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A Hybrid Algorithm for Computation of the
Nonparametric Maximum Likelihood Estimator

Jon A. WELLNER and Yihui ZHAN

From Censored Data

We present a hybrid algorithm for nonparametric maximum likelihood estimation from censored data when the log-likelihood is
concave. The hybrid algorithm uses a composite algorithmic mapping combining the expectation-maximization (EM) algorithm
and the (modified) iterative convex minorant (ICM) algorithm. Global convergence of the hybrid algorithm is proven,; the iterates
generated by the hybrid algorithm are shown to converge to the nonparametric maximum likelihood estimator (NPMLE) unam-
biguously. Numerical simulations demonstrate that the hybrid algorithm converges more rapidly than either of the EM or the naive
ICM algorithm for doubly censored data. The speed of the hybrid algorithm makes it possible to accompany the NPMLE with

bootstrap confidence bands.

KEY WORDS: Algorithm; Censoring; EM algorithm; Hybrid method; Iterative convex minorant; Missing data; Self-consistency.

1. INTRODUCTION

This article presents a new general approach to iterative
computation of the nonparametric maximum likelihood es-
timator (NPMLE) of a distribution function F' on R when
the observations can be viewed as incomplete data with
concave log-likelihood. Because the iterations of our new
algorithm are generated by a composite algorithmic map-
ping alternating steps of a (modified) iterative convex mino-
rant (ICM) algorithm and of an expectation-maximization
(EM) algorithm, we call it a hybrid algorithm. The hybrid
algorithm is remarkable partly because it is simple and pos-
sesses global convergence and partly because it taps into the
different strengths of both the EM algorithm and the mod-
ified ICM algorithm.

If the EM algorithm converges, then limit points of the
iterates generated by the algorithm will satisfy the self-
consistency equations. As the information loss due to cen-
soring or missing data becomes heavier, the self-consistency
equations tend to have multiple solutions. For example,
whereas the self-consistency equations have a unique solu-
tion in the case of right-censored data, this is no longer the
case for doubly censored data; the self-consistency equa-
tions may have more than one solution in the case of double
censoring. A self-consistent estimate is not necessarily the
NPMLE. (See Gu and Zhang 1993, p. 612, for an example
of this with doubly censored data.) As another example, the
self-consistency equations for interval-censored data do not
determine uniquely the NPMLE either (see Groeneboom
and Wellner 1992). In these cases the self-consistency equa-
tions fail to characterize the NPMLE.

A first consequence of this fact is that the EM algorithm
becomes ambiguous in the sense that it may converge to
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a solution of the self-consistency equations other than the
NPMLE. In fact, for certain observed data patterns, initial
conditions lead the EM algorithm to a self-consistent es-
timate that is not the NPMLE, and for the same observed
data patterns, other initial conditions lead the EM algorithm
to the NPMLE. Mykland and Ren (1995) coped with this
problem in the case of double-censoring by characterizing
the NPMLE and altering the initial conditions of the EM
algorithm to calculate a particular self-consistent estimate
satisfying the characterizing conditions.

A second consequence is that heavy information loss re-
sults in a slow convergence rate of the EM algorithm. The
arguments of Meilijson (1989) showed that the convergence
rate of the EM algorithm in a missing-data problem depends
on the ratio between incomplete data information and the
complete data information. From Meilijson (1989, formula
12, p. 132), it follows that

00 — § ~ (I - T3 y)™(0© — ),

where Iy and Iy denote the information matrices for 8 in
the complete data and incomplete data problems and I is
the identity matrix of the same dimension. Although the
EM algorithm performs satisfactorily in the case of right-
censored (or even doubly censored) data (in which case
(I — Ix'Iy) < 1), there is a general empirical finding that
the number of iterations for the EM algorithm to compute
the NPMLE for interval-censored data (in which case I —
I)_{lly = I) increases with sample size (Groeneboom and
Wellner 1992). Even though the EM algorithm may be fast
enough to calculate the NPMLE itself (once), it may be far
too slow to implement bootstrap methods (which involve
computation of the NPMLE many times from resampled
data).

Several different strategies to speed up the EM algo-
rithm have been proposed, including Aitken acceleration,
quasi-Newton methods, and conjugate gradient methods.
(See Jamshidian and Jennrich 1993 for an approach using
conjugate gradient acceleration and a nice review.)
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Our approach is somewhat different, instead involving
characterizations of the NPMLE via Fenchel duality and
the related convex minorants—characterizations that have
their origin in the work of Ayer, Brunk, Ewing, Reid, and
Silverman (1955) and Van Eeden (1956) in connection with
“interval-censoring” models. As an alternative to the EM
algorithm in these models with heavy information loss,
Groeneboom (1991) proposed the ICM (see Groeneboom
and Wellner 1992, pp. 65-74). This method is based on the
simple observation that a distribution function F' must be
nondecreasing together with the fact that the log-likelihood
function is concave in many missing-data problems. The
NPMLE thus can be explicitly characterized via Fenchel
duality for convex optimization. In many cases the charac-
terization can be expressed as the left derivative of the con-
vex minorant for a cumulative sum diagram defined by the
derivative processes of the likelihood functions (Groene-
boom 1996; Groeneboom and Wellner 1992; Huang and
Wellner 1995a,b; Zhan and Wellner 1995). This is because
the characterization can be equivalently viewed as the iso-
tonic regression of the derivative processes under a mono-
tonicity constraint, which possesses a convex minorant in-
terpretation.

Jongbloed (1995a, 1995b) proposed a modified ICM algo-
rithm with a line search and proved that the modified algo-
rithm is globally convergent. The ICM algorithm is particu-
larly suitable for computation of the NPMLE with interval-
censored data and other problems in which the large-sample
theory of the estimator involves normalization not by the
square root of the sample size, but instead by the cube root
of the sample size or another slower rate, and the EM al-
gorithm often exhibits a slow convergence rate (as an algo-
rithm for fixed sample size).

Motivated by the need to calculate the NPMLE unam-
biguously and efficiently in models with different informa-
tion loss, and by the need to calculate the NPMLE quickly
to implement bootstrap methods, we present a new hybrid
algorithm consisting of alternating steps of the ICM and
EM algorithms. The ICM step is based on the characteriza-
tion of the NPMLE that identifies a particular solution to
the self-consistency equations that maximizes the likelihood
function. Heuristically, the hybrid algorithm is designed to
search for the NPMLE, by the ICM scheme, among the set
of all self-consistent estimates specified by the EM itera-
tions. Because the set of all self-consistent estimates is a
small subset of all feasible estimates, the hybrid algorithm
should be able to outperform the naive ICM algorithm or
the EM algorithm, independent of the information loss in a
given problem.

An advantage of using a composite mapping of the ICM
and the EM algorithm is that the algorithmic mapping of
the EM iteration never destroys the ascent likelihood func-
tion in the modified ICM algorithm. This allows us to es-
tablish the global convergence of the hybrid algorithm by
using a general convergence theorem for composite algo-
rithmic mappings, theorem 7.3.4 of Bazaraa, Sherali, and
Shetti (1993).
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To demonstrate the effectiveness of the hybrid algo-
rithm, we carried out detailed simulation experiments on the
double-censoring model. The reason we chose the double-
censoring model for simulation is the representativeness of
this model; it reduces to both the right-censoring model and
the interval-censoring model (case 1, or current status data)
by appropriate choice of the censoring mechanism.

2. THE EXPECTATION-MAXIMIZATION ALGORITHM
AND SELF-CONSISTENCY

The type of model that we treat here is as follows. Sup-
pose that X is a real-valued random variable with distri-
bution function F' on R. Unfortunately, we are not able to
observed X itself, but instead observe only Y = T(X,C),
where C is a random vector in R™ that is independent of
X and T is a (measurable) function from R x R™ to R* for
some k.

We are interested in the NPMLE of F' based on observa-
tion of a sample of Y’s, Y1,...,Y,, iid all with the same
distribution as Y.

Example 2.1: Right Censoring. Suppose that X and C
take values in RT = [0,00) and let Y = T(X,C) = (X A
C, 1[X§C]) e Rt x {0, 1}

Example 2.2: Interval Censoring, Case 1 (Current Status
Data). Suppose that X and C take values in RT and that
Y = T(X, C) = (C, 1[X§C]) e Rt x {0, 1}.

