen (2015), Doss and Wellner (2016), and Kim and Samworth (2014). See also
Meyer (2013) and Chen and Samworth (2016) where an additive structure is
imposed in shape-constrained estimation in the multidimensional setting.

The rest of the paper is organized as follows: in Section 2, we study the behav-
ior of the LSE for density estimation. In particular, for notational convenience,
we first focus on a special case where the true density function f0 is taken to be
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triangular. The convergence rate and asymptotic distribution are given in Sec-
tion 2.1.1 and Section 2.1.2. Section 2.1.3 demonstrates the practical use of our
asymptotic results, where a new consistent testing procedure on the linearity
against a convex alternative is proposed. More general cases are handled later
in Section 2.2 based on the ideas illustrated in Section 2.1. Section 2.3 discusses
the adaptation of the LSE at the boundary points. Analogous results with re-
gard to regression function estimation are presented in Section 3. Some proofs,
mainly on the existence and uniqueness of a limit process and the adaptation
of the LSE, are deferred to the appendices.

2. Estimation of a density function

Given n independent and identically distributed (IID) observations from a den-
sity function f0 : [0,∞) → [0,∞). Let F0 be the corresponding distribution
function (DF). In this section, we denote the convex cone of all non-negative
continuous convex and integrable functions on [0,∞) by K. The LSE of f0 is
given by

f̂n = argmin
g∈K

(1
2

∫ ∞

0

g(t)2dt−
∫ ∞

0

g(t)dFn(t)
)
,

where Fn is the empirical distribution function of the observations. Furthermore,
we denote the DF of f̂n by F̂n.

Throughout the manuscript, without specifying otherwise, the derivative of
a convex function can be interpreted as either its left derivative or its right
derivative.

2.1. A special case

To motivate the discussion, as well as for notational convenience, we take f0(t) =
2(1 − t)1[0,1](t) in Section 2.1.1 and Section 2.1.2. Extensions to other convex
density functions are presented in Section 2.2.

Consistency of f̂n over (0,∞) in this setting can be found in Groeneboom,

Jongbloed and Wellner (2001b). Balabdaoui (2007) has shown how f̂n can be
used to provide consistent estimators of f0(0) and f ′

0(0).
Here we concentrate on the LSE’s rate of convergence and asymptotic distri-

bution.

2.1.1. Rate of convergence

The following proposition shows that the convergence rate at any interior point
where f0 is linear is n−1/2, thus achieving the optimal rate given in Example 1
of Cai and Low (2015).

Theorem 2.1 (Pointwise rate of convergence). Suppose f0(t) = 2(1−t)1[0,1](t).
Then for any fixed x0 ∈ (0, 1),

|f̂n(x0)− f0(x0)| = Op(n
−1/2).
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Fig 1. The case of c > 0: (A) illustrates the situation of k ≤ −2, where F̂n(x0)−F0(x0) ≥ cx0;

(B) illustrates the situation of k > −2, where F̂n(x0)−F0(x0) < −c(1−x0). In both scenarios,
the dashed curve represents the supporting hyperplane of the LSE, while the thick solid line
represents the true density f0.

Proof of Theorem 2.1

A key ingredient of this proof is the version of Marshall’s lemma in this setting
(Dümbgen, Rufibach and Wellner, 2007, Theorem 1), which states that

‖F̂n − F0‖∞ ≤ 2‖Fn − F0‖∞, (2.1)

where ‖·‖∞ is the uniform norm.

Let c = f̂n(x0) − f0(x0). Two cases are considered here: (a) c > 0 and (b)
c < 0.

In the first case, because f̂n is convex, one can find a supporting hyperplane
of f̂n passing through (x0, f0(x0) + c) such that

f̂n(y) ≥ k(y − x0) + f0(x0) + c, for any y ∈ [0,∞),

where k is a negative slope. If k ≤ −2, then F̂n(x0) − F0(x0) ≥ cx0 > 0.
Otherwise, F̂n(x0) − F0(x0) < −c(1 − x0) < 0. Figure 1 explains the above
inequalities graphically. Consequently, |F̂n(x0)− F0(x0)| ≥ c min(x0, 1− x0).

In the second case, if we can find 0 ≤ t < x0 such that f̂n and f0 intersect at
the point (t, 2− 2t), then

F̂n(t)− F0(t) ≥
1

2
t

|c|t
x0 − t

≥ 0;

(
F̂n(x0)− F̂n(t)

)
−
(
F0(x0)− F0(t)

)
≤ −1

2
|c|(x0 − t) < 0.

Otherwise, by taking t = 0, we can still verify that the above two inequalities
hold true. Figure 2 illustrates these findings graphically.
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Fig 2. The case of c < 0: (A) illustrates the inequalities when f̂n and f0 has an intersection

on [0, x0); the situation where f̂n and f0 has no intersection on [0, x0) is represented in (B).
In both scenarios, the dotted curve represents the LSE and the thick solid line represents the
true density f0.

Therefore,

2‖F̂n − F0‖∞ ≥ max
{
|F̂n(t)− F0(t)|,

∣∣(F̂n(x0)− F0(x0)
)
−
(
F̂n(t)− F0(t)

)∣∣}
≥ |c|

2
max

( t2

x0 − t
, x0 − t

)
≥ |c|x0

4
,

where the last inequality uses the fact that for any t ∈ [0, x0), t
2/(x0 − t) is an

increasing function of t while x0 − t is a decreasing function of t.
By (2.1), we have that

Op(n
−1/2) = 4‖Fn − F0‖∞ ≥ 2‖F̂n − F0‖∞ ≥ min

(
2x0, 2− 2x0,

x0

4

)
|c|.

It then follows that c = Op(n
−1/2), as desired. �

Corollary 2.2 (Uniform rate of convergence). For any 0 < δ ≤ 1/2,

sup
x∈[δ,1−δ]

|f̂n(x)− f0(x)| = Op(n
−1/2).

Proof of Corollary 2.2

A closer look at the proof of Theorem 2.1 reveals that we have

Op(n
−1/2) = 4‖Fn − F0‖∞ ≥ min

(
2x, 2− 2x,

x

4

)
|f̂n(x)− f0(x)|

simultaneously for every x ∈ [δ, 1− δ]. Therefore,

Op(n
−1/2) = inf

x∈[δ,1−δ]
min

(
2x, 2− 2x,

x

4

)
sup

x∈[δ,1−δ]

|f̂n(x)− f0(x)|.

Consequently, supx∈[δ,1−δ] |f̂n(x)− f0(x)| is Op(n
−1/2). �
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Let f̂−
n and f̂+

n denote respectively the left and right derivatives of f̂n. The
same convergence rate also applies to these derivative estimators.

Corollary 2.3 (Uniform rate of convergence: derivatives). For any 0 < δ ≤ 1/2,

sup
x∈[δ,1−δ]

max
(
|f̂−

n (x)− f ′
0(x)|, |f̂+

n (x)− f ′
0(x)|

)
= Op(n

−1/2).

Proof of Corollary 2.3

By the convexity of f̂n,

sup
x∈[δ,1−δ]

max
(
|f̂−

n (x)− f ′
0(x)|, |f̂+

n (x)− f ′
0(x)|

)

≤ max
(
|f̂−

n (δ)− f ′
0(δ)|, |f̂+(1− δ)− f ′

0(1− δ)|
)

≤ 2

δ
max

(∣∣f̂n(δ)− f̂n(δ/2)− f0(δ) + f0(δ/2)
∣∣,∣∣f̂n(1− δ/2)− f̂n(1− δ)− f0(1− δ/2) + f0(1− δ)

∣∣)
= Op(n

−1/2),

where the final equation follows from Corollary 2.2. �

2.1.2. Asymptotic distribution

To study the asymptotic distribution of f̂n, we start by characterizing the limit
distribution.

Theorem 2.4 (Characterization of the limit process). Let X(t) = U(F0(t)) and

Y (t) =
∫ t

0
X(s)ds for any t ≥ 0, where U is a standard Brownian bridge process

on [0, 1]. Then almost surely (a.s.), there exists a uniquely defined random con-
tinuously differentiable function H on [0, 1] satisfying the following conditions:

(1) H(t) ≥ Y (t) for every t ∈ [0, 1];
(2) H has convex second derivative on (0, 1);
(3) H(0) = Y (0) and H ′(0) = X(0);
(4) H(1) = Y (1) and H ′(1) = X(1);

(5)
∫ 1

0

(
H(t)− Y (t)

)
dH(3)(t) = 0.

The above claim also holds if we instead consider a standard Brownian motion
X̃(t) on [0, 1] and replace (X,Y,H)T by (X̃, Ỹ , H̃)T , where Ỹ (t) =

∫ t

0
X̃(s)ds,

and where H̃ is different from H.

Figure 3 shows a typical realization of X(t), Y (t), H ′(t) and H(t). A detailed
construction of the above limit invelope process can be found in Appendix I.
Note that our process is defined on a compact interval, so is technically different
from the process presented in Groeneboom, Jongbloed and Wellner (2001a)
(which is defined on the whole real line). As a result, extra conditions regarding
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Fig 3. A typical realization of X(t), Y (t), H′(t) and H(t) in Theorem 2.4 with X(t) =
U(F0(t)) and F0 the distribution function with triangular density f0(t) = 2(1 − t)1[0,1](t):
in (A), X(t) and H′(t) are plotted in solid and dash-dotted curves respectively; in (B), the
corresponding Y (t) is plotted in solid curve, while the invelope process H(t) is illustrated in
dash-dotted curve.

the behavior of H (and H ′) at the boundary points are imposed here to ensure
its uniqueness.

Other characterization of the limit process is also possible. A slight variant
is given below, which proof can also be found in Appendix I.

Corollary 2.5 (Different characterization). Conditions (3) and (4) in the state-
ment of Theorem 2.4 can be replaced respectively by

(3’) limt→0+ H(2)(t) = ∞, and
(4’) limt→1− H(2)(t) = ∞.

Now we are in the position to state our main result of this section.

Theorem 2.6 (Asymptotic distribution). Suppose f0(t) = 2(1 − t)1[0,1](t).
Then for any δ > 0, the process

√
n

(
f̂n(x)− f0(x)

f̂ ′
n(x)− f ′

0(x)

)
⇒

(
H(2)(x)
H(3)(x)

)
in C[δ, 1− δ]×D[δ, 1− δ],

where C is the space of continuous functions equipped with the uniform norm, D
is the Skorokhod space, and H is the invelope process defined in Theorem 2.4.