Example 2.3: Double Censoring. Suppose that X takes
values in R*, C takes values in RZ? = {(u,v) € R% 0 <
u < v < oco}. Then in this model we observe
(X,l) lfCl <X <0y
(C2,2) if X > Cy = (W, A).
(C1,3) if X <Cy

Y =T(X,C) =

Example 2.4: Interval Censoring, Case 2. Suppose that
X takes values in RT and C takes values in Rt? = {(u,v) €
R:Z0<u<wv< oo} as in Example 2.3, but now we can
only observe

Y = T(X, C) = (Cla 027 1[0,01](X)7

Lier,ca)(X)s Licy,00) (X)) = (C, A).

Example 2.5: Multiplicative Censoring. Suppose that
both X and C take values in R*T and C, with the distri-
bution G of C being the mixture pd; + (1 — p)Go, where
Gy is a fixed (continuous) distribution on R* (and §; de-
noting the distribution concentrated at 1). Suppose that we
observe Y = T(X,C) = (XC, 1;c=1)). When p = 0, this is
pure “multiplicative censoring”—the distribution of Y7 is a
scale mixture of G with mixing distribution F.

A common feature of the foregoing examples on which
we want to focus is as follows. There is some finite set of
points {W;)}i_; C R with Wy) < --- < W(,) depending
only on the coordinates of Y3, ..., Y}, so it is reasonable to
assume that the NPMLE F,, of F is a discrete (sub) dis-
tribution function with jumps only at the points {W;}.
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For example, in Examples 2.1-2.3, the W(,)’s are the or-
der statistics of the first component of the Y;’s, and s = n
(if there are no ties; otherwise, s < n); in Example 2.4,
the W(;)’s are obtained by deleting the obviously irrelevant
values (for the likelihood) from the first two components of
the Y;’s, the pairs (C};, Ca;), then forming the union of the
resulting set of real values (of random size s < 2n), and or-
dering them. Thus s < 2n is random in this case. (Note that
this is equivalent to forming the 7;’s in definition 1.1 of
Groeneboom and Wellner 1992, p. 45.) In Example 2.5, take
the W;y’s to be the ordered values of the first component
of the Y;’s.

Thus our convention throughout the remainder of this ar-
ticle is as follows: by the NPMLE of the distribution func-
tion F', we mean a discrete (possibly sub) distribution func-
tion that maximizes the likelihood over the set D of discrete
distribution functions that are piecewise constant between
the points W(;y < --- < W(y). This is an assumption for
the current setting, which restrlcts our methods to a (large)
subclass of such problems. In some cases it is of interest to
maximize the likelihood over all distributions, or perhaps
(e.g., Example 2.5 with p = 0) over all discrete distributions
with the locations of the jumps as well as the magnitudes
of the jumps varying.

Let FF € D be a distribution function that is piecewise
constant between the points W), j =1,2,...,s. Any F €
D can have jumps only at those points. A function F' € D
can be identified with a vector p = (p1,...,Ds Pst1)7s
where p; = F(W;)) — F(W;_1)) is the jump of F' at W,
for j =1,2,...,s and p,1; represents the possibly remain-
ing mass. The feasible set for p is

s+1
Cp,=<{pelo,1]*t: p;=1,andp; >0,5>1
p J J
j=1
c R*TL (1)

A function F' € D can also be identified with a vector
X = (z1,...,2,), where z; = F(W;)) is the value of F
evaluated at W;). Correspondingly, the feasible set for x is

Ci={x0<z; < <z, <1} CR°. (2)

Obviously, there is a one-to-one correspondence between
a vector p and a vector x parameterizing the same function
F € D. This correspondence will be conveniently denoted
by x = x(p) or p = p(x), referring to the correspond-
ing parameterization in x resulting from p and that in p
resulting from x.

The EM algorithm was originally formulated in the con-
text of parametric estimation problems, but there are many
examples of its use in nonparametric settings (see, e.g.,
Efron 1967, Laird 1978, Tsai and Crowley 1985, Turnbull
1974, 1976, Vardi 1982, 1989, and Vardi and Zhang 1992).
Although the NPMLE rarely has a solution in “closed
form,” the EM algorithm is usually straightforward to im-
plement. Moreover, all of the limit points generated by
the EM iterations can be characterized in terms of self-

947

consistency equations, a set of facts that we now briefly
review.

Let p(® be an initial estimate of F, and let p{™ denote
the current estimate of F' after m steps of the algorithm.
The log-likelihood for the complete data is

(p, X1, Xn) = log [ [ £(X.Ip)
=1
s+1
= Z#{X’ = W(,)}logp;.
j=1

In the E step of the EM algorithm, we compute the condi-
tional expectation of the complete-data log-likelihood given

the iid observations Y,, 7 =1,2,...,n:
QpIP™) = Epow (P, X1, .-, Xn)[Y1,..., Yy
s+1
= 3 (l0gp) 3 Prven (X: = Wiy Y.).
j=1 i=1

In the last expression, Pr(m) denotes the conditional prob-
ability distribution of X given Y when X ~ F(™),

The M step in the EM algorithm can be calculated ex-
plicitly in a missing-data problem. Maximize (3) over the
feasible region Cp defined in (1). To do this, let «;; =
Ppomy {X, = W, |Y}f0rz—12 snand j=1,2,...,s
+ 1. Write a; = > oy and a.. = Z;f}aj = n. The
Lagrangian function for this problem can be written as

s+1

L(p,\) = Zlogpj)ZaU—l—)\ 1—2])]

s+1 s+1
—Zajlogpj—i-)\ I—Zp]
=1 7j=1

Differentiating with respect to p; and setting the deriva-
tives to O yields a.;/p; — A = 0, or p; = «.;/X for
j =1,2,...,s + 1. Because Zji}pj =1and a.. = n,
we obtain A = a.. = n. This leads us to the optimum point
p(™*1) with its components

<'"+1>__f =1§n:)3 X; = WY, 4
n ni:l F(m){ 7 (])| z} ()
forj=1,2,...,s+1.

The EM iteration actually leads to a self-consistent esti-
mate if the iteration converges. Rewriting Equation (4) in
its cumulative form in terms of distribution functions yields

Zl[x <m]|Yl7"'7 ]

for all z € R. Thus it is clear that the limit, F(>) say, of
the sequence of functions {F(™} will satisfy

Fi) (2) = Epen

F(OO)( ,zeR. (5

= Epo) Zl[x <o)l Y1, Y
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This is Efron’s (1967) property of self-consistency of an
estimator F(*) of F. The equations in (5) are called the self-
consistency equations. Thus if the EM algorithm converges,
then it will converge to a solution of the self-consistency
equations; that is, a self-consistent estimate.

The nonparametric likelihood equations in the context of
missing-data problems also reduce to the self-consistency
equations. For a bounded function h, we define a curve (or
parametric submodel) {F,} passing through F' by

dF" (X)) =147 (h(X) —/hdF)

where (h — [ h dF) is the centered score for the complete-
data model because
2 0)

0 (l dF,

an &G
But the score function B(F)(h)(Y) for F based on incom-
plete data is the conditional expectation of the centered
score in the complete-data model [Bickel, Klaassen, Ritov,
and Wellner 1993, prop. A.5.5 (A)]:

= h(X) - / hdF.

n=0

B(F)(h)(Y) = Er [h(X) . / hdF|Y] .

Setting h(z) = hy(z) = 1jo,4() following Gill (1989), we
obtain the nonparametric score functions for iid incomplete
observations Yq,...,Y,:

n

a(F)(h) = =3 BIF)(R(Y:)

=1

1 n

—F(t)|Y1,...,Yn}

Z Lio, (X

Thus the nonparametric likelihood equations ¥, (F)(h;) =

0, t € R, are exactly the self-consistency equations. The
likelihood equations do not provide any additional infor-
mation to distinguish between different self-consistent esti-
mates.

Y1, Y| = F().

Example 2.3, (cont.): Double Censoring. An explicit
EM iteration for a self-consistent estimate in the double-
censoring model is available. We calculate

aij = Ppem{Xs = Wii|(Wi, Ai)} = Lja,=1) - Lw.=w;)

(m)

(m)(W ) Lwgy>wi

+1[A1=2] 1=

(m)

+ 1[Az=3] F(mg(Wz) I[W(J)SWI]

(6)
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fori=1,2,...,nand j =1,2,...,n+ 1; here W, ,1) is a
point located to the right of W, for the remaining mass.