In particular, for any x0 ∈ (0, 1),

√
n
(
f̂n(x0)− f0(x0), f̂

′
n(x0)− f ′

0(x0)
)T d→

(
H(2)(x0), H

(3)(x0)
)T

. (2.2)
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Proof of Theorem 2.6

Before proceeding to the proof, we first define the following processes on [0,∞):

Xn(t) = n1/2
(
Fn(t)− F0(t)

)
;

Yn(t) = n1/2

∫ t

0

(
Fn(s)− F0(s)

)
ds;

Ĥn(t) = n1/2

∫ t

0

{∫ s

0

(
f̂n(v)− f0(v)

)
dv

}
ds. (2.3)

Furthermore, define the set of “knots” of a convex function f on (0, 1) as

S(f) =
{
t ∈ (0, 1) : f(t) <

1

2

(
f(t− δ) + f(t+ δ)

)
, ∀δ ∈

(
0,min(1− t, t)

)}
.

(2.4)

We remark that the above definition of knots can be easily extended to convex
functions with a different domain.

By Lemma 2.2 of Groeneboom, Jongbloed and Wellner (2001b), we have that

Ĥn(t) ≥ Yn(t) for t ∈ [0, 1], with equality if t ∈ S(f̂n). In addition,
∫ 1

0
(Ĥn(t)−

Yn(t))dĤ
(3)
n (t) = 0.

Now define the space Em of vector-valued functions (m ≥ 3) as

Em = C[0, 1]× C[0, 1]× C[1/m, 1− 1/m]×D[1/m, 1− 1/m]× C[0, 1]×D[0, 1].

and endow Em with the product topology induced by the uniform norm on C
(i.e. the space of continuous functions) and Skorokhod metric on D (i.e. the
Skorokhod space). Let Em be supported by the stochastic process

Zn =
(
Ĥn, Ĥ

′
n, Ĥ

(2)
n , Ĥ(3)

n , Yn, Xn

)T

.

Corollary 2.3 entails the tightness of Ĥ
(3)
n in D[1/m, 1 − 1/m], while Corol-

lary 2.2 entails the tightness of Ĥ
(2)
n in C[1/m, 1 − 1/m]. In addition, both Ĥn

and Ĥ ′
n are tight in C[0, 1] (via an easy application of Marshall’s lemma). Since

Xn converges to a Brownian bridge, it is tight in D[0, 1] as well. Finally, the
same is also true for Yn.

Note that Em is separable. For any subsequence of Zn, by Prohorov’s the-
orem, we can construct a further subsequence Znj such that {Znj}j converges
weakly in Em to some

Z0 =
(
H0, H

′
0, H

(2)
0 , H

(3)
0 , Y,X

)T

.

In addition, it follows from a diagonalization argument that a further extraction
can make {Znj}j converge weakly to Z0 in every Em. Using Skorokhod’s repre-
sentation theorem, we can assume without loss of generality that for almost ev-
ery ω in the sample space, Znj (ω) → Z0(ω). Moreover, since X has a continuous
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path a.s., the convergence of Xnj can be strengthened to ‖Xnj (ω)−X(ω)‖∞ →
0, where ‖·‖∞ is the uniform norm. In the rest of the proof, ω is suppressed
for notational convenience, so depending on the context, Znj (or Z0) can either
mean a random variable or a particular realization.

In the following, we shall verify that H0 satisfies all the conditions listed in
the statement of Theorem 2.4.

(1) The fulfillment of this condition follows from the fact that

inf
t∈[0,1]

(
Ĥn(t)− Yn(t)

)
≥ 0 for all n ∈ N.

(2) Since f0 is linear on [0, 1], Ĥ
(2)
n is convex on [0, 1] for every n ∈ N. The

pointwise limit of convex functions is still convex, so H
(2)
0 is convex on

[1/m, 1− 1/m]. The condition is then satisfied by letting m → ∞.
(3) This condition always holds in view of our construction of Ĥn in (2.3).

(4) We consider two cases: (a) if H
(2)
0 (1 − 1/m) → ∞ as m → ∞, then the

conditions are satisfied in view of Corollary 2.5; (b) otherwise, it must

be the case that H
(2)
0 (1−) is bounded from above. Note that H

(2)
0 (1−) is

also bounded from below a.s., which can be proved by using Corollary 2.3

and the fact that Ĥ
(2)
n is convex. Denote by τnj the knot of f̂nj closest to

1. Then by Lemma 2.2 of Groeneboom, Jongbloed and Wellner (2001b),
Ĥnj (τnj ) = Ynj (τnj ) and Ĥ ′

nj
(τnj ) = Xnj (τnj ). Since t = 1 is a knot

of f0, consistency of f̂nj allows us to see that limj→∞ τnj = 1. Because

H
(2)
0 (1−) is finite and both Y (t) andX(t) are sample continuous processes,

taking τnj → 1− yields H0(1) = Y (1) and H ′
0(1) = X(1). Note that this

argument remains valid even if τnj > 1, because in this scenario, Ĥ
(2)
nj is

linear and bounded on [2− τnj , τnj ].

(5) It follows from
∫ 1−1/m

1/m

(
Ĥnj (t)− Ynj (t)

)
dĤ

(3)
nj (t) = 0 that

∫ 1−1/m

1/m

(
H0(t)− Y (t)

)
dH

(3)
0 (t) = 0.

Since this holds for any m, one necessarily has that∫ 1

0

(
H0(t)− Y (t)

)
dH

(3)
0 (t) = 0.

Consequently, in view of Theorem 2.4, the limit Z0 is the same for any sub-
sequences of Zn in Em. Fix any m > 1/δ. It follows that the full sequence
{Zn}n converges weakly in Em and has the limit (H,H ′, H(2), H(3), Y,X)T .
This, together with the fact that H(3) is continuous at any fixed x0 ∈ (0, 1)
with probability one (which can be proved using Conditions (1) and (5) of H),
yields (2.2). �

It can be inferred from Corollary 2.5 and Theorem 2.6 that both f̂n(0) and

f̂n(1) do not converge to the truth at a n−1/2 rate. In fact, Balabdaoui (2007)
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proved that f̂n(0) is an inconsistent estimator of f0(0). Nevertheless, the follow-

ing proposition shows that f̂n(0) is at most Op(1). For the case of the maximum
likelihood estimator of a k monotone density, we refer readers to Gao and Well-
ner (2009) for a similar result.

Proposition 2.7 (Behavior at zero). f̂n(0) = Op(1).

Proof of Proposition 2.7

Let τn be the left-most point in S(f̂n). Since f̂n(0) is finite for every n, the

linearity of f̂n on [0, τn] means that

f̂n(t) ≥ (1− t/τn)f̂n(0)

for every t ≥ 0. By Corollary 2.1 of Groeneboom, Jongbloed and Wellner
(2001b),

Fn(τn) =

∫ τn

0

f̂n(t)dt ≥
∫ τn

0

(1− t/τn)f̂n(0)dt = τnf̂n(0)/2.

It follows from Theorem 9.1.2 of Shorack and Wellner (1986) that

f̂n(0) ≤ 2Fn(τn)/τn ≤ 2 sup
t>0

Fn(t)

F0(t)

F0(t)

t
≤ Op(1).

2.1.3. Testing against a general convex density

The asymptotic results established in Section 2.1.2 can be used to test the
linearity of a density function against a general convex alternative. To illustrate
the main idea, in this section, we focus on the problem of testing H0 : f0(t) =
2(1− t)1[0,1](t) against

H1 : f0 ∈ K and f0(t) �= 2(1− t)1[0,1](t) for some t ∈ (0,∞).

The test we propose is free of tuning parameters. Since the triangular distribu-
tion is frequently used in practice, and is closely related to the uniform distribu-
tion (e.g. the minimum of two independent U [0, 1] is triangular), our test could
be a valuable addition to practitioners’ toolkit. For other tests on the linearity
in the regression setting, we point readers to Meyer (2003) and Sen and Meyer
(2013).

Our test is based on the statistic

Tn :=
√
n sup

t∈[0,∞)

{
2(1− t)1[0,1](t)− f̂n(t)

}
.

The behavior of Tn under H0 is established below.

Proposition 2.8 (Behavior of Tn under H0). Write T := − inft∈[0,1] H
(2)(t),

where H is the invelope process defined in Theorem 2.4. Then Tn
d→ T . More-

over, P (T ≥ 0) = 1.
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Table 1

Estimated upper-quantiles of T based on 105 simulations

α 1% 2.5% 5% 10% 20%
tα 4.76 4.21 3.75 3.23 2.63

Fig 4. The estimated density function of T based on 105 simulations. Here we used the kernel
density estimator with the boundary correction at zero.

Proof of Proposition 2.8

The first part follows directly from Theorem 2.6 and Corollary 2.5. For the
second part, note that if T < 0, then inft∈[0,1] H

(2)(t) > 0, which would imply
H ′(1)−H ′(0) > 0. But this would violate the characterization of H (i.e. H ′(1)−
H ′(0) = X(1)−X(0) = 0, since X is a Brownian bridge). Consequently, P (T ≥
0) = 1. �

The quantiles and the density function of T can be approximated numerically
using Monte Carlo methods. They are given in Table 1 and Figure 4. Here we
denote the upper α quantile of T by tα. Our numerical evidence also suggests
that the density function of T appears to be log-concave. For related work on
log-concavity of Chernoff’s distribution (i.e. a different random variable also
associated with a Brownian motion), see Balabdaoui and Wellner (2014).

For a test of size α ∈ (0, 1), we propose to reject H0 if Tn > tα. According to
Proposition 2.8, this test is asymptotically of size α. In the following, we prove
that our test is also consistent, i.e., its power goes to one as n → ∞.

Theorem 2.9 (Consistency of the test). Under H1, for any α > 0, P (Tn >
tα) → 1 as n → ∞.

Proof of Theorem 2.9

Suppose that f0(t) �= 2(1 − t)1[0,1](t) for some t ∈ (0,∞). First, we show that
there exists some t∗ ∈ (0, 1) such that f0(t

∗) < 2(1 − t∗). Suppose the con-
clusion fails, then f0(t) ≥ 2(1 − t)1[0,1](t) for all t > 0. Hence

∫∞
0

f0(t)dt ≥
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∫∞
0

2(1−t)1[0,1](t)dt = 1 with strict inequality if f0(t) > 2(1−t)1[0,1](t) for some
t > 0. But then f0 is not a density and we conclude that f0(t) = 2(1− t)1[0,1](t)
for every t ∈ (0,∞). This contradiction yields the conclusion.