Let HY(t) = n! > 1 Y w.<t,a,=j be the empirical
subdistribution functions corresponding to A; = j, j =
1,2,3. Let H,(t) = n~ 37 | 1w, <4 be the empirical dis-
tribution function for the W;’s. It is also easy to show that
a self-consistent estimate F,, of F' for doubly censored data
is specified by the equations

Fn(t)an(t)—/[Ot]—ll:L(())dH@)( %)
F () @)y,

for all ¢t € [0,00). Mykland and Ren (1996) used the dis-
crete version of this equation to construct an equivalent
fixed-point problem and thereby connect back to the EM
algorithm.

3. THE NONPARAMETRIC MAXIMUM LIKELIHOOD
ESTIMATOR AND ITERATIVE CONVEX
MINORANT ALGORITHMS

Our convention here is that the NPMLE of F' is a discrete
distribution function F,, € D maximizing the log-likelihood

$(x) = log <H g(Yilp(X))> :

i=1

Formally, the NPMLE x is defined by the following opti-
mization problem:

max log (H g(Yilp(X))>

®)

overx € Cy={x€[0,1]*: 0<z; <--- <z, <1}
Let Dy = {x: z1 < --- < z5}. We can extend the definition
of ¢ to Dy by defining ¢(x) = —oo for x € Dy \ Cy. Then

the optimization problem (8) can be equivalently stated as

{ max ¢(x) ©)

over x € Dy.

3.1 Characterization of the Nonparametric Maximum

Likelihood Estimator

For the optimization problems stated in the previous sec-
tion, necessary and sufficient conditions characterizing the
NPMLE can be given explicitly by use of the Fenchel (or
Lagrange) duality theorem. The following lemma is from
Jongbloed (1995a,b) as reformulated slightly by Groene-
boom (1996).

Lemma 3.1. Let ¢: R™ — R U {—o0} be a continuous
concave function. Let £ C R™ be a convex cone, and let
Ko = KN ¢~ 1(R). Suppose that Ko is nonempty and ¢ is
differentiable on Ky. Then % € Ky satisfies

¢(%) = max #(z) (10)
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if and only if

(%, V¢(x)) =0 (11)

and

(x,Vé(x)) <0 (12)

for all x € K.

Example 2.3 (cont.): Double Censoring. After eliminat-
ing trivial situations, the maximization problem defining the
NPMLE can be equivalently stated as

¢(X) = Z::l{l[A(,)zl] log(z; — xi-1)
+ 63y log(1 — ;) + Liag,=3] logz;} (13)
overx € Cy ={x:0<z; <--- <z5 <1},

where the integer s = n if A,y # 1 and s = n — 1 if
Ay = 1, and the numbers §;) are defined by

by = {

Strictly speaking, the function ¢(x) is not exactly the log-
likelihood function in this model. But the difference be-
tween the log-likelihood function and ¢(x) is a constant
that does not depend on x. To see this, note that the like-
lihood for doubly censored sample {(W;, A;)}P, is given
by

Liag,)=2] ifi=1,2,...,5—1
Hapony=2 + Lag,=1 ifi=s.

C+ Z {Liagy=1 log(z; — zi-1) + 1[a =2

=1

x log(1 — z;) + LA =3] logz;}, (14)

where C' is a constant not depending on x.

In the likelihood (14), we may assume, without loss of
generality, that A,y # 3. Actually, if Ay =3 for j =k,
k+1,...,n, then we can take z; = 1 for k < j < n to
make 1(n  —3)logz; as large as possible (namely 0), with-
out putting any additional constraint on other components
of x.

When A,y # 3, the only possibility is that either
A(n) =1or A(n) = 2. If A(n) = 1, then the maximiz-
ing x must have its last component &, = 1 to make the
term 1ja, =1 log(&, — &n—1) as large as possible without
putting extra constraint on other components of x. Then
the term 1(a ,,=1)log(1 — #,—1) can be combined with the
term 1(a,_, =210g(1 — &,-1) to form the term §,) log(1
— Tp—-1).

In the maximization problem (14), we may also assume
that Ay # 2. The reason is that if Ay = 2 for j =
1,2,...,k, then we can take z; = 0 for 1 < j < k to
make the corresponding term Liag,=2] log(1l — z;) in ¢ as
large as possible (namely 0) without putting any additional
constraints on other components of x.

It is worthwhile to note that the NPMLE without assum-
ing that A;) # 2 and A(,) # 3 is generally a function
consisting of three parts. If Ay =+ = A1) = 2 and
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A(mo) 74 0, then Fn(W(l)) — ... = Fn(W(mO—l)) =0 and
A(ml) :/é 3, then Fn(W(m1+1)) = ... = Fn(W(n)) = 1. The

third part, corresponding to Ay, . .-
ized by Lemma 3.1 as follows:

s A(m,) 18 character-

Theorem 3.1. Suppose that Ay # 2 and A,y # 3. Let
A(s+1) = 0. Then % maximizes ¢ over the feasible set Cy
defined in (13) iff

S

_ 28: 40) + Z Liag=3
—1- &

i=k ¢

1[A(k):1]

T — L1
<0, Vk=1,2,...,s
{ =0, if £ > Tp_1. (15)

Moreover, X is the unique point that maximizes ¢(x) over
the feasible set Cy.

The proof of the theorem starts with expressing a point
x € Cy by

S

X= Z (zi —®i-1)1i

i=1

with zog = 0, where the vector 1, has 1’s as its last s —
i + 1 components and 0’s as its first ¢ — 1 components,
1=1,2,...,s. Note that

> 9¢(X) _ LAy =1] . b@)
B — Epot _;1—@ *

(9£Uj
Then the condition (3.5) in Lemma 3.1 reduces to

i=k

<0

(%, Vo(R) =Y (2 — zxo1) 96 (%)

=1 % 8.Tj

for all x € Cy. This implies the first condition given in (15).
Similarly, the condition (11) in Lemma 3.1 reduces to the
second condition in (15).

The uniqueness of the NPMLE % is derived from the
fact that the Hessian matrix 9%¢(x)/0x0xT of the objec-
tive function ¢ is negative definite (see the Appendix, Zhan
1996, or Zhan and Wellner 1995).

3.2 The lterative Convex Minorant Algorithm
The idea behind the (ICM) algorithm can be seen from

the following equivalent relationship.

Theorem 3.2. Suppose that ¢ satisfies the condition in
Lemma 3.1. For any positive definite matrix X, a point x* €
K maximizes the quadratic function

Js(x,%) = — % x — % — 27Ve&)T
xBx — % — TIVH(X))

over the convex cone K iff x* = % = arg maxyex ¢(x).
Maximizing Jx(x,%) over K is “easier” than maximiz-

ing ¢ over K, assuming that we know %. Because we do

not know X, this is in fact a bit unrealistic, but it still gives
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a valuable perspective. To continue this line of thought, sup-
pose that we choose X to be a positive definite diagonal ma-
trix; then maximizing Jx(x,%) over K possesses a convex
minorant interpretation. Furthermore, if ¢ is twice contin-
uously differentiable and ¥ = —3X(X) is chosen to be the
Hessian matrix of ¢ at %, maximizing Jx(x, X) can also be
interpreted as maximizing a quadratic approximation ¢ of
¢ at the point X:

$(x) = ¢(%) + [x - R]TVH(%)
O I TE3)[ P
= const. — - [x — % — B} (&) Vo(%)]T

x B(X)[x — % — T7HXK)Vo(X)].

This interpretation motivates the following iterative
scheme. Let Q{%X} be the solution set, set k — O:

1. If x(*) € Q then stop.
2. Choose x(**1) to be any point in a set A(x(*)) such
that Jyyay(x,x*)) is maximized; k < k+ 1 and go to 1.

The set A(x(®)) can be viewed as the image of a point-to-
set mapping A that maps a point x(*) to a set A(x(®)) of all
maximizers of Jyyxy (X, x(k)). The mapping A, called the
algorithmic mapping, is formally defined by

A(x) = arg rznealméc Ix(x)(2,X).

With ¢ a continuously differentiable function on the set
{x € K: ¢(x) > —oo}, it is trivially true that the algorith-
mic mapping A(x) is well defined on the same set {x € K:
¢(x) > —oo}. Moreover, A(x) is continuous at each point
x € K where ¢(x) > —oo and x — X(x) is continuous. Al-
though an ascent function does not exist in general, the di-
rection generated by the ICM algorithm at any point x # %
is a direction of ascent of the objective function ¢. The fol-
lowing lemma due to Jongbloed (1995a,b) states this prop-
erty.

Lemma 3.2. Let ¢: R™ — [—o00,00) be a function satis-
fying the condition of Lemma 3.1. Then for all A sufficiently
small,

P(x + A(A(x) — x)) > ¢(x)

for any x € K — {%} and any positive definite matrix X(x).

Based on this lemma, we may introduce a line search
between the iterations in the ICM algorithm to produce
a feasible point and an ascent objective function, thereby
guaranteeing global convergence of the algorithm. The al-
gorithm with a particular line search determined by a vari-
ant of Armijio’s rule is called the modified ICM algorithm
and is due to Jongbloed (1995a,b).

4. A HYBRID ALGORITHM

As a starting point, we review the algorithmic mapping
of the modified ICM algorithm.

Let the segment seg(x,z) be defined as {w: w = x +
Az — x),0 < X < 1}. For fixed 0 < ¢ < 1/2, let the
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mapping N (x) be defined by

{A(x)}  if A(x) satisfies condition in (17)
N@x) = z € C(x) elsewhere. (16)
In the last expression, the first condition is given by
P(A(x)) > ¢(x) + (1 - )Ve(x)T (A(x) —x), (17)

and the set C(x) is defined by

C(x) = {z € seg(x, A(x)) : (1 —e)Vo(x)T(z — x)
> ¢(z) — d(x) 2 eV(x)T (2 — x)}.

The new hybrid algorithm is generated iteratively by a
composition mapping M - N of the EM algorithm and the
modified ICM algorithm: Set k& « 0:

1. If x*) € Q then stop.
2. x+D) ¢ MN(x®); k — k+1 and go to 1.

In this iteration, the algorithmic mapping M(-) is defined
by the EM iteration

Q(M(p)lp) > Q(p'|p)

for every vector p’ € C,.

A very nice property of the EM algorithm is that it gener-
ates a sequence of ascent log-likelihood functions in the it-
eration. A formal description of this property involves some
related quantities. Let

(18)

k(xl,--~,xn|yl,---,yn,p)

_ f(@,...,zalp) _ 77 f(ilp)
~ 9(y1,-. -, ynlp) _E 9(1.|p)

denote the conditional density of the complete data
X1,...,X, given the incomplete data Y4,...,Y, and p. In
these expressions, the incomplete-data specification g(y|p)
and the complete-data specification f(z|p) are related by

gmmz/ﬂ Jap) dzaGe)
y=T(z,c

The log-likelihood ¢(x(q)) = L(q) parameterized in q
can be rewritten as

n

L(q) = log [ [ 9(Yila) = Q(alp) — H(qlp),
=1

where the functions ) and H are defined by

Q(qlp) = Ep[logf(Xla e ’anq)lYla .. 7Yn]

and

H(q|p) = Epllog k(X1,..., Xn|Y1,...,Y,q@)|Y1,..., Y],

which are assumed to exist for all pairs of (p,q).

Because H(p|p) > H(q|p) for any q in (1) (see lemma 1
in Dempster, Laird, and Rubin 1977), it follows from (18)
that for any p € C,,

L(M(p)) = Q(M(p)|p) — H(M(p)|p)
> Q(plp) — H(plp) = L(p).
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Let y = x(q) and x = x(p) denote the parameteriza-
tion of g and p in the feasible set Cy. The monotonicity
L(M(p)) > L(p) at any point p € Cp, implies that

¢(y) = o(x)

for any y € M(x) and any x € Cy. For convenience of
notation, we have used the corresponding parameterization
y of q and the corresponding parameterization x of p in
the EM algorithmic mapping M (-).

(19)

4.1 Global Convergence of the Hybrid Algorithm

There is a general theorem on the global convergence of
an algorithm generated by a composite algorithmic map-
ping. Basically, if one of the algorithmic mappings yields
an ascent objective function and is closed, while the other
does not destroy the ascent function, then the algorithm
generated by the composite mapping of the two mappings
converges. We now give a statement of this result, theorem
7.3.4 of Bazaraa et al. (1993). (The proof can be found in
Bazaraa et al. 1993, p. 253.)

Theorem 4.1. Let X be a nonempty closed set in R™ and
let Q C X be a nonempty solution set. Let o: R” — R be a
continuous function and consider the point-to-set mapping
C: X — X satisfying the following property: Given x € X,
it holds that a(y) < a(x) for y € C(x). Let B: X — X be
a point-to-set mapping that is closed over the complement
of Q and that satisfies a(y) < «(x) for each y € B(x), if
x ¢ Q. Now consider the algorithm defined by the compos-
ite mapping A = CB. Given x(!) € X, suppose that the
sequence {x(*)} is generated as follows:

1. If x*) € Q then stop.
2. Let x*+t1) ¢ A(x(®)); k «— k+1 and go to 1.

Suppose that the set A = {x: a(x) < a(x(?)} is compact.
Then either the algorithm stops in a finite number of steps
with a point in ©, or all accumulation points of {x*)} be-
long to Q.

To apply this theorem, we need to prove the closedness of
the algorithmic mapping N as defined in the modified ICM
algorithm and the existence of an ascent function. This is
given in the following lemma.

Lemma 4.1. Suppose that the function ¢ is continuously
differentiable on the set {x € R™: ¢(x) > —oo}. Let x(0) €
K satisfy ¢(x(?)) > —oco and let

K = {x € K:p(x) > p(x)}. (20)
Assume that the mapping x +— 3(x) is continuous in the

sense that all elements of ¥ (x) are continuous on the set
K. Then

1. The algorithmic mapping N (-) defined in (16) is closed
at each point x € K — {k}.

2. For all x # % and for all z € N(x), it holds that
$(2) < B(x).

The global convergence of the hybrid algorithm is shown
in the following theorem by an application of Theorem 4.1.

951

Theorem 4.2. Suppose that the function ¢: R™ —
[—00, 00) satisfies the following conditions:

1. ¢ is concave and attains its maximum over K at a
unique point X.
2. ¢ is continuously differentiable on the set {x € R™:

$(x) > —oo}.

Suppose that x(9) € K satisfies ¢(x(?)) > —oo, and that
the mapping x — 3X(x) is continuous on the set {x € K:
#(x) > ¢(x(?)}. Then the hybrid algorithm generated by
the composite mapping of the modified ICM and EM algo-
rithms converges to the NPMLE x.

A few simple properties of the NPMLE x are worth
recording.

Proposition 4.1. If the NPMLE x is unique in the sense
that X is a unique point in Cy that maximizes ¢: ¢(X) > $(x)
for any other x # X in the feasible set Cy, then the NPMLE
% is a fixed point of the EM algorithmic mapping M (-), the
modified ICM algorithmic mapping N(-), and the hybrid
algorithmic mapping M N (+).

Corollary 4.1. Under the condition of this proposition,
the NPMLE £ satisfies the self-consistency equation.

4.2 The Hybrid Algorithm for Doubly Censored Data

Maximization of Jx,y)(w, x) with a positive definite diag-
onal matrix X(x) has a convex minorant interpretation. Let
XY (x) = diag{ds, ..., ds} be a diagonal matrix with positive
constants d; > 0 possibly depending on x, ¢ = 1,2,...,s.
Let r; = x; + V(l’)l/dz, 1=1,2,...,s Then

The characterization condition for X to maximize Jyy)
(w,x) over C{ is given by Lemma 3.1 as

> - {

1=k

>0, fork=1,2,...,s
=0, if & > Tp_1.

The cumulative sum diagram is defined by the following
points:

PZ=(i:dj,idjT]), i=1,2,...,8.
j=1 j=1

The convex minorant is defined as the greatest convex
piecewise linear function lying below the points P,, i =
0,1,2,...,s with Py = (0,0).

Let 0 =49 < 41 < -+ < ip = s be the indices on the
z-axis corresponding to the vertices of the convex mino-
rant. Note that the slopes Z, of the convex minorant re-
main constant between the integer block (ix—1,x]: &; = &i,,
i =1dg—1+1,...,ig for k =1,2,...,p — 1. This, together
with the fact that these slopes are equal to the slopes of
the cumulative sum diagram on the corresponding block
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(4k—1,1x), imply that

}:d

’L—’Lk

i —1i) =0, k=1,2,...,p—1.

This is exactly the second part of the characterization con-
dition.

Similarly, the fact that these slopes #; are greater than or
equal to the slopes of the cumulative sum diagram on the
block (7, s] implies that ‘

zs: di (-i'z
i=j

This is exactly the first part of the characterization condi-
tion. The foregoing argument follows the lines of theorem
1.5 of Barlow, Bartholemew, Bremner, and Brunk (1972)
(see also Groeneboom and Wellner 1992, Jongbloed 1995a,
and Robertson, Wright, and Dykstra 1988).