Next, it follows from Theorem 3.1 of Groeneboom, Jongbloed and Wellner
(2001b) that the LSE f̂n is consistent at t∗, i.e., |f̂n(t∗)−f0(t

∗)| a.s.→ 0. Therefore,
almost surely,

Tn/
√
n > 2(1− t∗)− f̂n(t

∗) = 2(1− t∗)− f0(t
∗) + f0(t

∗)− f̂n(t
∗)

→ 2(1− t∗)− f0(t
∗) > 0.

It follows that P (Tn > tα) → 1. �

2.2. More general settings

The aim of this subsection is to extend the conclusions presented in Section 2.1
to more general convex densities. We assume that f0 is positive and linear on
(a, b) for some 0 ≤ a < b, where the open interval (a, b) is picked as the “largest”
interval on which f0 remains linear. More precisely, it means that there does
not exist a bigger open interval (a′, b′) (i.e. (a, b) ⊂ (a′, b′) ⊆ (0,∞)) on which
f0 is linear.

For the sake of notational convenience, we suppress the dependence of H∗
on a, b and F0 in the following two theorems. Their proofs are similar to those
given in Section 2.1, so are omitted for brevity.

Theorem 2.10 (Characterization of the limit process). Let X(t) = U(F0(t))

and Y (t) =
∫ t

0
X(s)ds for any t > 0. Then a.s., there exists a uniquely defined

random continuously differentiable function H∗ on [a, b] satisfying the following
conditions:

(1) H∗(t) ≥ Y (t) for every t ∈ [a, b];
(2) H∗ has convex second derivative on (a, b);
(3) H∗(a) = Y (a) and H ′

∗(a) = X(a);
(4) H∗(b) = Y (b) and H ′

∗(b) = X(b);

(5)
∫ b

a

(
H∗(t)− Y (t)

)
dH

(3)
∗ (t) = 0.

Theorem 2.11 (Rate and asymptotic distribution). For any 0 < δ ≤ (b−a)/2,

sup
x∈[a+δ,b−δ]

(
|f̂n(x)− f0(x)|, |f̂ ′

n(x)− f ′
0(x)|

)
= Op(n

−1/2).

Moreover,

√
n

(
f̂n(x)− f0(x)

f̂ ′
n(x)− f ′

0(x)

)
⇒

(
H

(2)
∗ (x)

H
(3)
∗ (x)

)
in C[a+ δ, b− δ]×D[a+ δ, b− δ],

where H∗ is the invelope process defined in Theorem 2.10.
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Fig 5. Typical f0 in different cases are illustrated, where we set α = 2 in (B) and (C).

2.3. Adaptation at the boundary points

In this subsection, we study the pointwise convergence rate of the convex LSE
f̂n at the boundary points of the region where f0 is linear. Examples of such
points include a and b given in Section 2.2.

To begin our discussion, we assume that x0 ∈ (0,∞) is such a boundary point
in the interior of the support (i.e. f0(x0) > 0). Here again f0 is a convex (and
decreasing) density function on [0,∞). Three cases are under investigation as
below. These cases are illustrated in Figure 5.

(A) f0(t) = f0(x0) + K1(t − x0) + K2(t − x0)1[x0,∞)(t) for every t in a fixed
(small) neighborhood of x0, with K1 +K2 < 0 and K2 > 0;

(B) f0(t) = f0(x0) +K1(t − x0) +K2(t − x0)
α1[x0,∞)(t) for every t in a fixed

(small) neighborhood of x0, with K1 < 0, K2 > 0 and α > 1;
(C) f0(t) = f0(x0) + K1(t − x0) + K2(x0 − t)α1[0,x0)(t) for every t in a fixed

(small) neighborhood of x0, with K1 < 0, K2 > 0 and α > 1.

Note that in all cases above, only the behavior of f0 in a small neighbor-
hood of x0 is relevant. As pointed out in Example 2 of Cai and Low (2015), the
minimax optimal convergence rate at x0 is n−1/3 in (A). Furthermore, in (B)
and (C), Example 4 of Cai and Low (2015) suggests that the optimal rate at
x0 is n−α/(2α+1). In the following, we prove that the convex LSE automatically
adapts to optimal rates, up to a factor of

√
log log n. Though almost negligible,

the factor of
√
log log n here indicates that there might be room for improve-

ment. These results should be viewed as a first step for the investigation of the
adaptation of the convex LSE. One could also compare our results with Cator
(2011), where the adaptation of the LSE in the context of decreasing density
function estimation was tackled.

Theorem 2.12 (Adaptation at the boundary points: I). In the case of (A),

|f̂n(x0)− f0(x0)| = Op

(
n−1/3

√
log logn

)
.

Moreover,
min

(
f̂n(x0)− f0(x0), 0

)
= Op(n

−1/2).
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Proof of Theorem 2.12

Suppose that for some fixed δ > 0, (A) holds for every t ∈ [x0 − 2δ, x0 + 2δ].
Our first aim is to show that

inf
t∈[x0−δ,x0+δ]

min
(
f̂n(t)− f0(t), 0

)
= Op(n

−1/2). (2.5)

Suppose that c := f̂n(t)− f0(t) < 0. If we can find x0 − δ ≤ t < x0 such that

f̂n and f0 intersect at the point (t, f0(t)), then

(
F̂n(t)− F̂n(x0 − δ)

)
−
(
F0(t)− F0(x0 − δ)

)
≥ 1

2

|c|(t− x0 + δ)2

x0 − t
≥ 0;

(
F̂n(x0)− F̂n(t)

)
−

(
F0(x0)− F0(t)

)
≤ −1

2
|c|(x0 − t) < 0.

Otherwise, by taking t = x0 − δ, we can still verify the above two inequalities.
Therefore,

Op(n
−1/2) = 2‖F̂n − F0‖∞

≥ max
{∣∣(F̂n(t)− F0(t)

)
−

(
F̂n(x0 − δ)− F0(x0 − δ)

)∣∣,∣∣(F̂n(x0)− F0(x0)
)
−

(
F̂n(t)− F0(t)

)∣∣}
≥ |c|

2
max

{
(t− x0 + δ)2

x0 − t
, x0 − t

}
≥ |c|δ

4
,

where the first equation follows fromMarshall’s lemma (see (2.1)). Consequently,
(2.5) holds true. As a remark, the above arguments are essentially the same as
those illustrated in the proof of Theorem 2.1, where one only relies on the fact
that f0 is linear on [x0 − δ, x0] (i.e. “one-sided linearity”).

In the rest of the proof, it suffices to only consider the situation of f̂n(x0)−
f0(x0) > 0. Recall that to handle this scenario, the proof of Theorem 2.1 makes
use of the fact that the triangular density is linear on the whole [0, 1] (i.e.
“two-sided linearity”). This is no longer true here since f0 is not linear on
[x0 − δ, x0 + δ]. In the following, we deploy a different strategy to establish the
rate.

Let τ−n = max{t ∈ S(f̂n), t < x0} and τ+n = min{t ∈ S(f̂n), t ≥ x0}, where
S(·) is defined in (2.4). We consider three different cases separately.

(a) max
(
τ+n −x0, x0−τ−n

)
> δ. Then f0 and f̂n are linear on either [x0−δ, x0] or

[x0, x0+δ]. It follows from the line of reasoning as in the proof of Theorem 2.1

that max
(
f̂n(x0)− f0(x0), 0

)
= Op(n

−1/2).

(b) max
(
τ+n − x0, x0 − τ−n

)
≤ δ and τ+n − τ−n > n−1/3. Note that being in the

set S(f̂n) implies that Fn(τ
−
n ) = F̂n(τ

−
n ) and Fn(τ

+
n ) = F̂n(τ

+
n ) for τ−n and

τ+n . Since f̂n is linear on [τ−n , τ+n ],(
Fn(τ

+
n )− F0(τ

+
n )

)
−

(
Fn(τ

−
n )− F0(τ

−
n )

)
(2.6)
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=

∫ τ+
n

τ−
n

(
f̂n(t)− f0(t)

)
dt

≥
(
f̂n(x0)− f0(x0)

)
(τ+n − τ−n )/2

+ min
(
f̂n(τ

−
n )− f0(τ

−
n ), f̂n(τ

+
n )− f0(τ

+
n ), 0

)
(τ+n − τ−n ).

By the law of the iterated logarithm for local empirical processes (cf. Lemma
4.3.5 of Csörgő and Horvath (1993)), the term displayed in (2.6) is at most√
τ+n − τ−n Op

(
n−1/2

√
log logn

)
. In view of (2.5), rearranging the terms in

the above inequality yields

f̂n(x0)− f0(x0) ≤ (τ+n − τ−n )−1/2Op

(
n−1/2

√
log logn

)
+Op(n

−1/2)

≤ Op

(
n−1/3

√
log logn

)
.

(c) τ+n − τ−n ≤ n−1/3. Now we define τ++
n = max{t ∈ S(f̂n), t < x0 + 2n−1/3}

and τ+++
n = min{t ∈ S(f̂n), t ≥ x0 + 2n−1/3}. Here the existence of τ++

n

is guaranteed by the condition that τ+n − τ−n ≤ n−1/3. Furthermore, we
note that in our definitions τ+n and τ++

n might not be distinct. Within this
setting, three further scenarios are to be dealt with.

(c1) τ+++
n − x0 > δ. Since both f0 and f̂n are linear on [τ++

n , τ+++
n ], one

can apply a strategy similar to that used in the proof of Theorem 2.1
to show that |f̂n(τ++

n )− f0(τ
++
n )| = Op(n

−1/2). Consequently,

f̂n(x0)− f0(x0) = f̂n(τ
++
n )− f0(τ

++
n )−

∫ τ++
n

x0

(
f̂ ′
n(t)− f ′

0(t)
)
dt

= Op(n
−1/3),

where we have used the facts that |τ++
n − x0| < 2n−1/3 and

sup
t∈[x0,x0+δ]

|f̂ ′
n(t)− f ′

0(t)| = Op(1).

Here the second fact can be derived by invoking

K1+op(1) ≤ inf
t∈[x0−δ,x0+δ]

f̂ ′
n(t) ≤ sup

t∈[x0−δ,x0+δ]

f̂ ′
n(t) ≤ K1+K2+op(1),

which follows easily from consistency of f̂ ′
n in estimating f ′

0 at the
points x0 ± δ.

(c2) 3n−1/3 < τ+++
n −x0 ≤ δ. Then |τ+++

n −τ++
n | > n−1/3. Using essentially

the same argument as in (b), we see that

max
(
f̂n(τ

++
n )− f0(τ

++
n ), 0

)
= Op

(
n−1/3

√
log logn

)
,

and hence,

|f̂n(τ++
n )− f0(τ

++
n )| = Op

(
n−1/3

√
log logn

)
.
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We then apply the argument presented in (c1) to derive

|f̂n(x0)− f0(x0)| = Op

(
n−1/3

√
log logn

)
.

(c3) τ+++
n − x0 ≤ 3n−1/3. Then n−1/3 ≤ τ+++

n − τ+n ≤ 2n−1/3. By pro-
ceeding as in the proof of Lemma 4.3 of Groeneboom, Jongbloed and
Wellner (2001b), we are able to verify that

inf
t∈[τ+

n ,τ+++
n ]

|f̂n(t)− f0(t)| = Op(n
−1/3).

Here we invoked Lemma A.1 of Balabdaoui and Wellner (2007) with
k = 1 and d = 2 to verify the above claim. See also Kim and Pollard
(1990). Finally, we can argue as in (c1) to show that f̂n(x0)−f0(x0) =
Op(n

−1/3).

The proof is complete by taking into account all the above cases. We remark
that in our proof the worst case scenarios that drive the convergence rate are
(b) and (c2).

Theorem 2.13 (Adaptation at the boundary points: II). In the case of (B)
or (C),

|f̂n(x0)− f0(x0)| = Op

(
n−α/(2α+1)

√
log logn

)
.

Moreover,
min

(
f̂n(x0)− f0(x0), 0

)
= Op(n

−1/2).

The proof of Theorem 2.13 is of more technical nature and is deferred to
Appendix II.

3. Estimation of a regression function

Changing notation slightly from the previous section, we now assume that we
are given pairs {(Xn,i, Yn,i) : i = 1, . . . , n} for n = 1, 2, . . . with

Yn,i = r0(Xn,i) + εn,i, for i = 1, . . . , n,

where r0 : [0, 1] → R is a convex function, and where {εn,i : i = 1, . . . , n} is a
triangular array of IID random variables satisfying

(i) Eε1,1 = 0 and σ2
0 = Eε21,1 < ∞.

To simplify our analysis, the following fixed design is considered:

(ii) Xn,i = i/(n+ 1) for i = 1, . . . , n.

The LSE of r0 proposed by Balabdaoui and Rufibach (2008) is

r̂n = argmin
g∈K

(
1

2

∫ 1

0

g(t)2dt− 1

n

n∑
i=1

g(Xn,i)Yn,i

)
, (3.1)
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where, in this section, K denotes the set of all continuous convex functions on
[0, 1].

We note that the above estimator is slightly different from the more “classi-
cal” LSE that minimizes 1

2n

∑n
i=1 g(Xn,i)

2 − 1
n

∑n
i=1 g(Xn,i)Yn,i over K. Since

its criterion function has a completely discrete nature, different techniques are
needed to prove analogous results. We will not pursue this direction in the
manuscript.

3.1. Basic properties

In this subsection, we list some basic properties of r̂n given as (3.1). For any
t ∈ [0, 1], define

R0(t) =

∫ t

0

r0(s)ds;

R̂n(t) =

∫ t

0

r̂n(s)ds;

Rn(t) =
1

n

n∑
i=1

Yn,i1[Xn,i,∞)(t).

Proposition 3.1. The LSE r̂n exists and is unique.

Proposition 3.2. Let S(r̂n) denote the set of knots of r̂n. The following prop-
erties hold:

(a)
∫ t

0

(
R̂n(s)− Rn(s)

)
ds

{
= 0, for all t ∈ S(r̂n) ∪ {0, 1},
≥ 0, for all t ∈ [0, 1];

(b) R̂n(t) = Rn(t) for any t ∈ S(r̂n) ∪ {0, 1};
(c)

∫ 1

0

{ ∫ t

0

(
R̂n(s)− Rn(s)

)
ds
}
dr̂′n(t) = 0.

Proposition 3.3 (Marshall’s lemma).

‖R̂n −R0‖∞ ≤ 2‖Rn −R0‖∞. (3.2)

Proof of Propositions 3.1, 3.2 and 3.3

Note that we can rewrite r̂n as

argmin
g∈K

(1
2

∫ 1

0

g(t)2dt−
∫ 1

0

g(t)dRn(t)
)
.

From this perspective, it is easy to check that Proposition 3.1, Proposition 3.2
and Proposition 3.3 follow from, respectively, slight modifications of Lemma 2.1,
Lemma 2.2 of Groeneboom, Jongbloed and Wellner (2001b) and Theorem 1 of
Dümbgen, Rufibach and Wellner (2007). �

We remark that this version of Marshall’s lemma in the regression setting
serves as an important tool to establish consistency and the rate. In particular, in
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the following, we show that (3.2) easily yields consistency of R̂n, and consistency
of r̂n follow from this together with convexity of r̂n.

Proposition 3.4 (Consistency). Under Assumptions (i)–(ii), for any 0 < δ ≤
1/2,

sup
x∈[δ,1−δ]

|r̂n(x)− r0(x)| a.s.→ 0, as n → ∞.

Proof of Proposition 3.4

The proof replies on the following intermediate result: suppose there are differ-
entiable functions G0, G1, . . ., all are [0, 1] → R and have convex first derivative,
then for any fixed 0 < δ ≤ 1/2, ‖Gk − G0‖∞ → 0 implies supt∈[δ,1−δ] |G′

k(t) −
G′

0(t)| → 0.
To see this, we first show that

lim sup
k→∞

sup
t∈[δ,1−δ]

{G′
k(t)−G′

0(t)} ≤ 0. (3.3)

Note that for any t ∈ [δ, 1− δ] and any 0 < ε ≤ δ,

G′
k(t)−G′

0(t)

≤ max

(
Gk(t+ ε)−Gk(t)

ε
−G′

0(t),
Gk(t)−Gk(t− ε)

ε
−G′

0(t)

)
.

It then follows that

lim sup
k→∞

sup
t∈[δ,1−δ]

{G′
k(t)−G′

0(t)}

≤ sup
t∈[δ,1−δ]

(
G0(t+ ε)−G0(t)

ε
−G′

0(t),
G0(t)−G0(t− ε)

ε
−G′

0(t)

)
.

Our claim (3.3) can be verified by letting ε → 0.
Secondly, we show that

lim inf
k→∞

inf
t∈[0,1]

{G′
k(t)−G′

0(t)} ≥ 0.

We prove this by contradiction. Suppose that

lim inf
k→∞

inf
t∈[0,1]

{G′
k(t)−G′

0(t)} = −M

for some M > 0. By extracting subsequences if necessary, we can assume that
inft∈[0,1]{G′

k(t)−G′
0(t)} → −M as k → ∞. In view of (3.3), it follows from the

convexity of G′
k and G′

0 that one can find an interval Ik of positive length δ
(which can depend on M) such that inft∈Ik

{G′
k(t)−G′

0(t)} ≤ −M/2 for every
k > K, where K is a sufficiently large integer. This implies that

‖Gk −G0‖∞ ≥ sup
t∈Ik

|Gk(t)−G0(t)| ≥ Mδ/4 > 0,
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for every k > K, which contradicts the fact that ‖Gk −G0‖∞ → 0 as k → ∞.
Combining these two parts together completes the proof of the intermediate

result.
Since ‖Rn − R0‖∞ a.s.→ 0 by empirical process theory, Proposition 3.3 entails

that ‖R̂n − R0‖∞ a.s.→ 0. Consistency of r̂n then follows straightforwardly from
the above intermediate result. �

3.2. Rate of convergence and asymptotic distribution

In the following, we assume that r0 that is linear on (a, b) ⊆ (0, 1). Moreover,
(a, b) is “largest” in the sense that one can not find a bigger open interval (a′, b′)
on which r0 remains linear.

Theorem 3.5 (Rate and asymptotic distribution). Under Assumptions (i)–(ii),
for any 0 < δ ≤ (b− a)/2,

sup
x∈[a+δ,b−δ]

(
|r̂n(x)− r0(x)|, |r̂′n(x)− r′0(x)|

)
= Op(n

−1/2).

Moreover,

√
n

(
r̂n(x)− r0(x)
r̂′n(x)− r′0(x)

)
⇒ σ0

(
(b− a)1/2 H̃(2)

(
x−a
b−a

)
(b− a)−1/2 H̃(3)

(
x−a
b−a

)
)

in C[a+ δ, b− δ]×D[a+ δ, b− δ], where H̃ is the invelope process defined in the
second part of Theorem 2.4.

The proof of Theorem 3.5 is very similar to what has already been shown in
Section 2.1, so is omitted for the sake of brevity.

In presence of the linearity of r0 on (a, b), the limit distribution of the process√
n(r̂n − r0) on (a, b) does not depend on r0(a) or r0(b). In addition, the above

theorem continues to hold if we weaken Assumption (ii) to:

(ii’) supt∈[0,1]

∣∣∣ 1n ∑n
i=1 1[Xn,i,∞)(t)− t

∣∣∣ = o
(
n−1/2

)
.

Theoretical results in the random design are also possible, where for instance,
we can assume that {Xn,i, i = 1, . . . , n} are IID uniform random variables on

[0, 1]. In this case, Theorem 3.5 is still valid, while a process different from H̃ is
required to characterize the limit distribution. This follows from the fact that
in the random design

√
n(Rn −R0) can converge to a Gaussian process that is

not a Brownian motion.

4. Appendices: proofs

4.1. Appendix I: existence of the limit process

Recall that f0(t) = 2(1 − t)1[0,1](t), X(t) = U(F0(t)), and Y (t) =
∫ t

0
X(s)ds

for t ≥ 0. In this section, we show the existence and uniqueness of the invelope
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process H. The case of H̃ can be handled using essentially the same arguments,
so is omitted here.

Lemmas 4.1–4.8 are needed to prove Theorem 2.4.

Lemma 4.1. Let the functional φ(g) be defined as

φ(g) =
1

2

∫ 1

0

g2(t) dt−
∫ 1

0

g(t) dX(t)

for functions in the set Gk = {g : [0, 1] → R, g is convex, g(0) = g(1) = k}.
Then with probability one, the problem of minimizing φ(g) over Gk has a unique
solution.

Proof of Lemma 4.1

We consider this optimization problem in the metric space L2. First, we show
that if it exists, the minimizer must be in the subset

Gk,M = {g : [0, 1] → R, g is convex, g(0) = g(1) = k, inf
[0,1]

g(t) ≥ −M}

for some 0 < M < ∞. To verify this, we need the following result

sup
g∈G1,1

∣∣∣∣
∫ 1

0

g(t) dX(t)

∣∣∣∣ < ∞, a.s. (4.1)

Let W (t) be a standard Brownian motion. We note that
∫ 1

0
g(t) dX(t) has the

same distribution as∫ 1

0

g
(
1−

√
1− t

)
dW (t)−W (1)

∫ 1

0

g(t)f0(t)dt.