Because the log-likelihood function in the double-
censoring model is actually twice differentiable on the set
{x: ¢(x) > —oo}, we may choose X(x) to be a diago-
nal matrix consisting of the diagonal elements in the neg-
ative Hessian matrix of ¢ and calculate the NPMLE by
the ICM algorithm. Unlike the interval censoring case 1,
where the negative Hessian matrix of the objective function
is of a diagonal form so that the ICM actually maximizes
a quadratic approximation to the objective function, in the
case of double-censoring the ICM only maximizes a linear
approximation to ¢ with a diagonal quadratic approxima-
tion.

i=1,2,...,s.

Example 2.3 (cont.): Double Censoring.  For any vector

x = (z1,...,2,)T in the feasible set Cy defined in (3.6),
define the processes G(x,-) and V(x, ) by G(x,0) =0,
J
= > (-V¢ii(2)
=1
ZJ: [ 1[A<w>—1] Lagyn=1]
=1 i = Ti-1) (Tig1 — 24)?
6(1’) 1[A(z)=3]
+ A=z o (21)
for j =1,2,...,s and V(x,0) =0,
J
Vi(x,j) = Z [2:(=V?hi(z)) + Vi ()] (22)
i=1
for j = 1,2,...,s. In the foregoing, A4y = 0 and

v2¢ij(x) = 82¢(X)/3.’L’10.’L’J Let E(X) = —[V2¢>ij(x)] be
the diagonal part of the negative of the Hessian of ¢.

Theorem 4.3. A point x* is the NPMLE or, equivalently,
maximizes Jx ) (w, %) over CF, iff it is the left derivative
of the convex minorant of the cumulative sum diagram con-
sisting the following points:

B = (07 0)7 P, = (G(f(,_]),V(f(,])),

Theorem 4.3 is a consequence of Theorem 3.2. It is the
motivation behind the ICM algorithm for doubly censored

i=1,2,..

.,m.
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data. Although it gives only a first-order approximation, it is
simple to implement. The EM iteration for doubly censored
data has a closed form; see (4). Putting these together, we
now give the iteration steps of the hybrid algorithm.

Let A;;(x) = (V(x,i) — V(x,0))/(G(x,) — G(x,1)).
The iteration steps of the hybrid algorithm are as follows:

Step 1. Choose an initial guess x(*). One example might
be x(© with all components equal to 1/(s + 1).

Step 2. For each iterate x(*), k > 0, compute the weight
process G(x*),.) and V(x®*),.) and form the cumulative
sum diagram and its convex minorant. Then compute the
left derivative X(*+1) of the convex minorant of the cumu-
lative sum diagram:

Step 2.1. Set 79 = 0 and construct the set of indices

< < <=8
such that
Aij,ij_l(x(k)) = min{AT,ij_l(x(k)) : ij_l <r< S}

forj=1,...,1=1(k).

Step 2.2. Set
x§k+1) _ Aij,irl(x(k))

fori=1d;_1+1,...,4;
Step 3. For a fixed 0 < ¢ < 1/2, if x*) satisfies

$(E®) > p(xP) + (1 - ) Vo(x*) T (%H —x¥),

then let *(*) = x(*) and go to Step 4; otherwise, perform a
line search on the segment seg(x(®), %(¥)), and obtain (¥
such that

$(&®) = (x®) > eVe(xM)T(Z® — x)
and

¢(x™) - ¢(x*) < (1

Step 4. One EM step (composition or hybridization step).
Compute

- €)v¢(x(k))T(§((k) - x(k))_

pHY = ZPF<k>{X Wil (Wi, Ai)},

=1

i=1,2,...,n+1,

where F(*) is the distribution function corresponding to

%(®). Let x(*+1) be the distribution function with its jumps
given by p(k+1) §k+1) gkjn‘

Step 5. Convergence testing. For the given convergence
criterion || - || and the given tolerance ¢, compute ||x(*+1) —
x(®)|| = DG If D+ < ¢, then stop, and x*+1) is the
NPMLE; otherwise, go to Step 1, with x(*+1) the starting
point.

In practice, the hybrid algorithm can be used without the
line search needed in the modified ICM algorithm. Although
no convergence of the algorithm is guaranteed, the simula-
tion experiments that we performed in this article showed
no problem of convergence. For numerical evidence in this
direction, see the next section.
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5. COMPARISON OF ALGORITHMS

There are at least three different types of convergence cri-
teria. The first type is based on the distance between F'(k+1)
and F*®), such as the Euclidean distance or the maximum
coordinatewise distance between the two m-dimensional
vectors z(**+1) and 2(¥):

IESD — ROl = a2 =27 <

(23)

The second type is based on the likelihood ratio of F(*+1)

and F(*%), or, put another way, as the distance between the
log-likelihoods ¢(z(*+1)) and ¢(z(*)):

|p(FFHD) — g(FP)| < e. (24)

A third type of convergence criteria is based on the Fenchel
conditions given in the characterization Theorem 3.1: a so-
lution Z is accepted as the NPMLE if

[(Vo(2),£)] < e

and

max{ZVqSi(ﬁ:):k:l,Q,“.,s} <e. (25)

i=k

Because the Fenchel conditions characterize the NPMLE,
this is perhaps the preferred convergence criterion. Our ex-
perience with the three classes of convergence criteria is
that stopping iterations based on the likelihood ratio usu-
ally yields fewer iterations (although it may require some
additional computation for the log-likelihood function eval-
uation), and stopping according to the Fenchel criterion usu-
ally requires more iterations than either of the other two
criteria for the same . (For more examples, see Zhan and
Wellner 1995.)

The following example illustrates that the EM algorithm
might converge to a solution other than the NPMLE.

Example 5.1. Suppose that the observations are {(W,
A, = {(1,1),(2,2),(3,3),(4,3)}. It is easy to verify
that the discrete distribution function assigning mass 2/3
at 1 and 1/3 at 4 is a self-consistent estimate but is not
the NPMLE, which puts mass 1/2 at 1 and 1/2 at 3. In
fact, the likelihood at the NPMLE is —2log(2) = —log4,
whereas the likelihood at the self-consistent estimate is
log(4/27) ~ —log 7. The EM algorithm will converge to the
self-consistent estimate (2, 2, 2, 1) starting from the initial
guess z(®) = (.1,.1,.1,.2). Initial conditions of the pattern
(c,c,c,d) with 0 < ¢ < d <1 all resulted in the same self-
consistent estimate, whereas starting the EM algorithm with

Table 1. Mean and Standard Deviations
for Number of Iterations (Fenchel)

Interval Double
Empirical Kaplan—Meier case 1 censoring
ICM 1£0 171+ 93 36+ 1.7 20.4 + 15.5
Hybrid 1£0 29+ 22 20+ 9 30t 24
EM 1£0 17.9 £ 14.0 34.7 + 305 20.4 + 24.9
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2 = (.1,.1,.15, .2) led to the NPMLE (3, 1,1,1). Initial
conditions of the pattern (c,c,b,d) with 0 < ¢ < b < d
all led to the NPMLE. On the other hand, the hybrid al-
gorithm and the ICM algorithm starting with both types of
initial conditions always converge to the NPMLE.

Example 5.2. The double-censoring model can be re-
duced to the right-censoring model, the interval-censoring
model case 1, and the model involving no censoring at all.
The performances of the ICM, the hybrid, and the EM al-
gorithm are different from each other on these different
models.

We started with a doubly censored sample of length n =
o:

{(Wl ) Al), [REN (W57 A5)} = {(17 1)7 (27 1)7 (37 2)7 (47 2)7 (57 3)}

Because the number of iterations that the algorithms re-
quire to compute the NPMLE depends on the order of the
1s, 2s, and the 3s in the sample, we tested the algorithms
on all 30 data configurations of the form

{(Wl, Aﬂ'(l))a ) (W5,A7r(5))}

for some permutation = = (w(1),...,n(5)) of the integers
{1, 2, 3, 4,5}. Note that the original A vector contains two
1s and two 2s, the total number of different configurations
is 5!/(2!2!) = 30.

The number of iterations for each algorithm to compute
the NPMLE on each of the 30 sample configurations was
then recorded. The means and standard deviations for the
number of iterations over all 30 configurations are listed
under the category “double censoring.”