Using the entropy bound of G1,1 in L2 (Theorem 2.7.1 of Guntuboyina and Sen
(2013)) and Dudley’s theorem (cf. Theorem 2.6.1 of Dudley (1999)), we can
establish that

H =
{
h : [0, 1] → R | h(t) = g

(
1−

√
1− t

)
, g ∈ G1,1

}
is a GC-set. As

∫ 1

0
g
(
1−

√
1− t

)
dW (t) is an isonormal Gaussian process indexed

by H, we have that a.s. supg∈G1,1

∣∣ ∫ 1

0
g
(
1−

√
1− t

)
dW (t)

∣∣ < ∞. Furthermore,

it is easy to check that W (1) < ∞ a.s. and supg∈G1,1

∣∣ ∫ 1

0
g(t)f0(t)dt

∣∣ ≤ 2. So
our claim of (4.1) holds.

Now for sufficiently large M (with M > k),

sup
g∈Gk,M

∣∣∣∣
∫ 1

0

g(t) dX(t)

∣∣∣∣ ≤ M sup
g∈G1,1

∣∣∣∣
∫ 1

0

g(t) dX(t)

∣∣∣∣ .
Thus, for any g ∈ Gk with inf [0,1] g = −M ,

∫ 1

0
g(t)dX(t) is at most O(M).

Furthermore, 1
2

∫ 1

0
g2(t) dt is of O(M2). Since φ at the minimizer could at most
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be as large as φ(0) = 0, we conclude that it suffices to only consider functions
in Gk,M for some sufficiently large M .

Note that the functional φ is continuous (cf. Dudley’s theorem) and strictly

convex. Moreover, for g1, g2 ∈ Gk,M , if
∫ 1

0

(
g1(t) − g2(t)

)2
dt = 0, then g1 = g2

on [0, 1]. Since Gk,M is compact in L2, the existence and uniqueness follow from
a standard convex analysis argument in a Hilbert space. �

As a remark, it can be seen from the proof of Lemma 4.1 that for a given
ω ∈ Ω from the sample space (which determines the value of X(t)), if the
function φ has a unique minimizer over G1 (which happens a.s.), it also admits
a unique minimizer over Gk for any k > 1.

Lemma 4.2. Almost surely, Y (t) does not have parabolic tangents at either
t = 0 or t = 1.

Proof of Lemma 4.2

First, consider the case of t = 0. Theorem 1 of Lachal (1997) says that

lim sup
t→0+

∣∣ ∫ t

0
W (s)ds

∣∣√
(2/3)t3 log log(1/t)

= 1, a.s.,

where W is a standard Brownian motion. From this, it follows that

lim sup
t→0+

|Y (t)|√
(2/3)t3 log log(1/t)

= lim sup
t→0+

∣∣ ∫ t

0
{W (2s− s2)− (2s− s2)W (1)}ds

∣∣√
(2/3)t3 log log(1/t)

= lim sup
t→0+

∣∣ ∫ t

0

√
2W (s)ds

∣∣√
(2/3)t3 log log(1/t)

=
√
2, a.s.

thanks to the scaling properties of Brownian motion (W (at)
d
=

√
aW (t)). This

implies that Y (t) does not have a parabolic tangent at t = 0.

Second, consider the case of t = 1. Note that limt→1−
Y (1)−Y (t)

1−t = X(1) = 0
and

lim sup
t→1−

∣∣∣∣Y (1)− Y (t)

(1− t)2

∣∣∣∣ = lim sup
t→1−

∣∣∣∣
∫ 1

t

{
W (1)−W (F0(s))

}
ds−W (1)(1− t)3/3

(1− t)2

∣∣∣∣
= lim

t→1−

∣∣∣∣
∫ 1

t

{
W (1)−W (F0(t))

}
ds

(1− t)2

∣∣∣∣
a.s.
= lim

t→0+

∣∣∣∣
∫ t

0
W (s2)ds

t2

∣∣∣∣,
where F0(t) = 2t− t2. Therefore, to prove that Y (t) does not have a parabolic
tangent at t = 1, it suffices to show that

lim sup
t→0+

∣∣∣∣
∫ t

0
W (s2)ds

t2

∣∣∣∣ = ∞, a.s.
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Denote by Z(t) =
∫ t

0
W (s2)ds. For any 0 < t1 < t2 < 1, we argue that the

random variable
Z(t2)− Z(t1)− (t2 − t1)W (t21)

follows a distribution of N
(
0, t42/6− t21t

2
2 + 4t31t2/3− t41/2

)
. This is because

Z(t2)− Z(t1)− (t2 − t1)W (t21)

=

∫ t2

t1

{W (s2)−W (t21)}ds

=

∫ t22

t21

W (s)−W (t21)

2
√
s

ds =

∫ t22

t21

1

2
√
s

∫ s

t21

dW (u)ds

=

∫ t22

t21

∫ t22

u

1

2
√
s
dsdW (u) =

∫ t22

t21

(t2 −
√
u)dW (u),

where we invoked the stochastic Fubini’s theorem in the last line, and thus,

Var
{
Z(t2)− Z(t1)− (t2 − t1)W (t21)

}
=

∫ t22

t21

(t2 −
√
u)2du

= t42/6− t21t
2
2 + 4t31t2/3− t41/2.

Now setting t1 = 1/2 and ti+1 = t2i for every i ∈ N. It is easy to check that
the collection of random variables{

Z(ti−1)− Z(ti)− (ti−1 − ti)W (t2i )
}∞

i=1

is mutually independent, so

lim sup
i→∞

Z(ti−1)− Z(ti)− (ti−1 − ti)W (t2i )

t2i−1

= ∞, a.s., (4.2)

where we made use of the fact that

lim
i→∞

√
t4i−1/6− t2i t

2
i−1 + 4t3i ti−1/3− t4i /2

t2i−1

= 1/
√
6.

Assume that there exists some K > 0 such that |Z(t)| ≤ Kt2 for all suffi-
ciently small t > 0. But it follows from (4.2) that a.s. one can find a subsequence
of N (denoted by {ij}∞j=1) satisfying

Z(tij−1)− Z(tij )− (tij−1 − tij )W (t2ij )

t2ij−1

≥ K + 1, for j = 1, 2, . . .

Consequently,

Z(tij−1)

t2ij−1

≥ K + 1 +
Z(tij )

t2ij−1

+
W (t2ij )(tij−1 − tij )

t2ij−1
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≥ K + 1−Ktij −
|W (t2ij )|√

tij

√
tij (tij−1 − tij )

tij

a.s.→ K + 1,

as j → ∞. The last step is due to tij → 0+ and lim sups→0+ |W (s)|/s1/4 = 0 a.s.
(which is a direct application of the law of the iterated logarithm). The proof is
completed by contradiction. �

Now denote by fk the unique function which minimizes φ(g) over Gk. Let
Hk be the second order integral satisfying Hk(0) = Y (0), Hk(1) = Y (1) and

H
(2)
k = fk.

Lemma 4.3. Almost surely, for every k ∈ N, fk and Hk has the following
properties:

(i) Hk(t) ≥ Y (t) for every t ∈ [0, 1];

(ii)
∫ 1

0

(
Hk(t) − Y (t)

)
df ′

k(t) = 0, where the derivative can be interpreted as
either the left or the right derivative;

(iii) Hk(t) = Y (t) and H ′
k(t) = X(t) for any t ∈ S(fk), where S is the set of

knots;

(iv)
∫ t

0
fk(s)ds ≤ X(t)−X(0) and

∫ 1

t
fk(s)ds ≤ X(1)−X(t) for any t ∈ S(fk);

(v) fk is a continuous function on [0, 1].

Proof of Lemma 4.3

To show (i), (ii), (iii) and (iv), one may refer to Lemma 2.2 and Corollary 2.1
of Groeneboom, Jongbloed and Wellner (2001a) and use a similar functional
derivative argument.

For (v), we note that since fk is convex, discontinuity can only happen at t = 0
or t = 1. In the following, we show that it is impossible at t = 0. Suppose that fk
is discontinuous at zero. Consider the class of functions gδ(t) = max(1− t/δ, 0).
Then (

fk(t) + εgδ(t)
)
1(0,1)(t) + k1{0,1}(t) ∈ Gk

for every ε ∈ (0, k − lim inft→0+ fk(t)]. By considering the functional derivative
of φ(g) and using integration by parts, we obtain that for any δ > 0,

kδ/2 ≥
∫ 1

0

gδ(t)fk(t)dt ≥
∫ 1

0

gδ(t)dX(t) = Y (δ)/δ,

which implies that kδ2/2 ≥ Y (δ) for every δ > 0. However, this contradicts
Lemma 4.2, which says that a.s. Y does not have a parabolic tangent at t = 0.
Consequently, fk is continuous at t = 0. The same argument can also be applied
to show the continuity of fk at t = 1. �
Lemma 4.4. Fix any t ∈ (0, 1). Denote by τ−k the right-most knot of fk on
(0,t]. If such knot does not exist, then set τ−k = 0. Similarly, denote by τ+k the
left-most knot of fk on [t,1), and set τ+k = 1 if such knot does not exist. Then,
for almost every ω ∈ Ω, there exists K > 0 such that for every k ≥ K, τ−k �= 0
and τ+k �= 1. Here we suppressed the dependence of K and fk (as well as τ−k
and τ+k ) on ω (via X) in the notation.
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Proof of Lemma 4.4

Recall that X(t) is said to be sample-bounded on [0, 1] if sup[0,1] |X(t)| is finite
for almost all ω ∈ Ω. Since both X(t) and Y (t) are sample bounded. With-
out loss of generality, in the following, wee can fix ω ∈ Ω and assume that
sup[0,1] |X(t)| < ∞ and sup[0,1] |Y (t)| < ∞.

First, we show the existence of at least one knot on (0, 1). Note that the cubic

polynomial Pk with Pk(0) = Y (0) = 0, Pk(1) = Y (1), P
(2)
k (0) = P

(2)
k (1) = k

can be expressed as

Pk(s) =
k

2
s2 +

(
Y (1)− k

2

)
s,

Therefore, take for instance s = 0.5 and consider the event Pk(0.5) ≥ Y (0.5).
This event can be reexpressed as

1

2
Y (1)− Y (0.5) ≥ 1

8
k,

which will eventually become false as k → ∞. This is due to the fact that Y (t)
is sample bounded. In view of (i) and (v) of Lemma 4.3, we conclude that fk
has at least one knot in the open interval (0, 1) for sufficiently large k.