The sample configurations for the right-censoring model
were constructed from the doubly censored samples by re-
placing the 3 with a 2. Again, all of the C3 = 10 distinct
sample configurations were tested. The means and stan-
dard deviations for the number of iterations are listed un-
der “Kaplan—Meier.” The interval-censored samples that are
“comparable” to those in the right- and double-censored
models were constructed by replacing one of the A = 1’s
in the doubly censored samples with a 2 and the other with
a 3. Thus there are again C§ = 10 distinct sample config-
urations to test. The means and standard deviations for the
number of iterations are listed under the category “interval
case 1.”

For comparison, we also list the “means” and “standard
deviations” of the number of iterations for the algorithms
on a sample involving no censoring at all:

{(W1, A1), ..., (Ws, A5)} = {(1,1),(2,1),(3,1), (4,1),(5,1)}.

Because the NPMLE in this case is the empirical distribu-
tion, the performance are listed under the category “empir-
ical”

The performance of the three algorithms is illustrated in
Table 1. The initial estimator for the three algorithms is the
same: (1/6,2/6,...,5/6)T. The convergence criterion for
the three algorithms are also the same: the Fenchel crite-
rion defined in (25) with € = .0000001. Of course, there
are completely noniterative forms of the estimators in the
first two columns (the empirical distribution function and
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Table 2. Number of Iterations and User Times (Fenchel Criterion, r =~ .6)

Sample size n 500 1,000 1,500 2,000 2,500 3,000 4,000 5,000
EM 1,300 3,089 4,106 4,790 6,749 7,999 10,140 12,620
Hybrid 33 40 58 88 88 114 104 129
EM 55.33 583.92 1,780 3,651 7,982 13,529 37,191 60,461
Hybrid 2.42 8.84 24.46 56.0 89.92 157.58 280.10 513.88

the Kaplan—-Meier estimator), so these comparisons are for
illustration only.

It is clear from Table 1 that the hybrid algorithm needs
fewer iterations to converge to the NPMLE than the other
censoring models. It is significantly faster than the EM al-
gorithm for all of the censoring models for sample size
n = 5. The ICM also seems to perform more consistently
(i.e., with smaller variability) than the EM algorithm.

In comparison to the ICM algorithm, the hybrid ICM-
EM algorithm works significantly better for all the models
involved regardless of the convergence criterion used for
comparison. In particular, the hybrid ICM-EM algorithm
performs slightly better than the ICM algorithm for the in-
terval censoring case 1 model.

To illustrate the practical utility of the hybrid algorithm
for larger sample sizes, we generated doubly censored data
of length n (with n ranging from 500 to 5,000) from the ex-
ponential distribution with mean }: F(z) = 1 — exp(—2z).
The censoring variables (C1, C2) were iid as (U, Ugyy) for
1 < k <1< 20. The random variables Uy and Uy are the
kth and the Ith order statistics from a sample of m = 20
uniform U(0, 1) random variables. We use the random num-
ber generator in S-PLUS 3.3 and the functions rexp( ) and
runif( ) to obtain the random samples of X and (Cy, Cy).
The EM algorithm, the ICM algorithm, and the ICM-EM
hybrid algorithm are programmed in FORTRAN-77 with
S-PLUS interfaces. The computations are carried out on a
Sun SPARCStation 20.

Moderate Censoring. The censoring configuration is
k = 5 and | = 16 in this case. This corresponds to a
censoring rate r ~ .60 (the ratio between the number of
censored observations and the sample size). The ICM-EM
hybrid algorithm and the EM algorithm were applied to
the same doubly censored samples, and the number of it-
erations needed to obtain convergence is recorded in Table
2. The user time (in seconds) of evaluating the S-PLUS
functions for these algorithms are also listed in Table 2
(in the last two rows of the table). In programming the S-
PLUS function, we tried to make sure that the prepara-
tions for both the hybrid algorithm and the EM algorithm
are the same. For example, the samples are first reduced
according to the discussions before Theorem 3.1. We im-

~
~

plemented the algorithm on a Sun SPARCStation 20 using
the S-PLUS 3.3 interface. The convergence criterion used
for both the EM and the ICM-EM hybrid algorithm is the
Fenchel convergence criterion defined in (25). The tolerance
level is € = .0000001. All the algorithms are started from
the same initial estimator 2(®) = (1/(s +1),2/(s + 1),...,
s/(s +1))T. As for the ICM, at the sample of n = 500 it
took 510,974 iterations to satisfy the Fenchel criterion. We
did not carry the ICM through in the experiment.

We compare the EM algorithm equipped with the con-
vergence criterion defined in (24) to the ICM-EM hy-
brid algorithm equipped with the same likelihood crite-
rion defined in (24). The tolerance is € = .0000001. Both
the EM and the ICM-EM hybrid algorithm were started
from the initial estimator (® = (1/(s'+1),2/(s + 1),...,
/(s + 1))T. The number of iterations and the user times
for the two algorithms to compute the NPMLE are shown
in Table 3.

Both the number of iterations and the user times needed
by the hybrid ICM-EM algorithm are again significantly
smaller than that needed by the EM algorithm. The num-
ber of iterations for the naive ICM equipped with (24) as
convergence criterion and started from the uniform initial
estimate took too long to record and was omitted in the
experiment. For example, for the sample of » = 500 in this
comparison, 15,468 iterations were required to obtain the
NPMLE for the tolerance of £ = .000001.

Heavy Censoring. To demonstrate the efficiency of the
hybrid algorithm for highly censored samples, we take the
censoring variables (C1,Cs3) to be iid as (U, Uy) for
k = 8 and | = 12. The censoring rate is about .86 for this
configuration. Samples of the same sizes were generated,
and the EM and the hybrid algorithms were tested on each
of them. The number of iterations and the user times were
recorded in Table 4 (for EM algorithm). The convergence
criterion used is the Fenchel criterion defined in (25), and
the tolerance is again € = .0000001.

Again, on the same sample, both the numbers of the it-
erations and the user times for the hybrid algorithm are
significantly smaller than those of the EM algorithm. The
saved number of iterations and the user time seem to in-
crease with the sample size, indicating better performance

Table 3. Number of Iterations and User Times (Likelihood Criterion, r-= .6)

Sample size n 500 1,000 1,500 2,000 2,500 3,000 4,000 5,000
EM 832 1,852 2,338 2,801 3,611 4,175 5,297 6,237
Hybrid 30 45 52 53 63 80 94 94
EM 36.48 356.05 1,012.81 2,154.12 4,334.79 7,184.76 17,363 29,614
Hybrid 2.33 9.65 23.48 40.26 72.47 124.48 261.05 410.34
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Table 4. Number of Iterations and User Times (Fenchel Criterion, r ~ .86)

Sample size n 500 1,000 1,500 2,000 2,500 3,000 4,000 5,000
EM 2,090 3,927 5,889 7,344 8,507 5,473 14,390 14,161
Hybrid 45 79 106 120 125 143 205 124
EM 106.28 907.52 3,172 6,803 12,279 11,145 55,001 81,481
Hybrid 2.50 9.29 23.49 42.70 71.19 119.35 274.63 312.68

of the hybrid algorithm over the EM on large sample sizes.

Example 5.4. We generated doubly censored data from
the same exponential distribution with mean 1/2 and with
the same censoring configuration k = 5 and [ = 16. We
generated a doubly censored sample of length 3, 000. There
are 1, 760 observations with A being a 2 or a 3. The censor-
ing rate is 1,760/3,000 = .59 in this sample. The NPMLE
together with the true distribution function is shown in
Figure 1.

6. BOOTSTRAP CONFIDENCE BANDS FOR DOUBLY
CENSORED DATA

Our motivation for the new hybrid algorithm was the abil-
ity to use the bootstrap with doubly censored data. Expe-
rience in using either the EM or ICM algorithm was that
they were both too slow to enable implementing the boot-
strap with moderate sample sizes. In this section we report
a selection from simulation experiments that we have per-
formed to illustrate the feasibility of bootstrap confidence
band to accompany the NPMLE in the double-censoring
model. Note that use of the bootstrap requires us to recom-
pute the estimator many times based on bootstrap samples;
hence speed of convergence of the computational algorithm
becomes crucial. In this particular censoring model (double
censoring), we expect that bootstrap confidence bands will
“work well” (i.e., behave correctly asymptotically for large
n) because of our knowledge of information bounds (see
Bickel et al. 1993, sec. 6.6, ex. 6.6.5) and because of a
proof of asymptotic validity of the bootstrap (see Wellner
and Zhan 1996). It should be emphasized that we do not
expect the following bootstrap methods to work well for
all censoring problems, and in particular they are not likely
to work well for problems involving interval censoring.