Next, take k large enough so that fk has one knot in (0, 1), which we denote
by τk. By (iii) of Lemma 4.3, Hk(τk) = Y (τk) and H ′

k(τk) = X(τk). Without
loss of generality, we may assume that τk > t. Now the cubic polynomial Pk

with Pk(0) = Y (0) = 0, Pk(τk) = Y (τk), P
(2)
k (0) = k and P ′

k(τk) = X(τk) can
be expressed as

Pk(s) = ak1s
3 + ak2s

2 + ak3s,

where

ak1 =
X(τk)

2τ2k
− Y (τk)

2τ3k
− k

4τk
;

ak2 =
k

2
;

ak3 =
3Y (τk)

2τk
− X(τk)

2
− kτk

4
.

By taking, say for example, s = t/2, it can then be verified that the event
Pk(t/2) ≥ Y (t/2), which is equivalent to

X(τk)t
3

16τ2k
− Y (τk)t

3

16τ3k
+

3Y (τk)t

4τk
− X(τk)t

4
≥ kt

32τk
(t− 2τk)

2,

will eventually stop happening as k → ∞. This is due to the sample boundedness
of both X(t) and Y (t). Consequently, τ−k �= 0 for sufficiently large k. Further-
more, using essentially the same argument, one can also show that τ+k �= 1 for
large k, which completes the proof of this lemma. �
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Lemma 4.5. For almost every ω ∈ Ω (which determines X(t) and fk), we can
find an M > 0 such that

inf
k∈N

inf
[0,1]

fk > −M.

Proof of Lemma 4.5

Fix any δ ∈ (0, 1/2]. In view of Lemma 4.4, we may assume that there exist
knots τ−k and τ+k on (0, δ] and [1 − δ, 1) respectively for sufficiently large k. If
inf [0,1] fk ≥ 0 for every k > K, then we are done. Otherwise, we focus on those
inf [0,1] fk < 0 and find 0 < tk,1 < tk,2 < 1 with fk(tk,1) = fk(tk,2) = 0. Note
that the existence of tk,1 and tk,2 are guaranteed by Lemma 4.3 (v). In the
following, we take δ = 1/12 and consider two scenarios.

(a) tk,2 − tk,1 < 2δ. Let ak,1 ∈ ∂fk(tk,1) and ak,2 ∈ ∂fk(tk,2), where ∂ is
the subgradient operator. Then Lemma 4.3(v) implies that ak,1 < 0 and
ak,2 > 0. Since both ak,1(s − tk,1) and ak,2(s − tk,2) can be regarded as
supporting hyperplanes of fk due to its convexity, it follows that fk(s) ≥
max

(
ak,1(s−tk,1), ak,2(s−tk,2)

)
. Set Ck = −ak,1ak,2(tk,2−tk,1)/(ak,2−ak,1)

(i.e. −Ck is the value of the above hyperplanes at their intersection, which
is negative), so inf [0,1] fk ≥ −Ck. Now

2 sup
t∈[0,1]

|X(t)|

≥ X(τ+k )−X(τ−k ) = H ′
k(τ

+
k )−H ′

k(τ
−
k ) =

∫ τ+
k

τ−
k

fk(s) ds

≥
∫ τ+

k

τ−
k

max
(
ak,1(s− tk,1), ak,2(s− tk,2)

)
ds

≥
∫ 1−δ

δ

max
(
ak,1(s− tk,1), ak,2(s− tk,2)

)
ds− 2δCk

≥
∫ 1−δ

δ

max
(
ak,1(s− tk,1), ak,2(s− tk,2), 0

)
ds

−
∫ 1−δ

δ

max
(
− ak,1(s− tk,1),−ak,2(s− tk,2), 0

)
ds− 2δCk

≥ inf
u∈[0,1−4δ]

{
|ak,1|u2 + |ak,2|(1− 4δ − u)2

}
/2− Ck(tk,2 − tk−1)/2− 2δCk

≥ (1− 4δ)2

4δ
Ck − δCk − 2δCk =

(
1

4δ
+ δ − 2

)
Ck ≥ Ck.

Consequently, a.s., supk∈N Ck < ∞.
(b) tk,2 − tk,1 ≥ 2δ. Now consider fk+ = max(fk, 0). It follows that

0 ≥ φ(fk)− φ(fk+)

=
1

2

∫ 1

0

min(0, fk(t))
2 dt−

∫ 1

0

min(0, fk(t)) dX(t)
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Let Mk = − inf [0,1] fk. By the convexity of fk, we see that the first term is
no smaller than 2δM2

k/3. For the second term, we can again use Dudley’s
theorem and the fact that the following class

Gunit =
{
g :[0, 1] → [−1, 0]

∣∣∣∃ 0 ≤ x1 < x2 ≤ 1

s.t. g(s) is convex on [x1, x2]; g(s) = 0, ∀s ∈ [0, x1] ∪ [x2, 1]
}

has entropy of order η−1/2 in L2 to argue that

sup
g∈Gunit

∣∣∣∣∣
∫
[0,1]

gdX(t)

∣∣∣∣∣ < ∞, a.s.

Therefore, the second term is at most O(Mk). Then we can use the argument
in the proof of Lemma 4.1 to establish that a.s. lim supk→∞ Mk < ∞.

Lemma 4.6. For any fixed t ∈ (0, 1) and almost every ω ∈ Ω, supk |fk(t)|,
supk |f−

k (t)| and supk |f+
k (t)| are bounded.

Proof of Lemma 4.6

Let Δ = min(t, 1 − t)/2. In view of Lemma 4.4, for sufficiently large k, we can
assume that fk has at least one knot in (0, t − Δ], and one knot in [t + Δ, 1).
Denote these two points by τ−k and τ+k respectively. By the convexity of fk,
there exists some c ∈ R such that fk(s) ≥ c(s− t) + fk(t) for every s ∈ [0, 1]. It
follows that

2 sup
t∈[0,1]

|X(t)| ≥ X(τ+k )−X(τ−k ) =

∫ τ+
k

τ−
k

fk(s) ds

≥
∫
[τ−

k ,t−Δ]∪[t+Δ,τ+
k ]

(
inf
[0,1]

fk

)
ds+

∫ t+Δ

t−Δ

{
c(s− t) + fk(t)

}
ds

≥ −Mk + 2Δfk(t),

where Mk = − inf [0,1] fk. By Lemma 4.5, we see that for almost every ω ∈ Ω,
lim supk→∞ fk(t) is bounded. Combining this with the lower bound we estab-
lished previously entails the boundedness of {fk(t)}k.

Next, note that both {fk(t−Δ)}k and {fk(t+Δ)}k are bounded. The bound-
edness of {f−

k (t)}k and {f+
k (t)}k immediately follows from the convexity of fk

by utilizing

∂fk(t) ⊆
[
fk(t)− fk(t−Δ)

Δ
,
fk(t+Δ)− fk(t)

Δ

]
.

Lemma 4.7. For almost every ω ∈ Ω, we have that both
{
supt∈[0,1] |Hk(t)|

}
k

and
{
supt∈[0,1] |H ′

k(t)|
}
k
are bounded.
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Proof of Lemma 4.7

By Lemma 4.3(iv), for any t ∈ [0, 1],

min
(
0, inf

k∈N

inf
[0,1]

fk

)
≤ t inf

[0,1]
fk ≤

∫ t

0

fk(s)ds =

∫ 1

0

fk(s)ds−
∫ 1

t

fk(s)ds

≤ X(1)−X(0)− (1− t) inf
[0,1]

fk ≤ X(1)−X(0)−min
(
0, inf

k∈N

inf
[0,1]

fk

)
.

Consequently, Lemma 4.5 entails the boundedness of
{
supt∈[0,1] |

∫ t

0
fk(s)ds|

}
k
.

Furthermore, Lemma 4.4 says that one can always find a knot τ−k ∈ (0, 1)
with X(τ−k ) = H ′

k(τ
−
k ) for all sufficiently large k. Thus, the boundedness of{

supt∈[0,1] |H ′
k(t)|

}
k
follows from the fact that

sup
t∈[0,1]

|H ′
k(t)| ≤ sup

t∈[0,1]

∣∣∣∣∣X(τ−k )−
∫ τ−

k

0

fk(s)ds+

∫ t

0

fk(s)ds

∣∣∣∣∣
≤ sup

t∈[0,1]

|X(t)|+ 2 sup
t∈[0,1]

∣∣∣∣
∫ t

0

fk(s)ds

∣∣∣∣ .
Finally, one can derive the sample boundedness of

{
supt∈[0,1] |Hk(t)|

}
k
by using

the equality Hk(t) = Y (0) +
∫ t

0
H ′

k(s)ds. �

Lemma 4.8. For almost every ω ∈ Ω, both {Hk}k and {H ′
k}k are uniformly

equicontinuous on [0, 1]. In fact, they are uniformly Hölder continuous with ex-
ponent less than 1/4.

Proof of Lemma 4.8

Here we only show that the family {H ′
k}k is uniformly equicontinuous. Fix any

0 < δ < 1. For any 0 ≤ t1 ≤ t2 ≤ 1 with t2 − t1 < δ, by the convexity of fk,

H ′
k(t2)−H ′

k(t1) =

∫ t2

t1

fk(s)ds ≤ max

(∫ δ

0

fk(s)ds,

∫ 1

1−δ

fk(s)ds

)
.

In the following, we shall focus on
∫ δ

0
fk(s)ds. The term

∫ 1

1−δ
fk(s)ds can be

handled in exactly the same fashion. By Lemma 4.4, S(fk) is non-empty for
every k > K, where K is a sufficiently large positive integer. Furthermore, in
view of Lemma 4.5, we can assume that infk∈N inf [0,1] fk ≥ −M for some M > 0.

Three scenarios are discussed in the following. Here we fix α ∈ (0, 1/2).

(a) There exists at least one knot τk ∈ S(fk) with τk ∈ [δ, δα]. Then

∫ δ

0

fk(s)ds ≤
∫ τk

0

fk(s)ds+Mδα

≤ X(τk)−X(0) +Mδα ≤ M ′δα
2

+Mδα,
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for some M ′ > 0 (which is the α-Hölder constant of this particular realiza-
tion of X(t)). The last line follows from Lemma 4.3(iv) and the fact that
X(t) is α-Hölder-continuous, so

|X(τk)−X(0)| ≤ M ′|τk|α ≤ M ′(δα)α = M ′δα
2

.