NPMLE and TRUE DF: N= 3000
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Figure 1. The NPMLE and True Exponential. The solid line is the
NPMLE; the dotted line is the true exponential F.

Example 6.1: Bootstrap Confidence Bands and Achieved
Levels To construct confidence bands for F' based on dou-
bly censored data using the bootstrap, we proceed as fol-
lows. We first compute the NPMLE F), of F. Once F, is
available, we can also estimate the function K = Gy — Gz;
because

HP2t) =P{W <t,A=2}= | (1-F(u)dGz(u)

[0,2]

and

HP(t) = P{W <t,A =3} = /
[0,t]

F(u) dGy (u),

the function K (t) can also be written as

dH (u) dH (u)
F = ea = /[o,tl R /10,” 1= Flu)

Plugging in the empirical versions HY) of Hl(gj) forj=2,3
yields a natural estimate for the function K:

ko= | L ttr
" [0,¢] 04 1= Fn(u)’

where F;, is the NPMLE calculated from the same sample.
Now we are ready to bootstrap. For each of B bootstrap
samples

dH® (u)

ACN 2

'?B?

(le’Ajl)a'“v(anijn), j=1,..

from the empirical distribution of the observed data
(W1, A1), ..., (Wy,Ay), we compute F,,;, and then

dnj = V/nsup{|Kn(t)(Fn;(t) — Fa(t))] - 0 <t < 1},
j=1,...,B,

where the function K,(t) is defined by (26). Then we
approximate the critical value ¢, of the bootstrap band
by the (1 — a) x 100% percentile of these B numbers.
The resulting bootstrap band is then given by

Fo(t)

@

VAKn(t)
0<t< W(n).

Cn

Tk S TO =B

For illustration, consider survival times X generated from
the exponential distribution with mean 1/2, F'(z) = 1 —
exp(—2z), and censoring variables (C;, C2) (again) the Sth
and the 16th order statistics from a uniform (0, 1) distri-
bution. A 95% bootstrap confidence band for the exponen-
tial distribution in this example with sample size n = 500
and the number of bootstrap replications being B = 500 is
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Figure 2. The Bootstrap Band for Exponential. (a) Bootstrap band: n = 500, alpha =.05; (b) histogram.

shown in Figure 2a. The histogram of the B = 500 distances
dy, is shown in Figure 2b.

To get some feel for the achieved confidence level of the
bootstrap confidence bands for moderate sample sizes, we
carried out an experiment for sample size n = 100 using the
exponential distribution with mean 1/2 and censoring vari-
ables (C1,C3). As earlier, we generated doubly censored
samples of size n = 100. A bootstrap confidence band with
a given confidence level (1 — «) was then constructed based
on this sample with the bootstrap sample size equal to the
sample size n and the number of bootstrap replications be-
ing B = 800. Then we checked whether the true distribu-
tion function lies in the band so constructed. The number of
simulations is 1,000. The proportion of the successful cov-
erage among the 1,000 simulations is an estimate for the
true confidence level of the bootstrap bands. Table 5 lists
the achieved confidence levels for the experiment.

Apparently, the achieved confidence level is not too far
from the nominal level, with a slight indication of conser-
vativeness of the bootstrap bands in this case. Asymptotic
theory justifying the bootstrap confidence bands for large
sample sizes was given by Wellner and Zhan (1996).

7. DISCUSSION

We have proposed a new hybrid algorithm for compu-
tation of the NPMLE of the distribution function F' of a
real-valued random variable based on censored (missing)
data. The new algorithm is based on alernating steps of the
EM algorithm and of the ICM algorithm. Using results for
optimization theory, we have shown that the new hybrid
algorithm is globally convergent whenever started from a
point with finite likelihood.

Table 5. Achieved Confidence Levels

a .01 .05 10 15 .20
& .013 .048 .097 .138 .183

Numerical exploration of the new hybrid algorithm in
the case of double censoring shows that it converges to
the NPMLE very quickly, beating both the EM and ICM
algorithms in terms of number of iterations and computa-
tion time required. One way to view this heuristically is as
follows. The ICM step of the algorithm searches for the
NPMLE in the set of all self-consistent estimates speci-
fied by the EM iterations. Because the subset of all self-
consistent estimates is a small subset of all feasible esti-
mates, the hybrid algorithm improves on the naive ICM.
The new hybrid algorithm makes feasible the implemen-
tation of bootstrap confidence bands to accompany the
NPMLE.

APPENDIX: PROOFS

Proof of Lemma 3.1

We follow Jongbloed (1995a). Suppose that % € K, satisfies
condition (12) and (11). Let x € K be arbitrary. Then by the
concavity of ¢ we have

$(x) — $(%) < (x — %)TVg(%) <0,
which implies that % satisfies (10). Note that the inequality holds
trivially if z € K\Ky.

Conversely, suppose that (10) holds. If condition (12) is not
satisfied, then there is an x € K such that (x, V$(%)) > 0. Because
K is a convex cone, it holds that

R 3 1, 1

X+ex=(1+¢) (1+€x+ (1 1+E)x> ex
for all € > 0. It then follows (from continuity of ¢ and differen-
tiability of ¢ on K) that for ¢ | 0,

$(X + x) — $(&) = ex” V(X) + o(€).

Hence we have ¢(k + ex) > ¢(%) when ¢ is sufficiently small,
contradicting the assumption that % maximizes ¢ over K.

Now suppose that condition (11) is not satisfied; then % # 0
is true. For |e| sufficiently small, it holds that (1 + ¢)% € K.
Taking the sign of ¢ the same as that of (%X, V4(X)), we get that
as € — 0,

#((1 +€)%) — (%) = eX" VP(R) + o(e).
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So the left side of the last expression will be positive, contradicting
the assumption that X maximizes ¢ over K.

Proof of Theorem 3.1

To prove the uniqueness of the NPMLE, we calculate the second
derivative matrix of ¢. The diagonal elements are given by (recall
that A(,y1) = 0)

1 _
2 . _ [Ay=1]

v ¢z1(l‘) = V(_’Ez — :1:1_1)2

1[A(l+1):1] O 1[A(l)=3]

(Ter1 — ) (1 —m,)? z? ’
fori=1,2,...,s. The first off-diagonal elements are given b

g g Yy
' Lo, =
V2¢z,1—1 (17) = 2 w=1 for i= 1,2, cey S,

(-751 — Ta1—1 )2 ’

and all the other elements of V2¢(y) are Os.
At the maximizing point y, the second derivative matrix V2 ¢(y)
is well defined. Let

Lin, =
a, = [Ay=1] -
(Yo — Yo—1)
0
b= 0
(1—-19)
_ Liagy=3
1 y? b
di = ait+1 (as+1 = 0),
and
e.=a,+b+c+d
fori=1,2,...,s. Then a,, b, ¢, d., and e, are all nonnegative
at y, and the second derivative matrix —V?>¢(y) is given by
[} —d1 0 O W
—d e —ds o0
0 —d2 €3 —d3 e 0
-V é(y) =
. . . . —ds—1
L0 cor —dsq es ]

We prove that this is a positive definite matrix. Without loss
of generality, we may assume in this proof that all the d,’s for
i=1,2,...,s — 1 are positive. This is because the matrix would
become a block diagonal matrix consisting of two tridiagonal ma-
trices of smaller size if, say, d, = Oforaksuchthatl <k <s—1
and no other d,’s were 0. Then, because a block diagonal matrix
is positive definite iff all of its submatrices are positive definite,
the proof can be applied to each of the component submatrices.

Under the condition that d,’s are all positive, we show that
all the determinants J; of the leading principal minors M, =
(= V2,1 (y)]k i1 Of —VZ¢(y) are positive.

In fact, 1 = e, = a1 + by + ¢ +di > 0 and, using ay = di,

Jz = 62J1 —d?
(a1 +b +c +di)ag + b2 +c2 +d2)—d%

(a1 + b +c1+di)(di + b2+ +do) — df
> (a1 +b+e)(d +b4co+d2) >0

Now suppose that J1, J2,...,J.—1 > 0 have been proved. Be-
cause of the tridiagonal structure of the matrix —V?$(y), we have
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for ¢ > 3,
Jo = edii + (1) s (A1)
= (az + bz + Cq + dz)Jz—l - d%—l szz- (A2)

Rearranging the last equation by moving the term d,J,—1 to the
left side and noting that a, = d,_1, we obtain

Jo—diJir = (@ + b+ ) —d2y Jic (A3)
=di1(Jomr —decr i) + (b + ) Jan (A4)
Z dzfl(Jz—l - dz—1J1—2)~ (AS)
Thus, using (A.2) again in this step,
Jo > doadi —di Ju s
= dz—l[(ai—l + bz—l + Com1 + dz—l)Jz—2 - d3—2J1—3]
- d%—lJz—Z
= dy1 (@1 + b1+ om)oms —do_y i3]
> dim1di—a[ iz — di—a Ji—3].
Iterating with (A.5), we obtain
Jo > dicidia[Jim2 — dia Jo—3)
> .
> di1dy—o...dy [Jz — dle].

Note that a1 + b1 + c1 and a2 + by + ¢ > 0, because
1{A<1)=1] + I[A(l)zg] + 1[A<1)=3] =1 for any 7 > 1. Thus

Jo—do i = (a1 +b1 +c1 +di)(az + b2 + 2 +do)
—di —dy(a1 + b+ +di)
= (a1 4+ b +c +di)(az + by +c2) —di

= (a1 +b +ca)laz +bs+c2)+di(b2 +c2) >0.

Hence J, > 0. By induction, all of the leading principal minors
are positive. Thus we conclude that —V?¢(y) is a positive definite
matrix, and V2#(y) is a negative definite matrix, and hence the
maximizing point y is unique.

Proof of Theorem 3.2

Suppose x* = % = arg maxzeck ¢(x). Note that the derivative
vector of Js(x,%) with respect to x is given by —X[x — % —
>V ¢(%)], and we have

—x*TE[x* —% - B7'VH(X)] = (%, Vo(X)) = 0,
—x"B[x* - & - T7'V(X)] = (x, V4(%)) <0

for any x € K. Note that Js(x, %) is a concave function continu-
ously differentiable defined on K. By Lemma 3.1, x* maximizes
Js(x,%) over K.

On the other hand, suppose that x* maximizes Jy (x,%) over
KC; then we have

—x*Ty[x* —%—-X7'Ve(%)] =0,
[ )] (A6)
—xTSx* —%-T7'V4(X)] <0
for any x € K by Lemma 3.1.
From the equality in (A.6), we have
xTEx* — &) = x"TV¢(%). (A7)
From the inequality in (A.6), we have
—xTB(x" — %) < —x"Vo(R). (A.8)
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Adding (A.7) and (A.8) gives
(x" —x)"'S(x" - —x)TV4(R).
Setting x = X in the foregoing inequality leads to
(x* —%)TB(x" - &) < x"Vg(%) <0.

The last inequality is obtained by Lemma 3.1, because x* is a point
in K and % maximizes ¢ over K. But this inequality together with
the positive definiteness of ¥ implies that x* = %.
Proof of Lemma 3.2 (Jongbloed 19953, p. 16)
Let o(\) = ¢(x + AM(A(x) — x)) for a fixed x € K — {x}. It
suffices to show that the right derivative of ¢ at 0,
¢'(0) = (A(x) = x)"Vo(x)

is strictly positive.
From the optimality conditions in (11) and (12) applied to
Jx(x) (2, %), we have

(A(x), —B(x)(A(x) — x) + Vé(x)) =0 (A.9)
and
(x, —Z(x)(A(x) — x) + Vo(x)) < 0.
Subtracting (A.10) from (A.9), we have
(A(x) — x, —2(x)(A(x) — x) + Vé(x))
= —(A®) — %, BE)(A(X) - %)) +¢(0) > 0.

Because X(x) is positive definite and x # %, it follows that the
first term on the left side of the last expression is strictly positive,
and hence ¢’ (0) > 0.

(A.10)

Proof of Lemma 4.1

From Lemma 3.2 and the definition of N in (16), it follows that
the mapping N is well defined and the function ¢ is an ascent
function: For all x # % and for all z € N(x), ¢(z) > ¢(x). From
this, it follows that

xP: k>0 CcK

where K is as defined in (20). From the continuity of the function
¢ on the set {x : #(x) > —oo} and the assumption that ¢(x(*)) >
—o0, it follows that the set K is compact.

We now show that N is closed at each x € K — {%X}. Fix
x € K — {x} and let a sequence {x;} € K be such that x; — x.
Let z, € N(xx) be such that z;, — z for some z € K. We need
to prove that z € N(x).

Note that the continuity of the derivative vector V¢(x) for x €
K and the continuity of the mapping x — X(x) on K imply
that the function Jxx, ) (W, Xx) — Jx(x) (W, x) locally uniformly
in w near x as k — oco. Hence the argmax of Jsyx,)(W,Xz)
approaches the argmax of Jy(x)(W,x) as k — oo. This implies
that

A(xx) — A(x) (A.11)

as k — oo. But z;, is within the segment between x; and A(x)
by the definition of zy: z, € seg(xx, A(xx)). Hence z; — z im-
plies the point z € seg(x, A(x)) necessarily. Now consider the two
different situations that can occur.

The first situation is that

G(A(xk)) > d(xk) + (1 — &) Vo(xi) " (Alxk) — xx)

for infinitely many values of k. Let k go to infinity along a sub-
sequence k, where this inequality holds; we get from (A.11) that

B(A(x)) > d(x) + (1 — £)Vo(x)T (A(x) — x).
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It is thus trivially true N(x) = A(x) when the above inequality
holds strictly. When the foregoing inequality is an equality, we still
have N(x) = A(x), because (1 —¢) > ¢, Vo(x)T (A(x) —x) > 0,
and

$(A(x)) = ¢(x) + (1 — ) V(%) (A(x) — x)
> $(x) +eVe(x)" (A(x) - x).
Moreover, along the same subsequence, it follows from the def-
inition of N that zx, € A(xx,). Therefore, zx, — A(x) along
the same subsequence by the continuity of A. This shows that
z € A(x) = N(x), as was to be proved.
The other possibility is that for all k£ sufficiently large,

B(A(xk)) < B(xx) + (1 — )V (xx)T (A(xk) — xx).
Let £k — oo and use (A.11); it follows that
B(A(x)) < p(x) + (1 — &) Ve(x)” (A(x) — x).

Therefore, by the definition of N and the fact that z €
seg(x, A(x)), we have z € N(x) if we have

p(x) +eVe(x)T (z — x) < ¢(2)
< $(x) + (1—e)Vo(x)" (z — x).

But this follows from the fact that z; € A(xy) for all £ sufficiently
large and

d(xx) +eVo(xi) " (zr — xx) < ¢(2x)
< p(xk) + (1 — €)V(xx)” (21 — xx).

Proof of Theorem 4.2

Take X to be the feasible set Cx as given in (2). It is a nonempty
closed set in R™. The solution set is taken as Q = {&} C Cx. Take
a= —ao.

Take B(-) and C(-) in Theorem 4.1 to be the algorithmic map-
pings N(-) and M (-) of the modified ICM and the EM algorithm.
Then by inequality (19), we have a(z) = —¢(z) < —¢(x) = a(x)
for any z € M(x) and x € Cx. By Lemma 4.1, B = N is closed
on the complement of 2, and we have a(z) = —¢(z) < —¢(x) =
a(x) for each z € N(x) = B(x) and x ¢ Q. Finally, because ¢
is continuous and x(*) is such that ¢(x(®)) > —oo, the set {x :
a(x) < a(x\?)} is compact. Hence by Theorem 4.1, either the
hybrid algorithm stops in a finite number of steps with an iterate
x® = % or it generates an infinite sequence {x®} such that %
is the only accumulation point of {x(*¥)}. Hence x¥) converges
to X.

Proof of Proposition 4.1

Suppose that M (%) # %. Then the uniqueness of % implies
that ¢(X) > ¢(M (%)), which contradicts the definition of the EM
algorithmic mapping.

Similarly, if M N (%) # % (or N(X) # %), then by the definition
of the mapping M and the definition of N, we have

$(M(N(%))) > ¢(N (%)) > (),
which contradicts ¢(%X) > ¢(M(N(%))) by the uniqueness of %
(or p(%) > (N (%))).
Proof of Corollary 4.1

Because % is a fixed point of the EM algorithmic mapping M(-),
it is a limit point of the EM iterates. Hence X satisfies the self-
consistency equations (5).

[Received September 1995. Revised December 1996.]
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