(b) S(fk)∩ (0, δα] = ∅. Let τk ∈ S(fk) be the left-most knot in [δα, 1). Then fk
is linear on [0, τk] and fk(τk) ≥ −M . Note that

M ′τk
α ≥ X(τk)−X(0) ≥

∫ τk

0

fk(s)ds =
fk(0) + fk(τk)

2
τk

≥ (fk(0)−M)τk/2,

so fk(0) ≤ 2M ′τα−1
k +M ≤ 2M ′δα

2−α +M . It now follows that

∫ δ

0

fk(s)ds ≤ (2M ′δα
2−α +M)δ ≤ (2M ′ +M)δα.

We remark that since fk(0) = k, the above conclusion also implies that
S(fk) ∩ (0, δα] �= ∅ for all sufficiently large k.

(c) S(fk) ∩ [δ, δα) = ∅, but S(fk) ∩ (0, δ] �= ∅. Let τ−k be the right-most knot
in (0, δ] and τ+k be the left-most knot in [δα, 1). As a convention, we set
τ+k = 1 if such a knot does not exist. Note that fk is linear on [τ−k , τ+k ], so

we can use essentially the same argument as above to see that
∫ δ

τ−
k
fk(s)ds ≤

(2M ′ +M)δα. Finally,

∫ δ

0

fk(s)ds ≤ X(τ−k )−X(0) +

∫ δ

τ−
k

fk(s)ds

≤ M ′δα + (2M ′ +M)δα = (3M ′ +M)δα.

To finish the proof, we shall apply Lemma 4.5 to verify thatH ′
k(t2)−H ′

k(t1) ≥
−Mδ.

In addition, combining results from all the scenarios listed above, we see that
{H ′

k}k is uniformly Hölder continuous with exponent α2 (< 1/4). �

Proof of Theorem 2.4

For every m ∈ N with m ≥ 3, define the following norms

‖H‖m = sup
t∈[0,1]

|H(t)|+ sup
t∈[0,1]

|H ′(t)|+ sup
t∈[1/m,1−1/m]

|H(2)(t)|.

First, we show the existence of such a function for almost all ω ∈ Ω by
construction. Fix ω (thus we focus on a particular realization of X(t) but sup-
press its dependence on ω in the notation). Let Hk be the function satisfying

H
(2)
k = fk, Hk(0) = 0 and Hk(1) = Y (1). We claim that the sequence Hk admits

a convergent subsequence in the topology induced by the norm ‖·‖m.
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By Lemma 4.6, we may assume that for t = 1/m and t = 1− 1/m, {fk(t)}k,
{f−

k (t)}k and {f+
k (t)}k are bounded. By the convexity, {fk}k have uniformly

bounded derivatives on [1/m, 1− 1/m] so are uniformly bounded and equicon-
tinuous. Therefore, the Arzelà–Ascoli theorem guarantees that the sequence fk
has a convergent subsequence fkl

in the supremum metric on [1/m, 1 − 1/m].
Extracting further subsequences if necessary, one can get fkl

converging in the
topology induced by the L∞ norm on [1/m, 1− 1/m] for m = 3, 4, . . ..

Now by Lemma 4.7 and Lemma 4.8, we can assume that {Hk}k and {H ′
k}k

are bounded and equicontinuous on [0, 1]. By the Arzelà–Ascoli theorem again,
we are able to extract further subsequences if necessary to make Hkl

converge
in the topology induced by the norms ‖·‖m for m = 3, 4, . . .. We denote the
function that Hkl

converges to by H.

In the following, we show that H has the properties listed in the statement
of the theorem.

(1) Because Hk(t) ≥ Y (t) for every k ∈ N and every t ∈ [0, 1], H(t) ≥ Y (t)
for t ∈ [0, 1].

(2) H(2) is convex on (0, 1) since every fk is convex.
(3)–(4) Since Hk(0) = Y (0) and Hk(1) = Y (1) for all k ∈ N, we have H(0) =

Y (0) and H(1) = Y (1). Now let τ−k = inf{τk : τ ∈ S(fk)} and
τ+k = sup{τk : τ ∈ S(fk)}. In light of Lemma 4.4, one can assume
that limk→∞ τ−k = 0 and limk→∞ τ+k = 1. The sample continuity of
X(t), together with the property of knots (see (iii) of Lemma 4.3), en-
tails that H ′

k(τ
−
k ) → X(0) and H ′

k(τ
+
k ) → X(1) as k → ∞. Finally,

we use the uniform convergence and the continuity of H ′ to establish
H ′(0) = X(0) and H ′(1) = X(1).

(5) It follows from Lemma 4.3(ii) that
∫
[1/m,1−1/m]

(
H(t)−Y (t)

)
dH(3)(t) =

0. Now let m → ∞ to see the required property.

This completes the proof of existence.

It remains to show the uniqueness of H. Suppose that there are H1 and
H2 satisfying Conditions (1)–(5) listed in the statement of Theorem 2.4. For

notational convenience, we write h1 = H
(2)
1 and h2 = H

(2)
2 . Then,

{
1

2

∫ 1

0

h2
1(t)dt−

∫ 1

0

h1(t)dX(t)

}
−

{
1

2

∫ 1

0

h2
2(t)dt−

∫ 1

0

h2(t)dX(t)

}

=
1

2

∫ 1

0

(
h1(t)− h2(t) + h2(t)

)2

dt−
∫ 1

0

(
h1(t)− h2(t) + h2(t)

)
dX(t)

− 1

2

∫ 1

0

h2
2(t)dt+

∫ 1

0

h2(t)dX(t)

=
1

2

∫ 1

0

(
h1(t)− h2(t)

)2
dt

+

{∫ 1

0

(
h1(t)− h2(t)

)
h2(t)dt−

∫ 1

0

(
h1(t)− h2(t)

)
dX(t)

}
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≥ 1

2

∫ 1

0

(
h1(t)− h2(t)

)2
dt,

where we used Conditions (1)–(5) of H2 to derive the last inequality. By swap-
ping H1 and H2, we further obtain the following inequality{

1

2

∫ 1

0

h2
2(t)dt−

∫ 1

0

h2(t)dX(t)

}
−

{
1

2

∫ 1

0

h2
1(t)dt−

∫ 1

0

h1(t)dX(t)

}

≥ 1

2

∫ 1

0

(
h2(t)− h1(t)

)2
dt.

Adding together the above two inequalities yields 0 ≥
∫ 1

0

(
h1(t) − h2(t)

)2
dt,

which implies the uniqueness of H(2) on (0, 1). The uniqueness of H then follows
from its third condition.

The proof for the second part (i.e. the existence and uniqueness of H̃) is
similar and is therefore omitted. �

Proof of Corollary 2.5

We can easily verify the existence of such a function by using the same construc-
tion in the proof of Theorem 2.4. In particular, if Y (t) does not have parabolic
tangents at both t = 0 and t = 1 (which happens a.s. according to Lemma 4.2),
then fk(0) → ∞ and fk(1) → ∞ as k → ∞.

On the other hand, if H(2)(0+) → ∞, there must be a sequence of knots
τ1, τ2, . . . of H

(2) with limj→∞ τj = 0. In views of Conditions (1), (2) and (5),
one necessarily has H(τj) = Y (τj) and H ′(τj) = X(τj) for every j. The fact that
H, H ′, Y and X are all continuous entails that H(0) = Y (0) and H ′(0) = X(0).
Consequently, Condition (3’) implies Condition (3). We now apply the same
argument to H(2)(1−) to conclude that Condition (4’) implies Condition (4).
Hence, in view of Theorem 2.4, H is unique. �

4.2. Appendix II: pointwise adaptation for cases (B) and (C)

The following three lemmas are required to prove Theorem 2.13.

Lemma 4.9. For any α > 1, infk∈[0,1]

{
4kα+2 + (1 + k)α+1(α− 2k)

}
> 0.

Proof of Lemma 4.9

It suffices to show that for any k ∈ [0, 1],

4kα+2 + (1 + k)α+1(α− 2k) > 0.

First, it is easy to check that the above inequality holds true when k = 0. In
the case of k > 0, we can restate the inequality to be proved as

4
( k

1 + k

)α+1

> 2− α

k
. (4.3)
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Next, we define m = k/(1 + k) ∈ [0, 1/2], so that (4.3) can be rewritten as

4mα+1 +
α

m
> 2 + α. (4.4)

Note that

inf
m∈[0,1/2]

(
4mα+1 +

α

m

)
≥ α(α+ 2)

(α+ 1)

(4(α+ 1)

α

)1/(α+2)

= (α+ 2)

{
4
(
1− 1

α+ 1

)α+1
}1/(α+2)

.

The inequality (4.4) now follows easily from that fact that
(
1− 1

α+1

)α+1

> 1/4

for any α > 1. �

Lemma 4.10. Let f0(t) = f0(x0)K1(t− x0) +K2(t− x0)
α1[x0,∞)(t) for every

t ∈ [x0 − δ, x0 + δ] for some δ ∈ (0, x0) small, with K1 < 0, K2 > 0 and α > 1.
Then for any x0 − δ ≤ τ− ≤ x0 ≤ τ+ ≤ x0 + δ,

∫ τ

τ−

{
1

2
(τ− + τ)− t

}
f0(t)dt+

∫ τ+

τ

{
t− 1

2
(τ + τ+)

}
f0(t)dt

≥ Kf0(τ
+ − x0)

α+1(τ+ − τ−),

where τ = (τ− + τ+)/2, and where Kf0 > 0 is a constant that only depends on
f0.

Proof of Lemma 4.10

First, it is easy to check that

∫ τ

τ−

{
1

2
(τ− + τ)− t

}
f0(t)dt+

∫ τ+

τ

{
t− 1

2
(τ + τ+)

}
f0(t)dt (4.5)

= K2

∫ τ

τ−

{
1

2
(τ− + τ)− t

}
(t− x0)

α1[x0,∞)(t)dt

+K2

∫ τ+

τ

{
t− 1

2
(τ + τ+)

}
(t− x0)

α1[x0,∞)(t)dt.

If τ ≤ x0, then (4.5) can be expressed as

K2

∫ τ+−x0

0

{
t− 1

2
(τ + τ+) + x0

}
tαdt

=
K2(τ

+ − x0)
α+1{(τ+ − τ)α+ 2(x0 − τ)}
2(α+ 1)(α+ 2)

≥ K2α

4(α+ 1)(α+ 2)
(τ+ − x0)

α+1(τ+ − τ−).
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On the other hand, if τ > x0, then after some elementary calculations, we
can show that (4.5) is equal to

K2[4(τ − x0)
α+2 + (τ+ − x0)

α+1{α(τ+ − τ)− 2(τ − x0)}]
2(α+ 1)(α+ 2)

. (4.6)

Denote by k = (τ − x0)/(τ
+ − τ), so that (4.6) can be rewritten as

K2

2(α+ 1)(α+ 2)

{
4kα+2 + (1 + k)α+1(α− 2k)

}
(τ+ − τ)α+2 ≥ Cf0(τ

+ − τ)α+2,

where Cf0 > 0 is a constant that only depends on f0, and where we applied
Lemma 4.9 with the fact that k ∈ [0, 1] to derive the above displayed equation.
Consequently, by setting Kf0 = Cf0/2

α+2, it is straightforward to check that
(4.6) is greater than or equal to Kf0(τ

+ − x0)
α+1(τ+ − τ−). �

Lemma 4.11. Let F be a collection of functions defined on [x0−δ, x0+δ], with
δ > 0 small. Suppose that for a fixed x ∈ [x0 − δ, x0 + δ] and every 0 < R ≤ R0

such that [x, x+R] ⊆ [x0 − δ, x0 + δ], the collection

Fx,R =
{
fx,y = f1[x,y], f ∈ F , x ≤ y ≤ x+R

}
admits an envelope Fx,R such that

EF 2
x,R(X1) ≤ KR2d−1

for some d ≥ 1/2 fixed and K > 0 depending only on x0 and δ, where X1 ∼ F0.
Moreover, suppose that

sup
Q

∫ 1

0

√
logN(η‖Fx,R‖Q,2,Fx,R, L2(Q))dη < ∞.

Then, for every ε > 0 and s0 > 0, there exist a random variable Mn of Op(1)
such that

sup
s≥s0

sup
x≤y≤x+R0

n
s+d
2s+1 max

(
sup

fx,y∈Fx,y−x

∣∣∣∣
∫

fx,yd(Fn − F0)

∣∣∣∣− ε|y − x|s+d, 0

)

= Mn.

Proof of Lemma 4.11

This lemma slightly generalizes Lemma A.1 of Balabdaoui and Wellner (2007).
Its proof proceeds as in Balabdaoui and Wellner (2007) with minor modifi-
cations, so is omitted for brevity. We remark that here only the collection of
functions defined on [x, x + R] are considered. For functions on [x − R, x], an
analogous version of this lemma also holds true by symmetry. �

Proof of Theorem 2.13

Here we only consider case (B). Case (C) can be handled similarly by symmetry.
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Suppose that (B) holds true for every t ∈ [x0 − 2δ, x0 + 2δ] for some fixed

δ > 0. Let τ−n = max{t ∈ S(f̂n), t < x0} and τ+n = min{t ∈ S(f̂n), t ≥ x0}.
Note that consistency of f̂n implies that τ+n − x0 = op(1). Moreover, since f0
is linear on [x0 − δ, x0], we can proceed as in the proofs of Theorem 2.1 and
Corollary 2.3 to show that

inf
t∈[x0−δ,x0]

min
(
f̂n(t)− f0(t), 0

)
= Op(n

−1/2) (4.7)

and
sup

t∈[x0−δ,x0]

|f̂−
n (t)− f ′

0(t)| = Op(n
−1/2),

where f̂−
n is the left derivative of f̂n. Therefore, it suffices to only consider the

behavior of max
(
f̂n(x0)− f0(x0), 0

)
.

The proof can be divided into four parts.

(i) Suppose that x0 − τ−n ≥ n−1/(4α+2). Denote by τ∗n = max(τ−n , x0 − δ).

Then because both f̂n and f0 are linear on [τ∗n, x0],(
F̂n(x0)− F0(x0)

)
−

(
F̂n(τ

∗
n)− F0(τ

∗
n)
)

= (x0 − τ−n )
(
f̂n(x0)− f0(x0) + f̂n(τ

∗
n)− f0(τ

∗
n)
)
/2.

Marshall’s lemma entails that the left-hand side of the above equality is
Op(n

−1/2). Furthermore, it has been shown that

min
(
f̂n(τ

∗
n)− f0(τ

∗
n), 0) = Op(n

−1/2).

Rearranging the above equation yields

max
(
f̂n(x0)− f0(x0), 0

)
= Op(n

−α/(2α+1)).

(ii) Suppose that τ+n −x0 < n−1/(2α+1). First, we modify Lemma 4.2 of Groene-
boom, Jongbloed and Wellner (2001b) to the following:

Let ξn be an arbitrary sequence of numbers converging to x0. Define
η−n = max{t ∈ S(f̂n) : t < ξn} and η+n = min{t ∈ S(f̂n) : t ≥ ξn}.
Then, max(η+n , τ

+)−max(η−n , τ
+
n ) = Op(n

−α/(2α+1)).

Here one can apply Lemma A.1 of Balabdaoui and Wellner (2007) with
k = α and d = 2 to verify the above extension. By proceeding as in the
proof of Lemma 4.3 of Groeneboom, Jongbloed and Wellner (2001b), one
can verify that there exists some τ+++

n > τ+n such that τ+++
n − x0 =

Op(n
−1/(2α+1)) and

inf
t∈[τ+

n ,τ+++
n ]

|f̂n(t)− f0(t)| = Op(n
−α/(2α+1)).

Since |f̂−
n (x0)− f ′

0(x0)| = Op(n
−1/2), it follows that

max(f̂n(x0)− f0(x0), 0)
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≤ inf
t∈[τ+

n ,τ+++
n ]

|f̂n(t)− f0(t)| − f̂−
n (x0)(τ

+++
n − x0)− f0(τ

+++
n ) + f0(x0)

≤ Op(n
−α/(2α+1))− (f̂−

n (x0)− f ′
0(x0))(τ

+++
n − x0) +K2(τ

+++
n − x0)

α

= Op(n
−α/(2α+1)).

In fact, it is easy to see that the above conclusion still holds if we change
our assumption from τ+n − x0 < n−1/(2α+1) to τ+n − x0 = Op(n

−1/(2α+1)).
(iii) Suppose that x0 − τ−n ≤ τ+n − x0. In view of the discussion in (ii), it

suffices to show that τ+n − x0 = Op(n
−1/(2α+1)). Consider the behavior of∫ t

0
F̂n(s)ds (as a function of t) at the middle point τn = (τ−n + τ+n )/2. Let

E1n =

∫ τn

τ−
n

{
1

2
(τ−n + τn)− t

}
d
(
F0(t)− Fn(t)

)

+

∫ τ+
n

τn

{
t− 1

2
(τn + τ+n )

}
d
(
F0(t)− Fn(t)

)
;

E2n =

∫ τn

τ−
n

{
1

2
(τ−n + τn)− t

}
f0(t)dt+

∫ τ+
n

τn

{
t− 1

2
(τn + τ+n )

}
f0(t)dt.

Lemma 4.2 of Groeneboom, Jongbloed and Wellner (2001b) says that

E1n ≥ E2n. (4.8)

In view of Lemma A.1 of Balabdaoui and Wellner (2007) with k = α and
d = 2,

E1n ≤ ε(τ+n − τ−n )α+2 +Op(n
−(α+2)/(2α+1))

≤ ε{2(τ+n − x0)}α+2 +Op(n
−(α+2)/(2α+1)) (4.9)

for any ε > 0. On the other hand, by Lemma 4.10, we have

E2n ≥ Kf0(τ
+
n − x0)

α+2 (4.10)

for some constant Kf0 > 0 that only depends on the density function f0.
Combining (4.8), (4.9) and (4.10) yields τ+n − x0 = Op(n

−1/(2α+1)).
(iv) Finally, suppose that x0 − τ−n < n−1/(4α+2), τ+n − x0 ≥ n−1/(2α+1) and

x0 − τ−n > τ+n − x0. Our first aim here is to show that

(τ+n − x0)
α+1

τ+n − τ−n
= Op(n

−α/(2α+1)). (4.11)

Let

sn = (α+ 1)
log(τ+n − x0)

log(τ+n − τ−n )
− 1. (4.12)
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Since τ+n
a.s.→ x0 and x0 − τ−n < n−1/(4α+2), 0 < τ+n − x0 < τ+n − τ−n ≤ 1

for large n. This implies that sn ≥ α for sufficiently large n. It now follows
from Lemma 4.11 (with d = 2 and s0 = α) that

n(sn+2)/(2sn+1) max
(
E1n − ε(τ+n − τ−n )sn+2, 0

)
= Op(1).

for any small ε > 0. On the other hand, in view of Lemma 4.10 and identity
(4.12), some elementary calculations yield

E2n ≥ Kf0(τ
+
n − τ−n )sn+2.

Plugging the above two equations into (4.8) entails that

τ+n − τ−n ≤ n−1/(2sn+1)Op(1).

As a result,

(τ+n − x0)
α+1

τ+n − τ−n
= (τ+n − τ−n )sn = n−sn/(2sn+1)Op(1) ≤ Op(n

−α/(2α+1)).

The rest of the proof is similar to (b) in the proof of Theorem 2.12. By
the law of the iterated logarithm for local empirical processes,√

τ+n − τ−n Op

(
n−1/2

√
log logn

)
=

(
Fn(τ

+
n )− F0(τ

+
n )

)
−

(
Fn(τ

−
n )− F0(τ

−
n )

)

=

∫ τ+
n

τ−
n

(
f̂n(t)− f0(t)

)
dt

=

{(
1− τ+n − τ−n

2(x0 − τ−n )

)
(f̂n(τ

−
n )− f0(τ

−
n ))

+
τ+n − τ−n

2(x0 − τ−n )
(f̂n(x0)− f0(x0))

}
(τ+n − τ−n )− K2

α+ 1
(τ+n − x0)

α+1,

where the last equality follows from the linearity of f̂n(t) and f0(t)−K2(t−
x0)

α1[x0,∞)(t) on [τ−n , τ+n ]. Since our assumptions in (iv) guarantee that
1 ≤ (τ+n −τ−n )/(x0−τ−n ) ≤ 2, rearranging the terms in the above displayed
equation leads to

max
(
f̂n(x0)− f0(x0), 0

)
≤ 2

{
(τ+n − τ−n )−1/2Op

(
n−1/2

√
log logn

)
− 1

2
min(f̂n(τ

−
n )− f0(τ

−
n ), 0) +

K2

α+ 1

(τ+n − x0)
α+1

τ+n − τ−n

}
. (4.13)

Finally, as τ+n − τ−n ≥ n−1/(2α+1), we can plug (4.7) and (4.11) into (4.13)
to verify

max
(
f̂n(x0)− f0(x0), 0

)
≤ Op

(
n−α/(2α+1)

√
log log n

)
.
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