
Errata

1 Introduction

Since publication of our book Empirical Processes with Applications to Statistics
in 1986, we have become aware of several mathematical errors and a number of
typographical and other minor errors. Although we would now do many things
differently, our purpose here is only to give corrections of the errors of which we
are currently aware.

We encourage readers finding further errors to let us know of them.
We owe thanks to the following friends, colleagues, reviewers, and users of the

book for telling us about errors, difficulties, and shortcomings: N. H. Bingham,
M. Csörgő, S. Csörgő, Kjell Doksum, Peter Gaenssler, Richard Gill, Paul Janssen,
Keith Knight, Ivan Mizera, D. W. Muller, David Pollard, Peter Sasieni, and Ben
Winter.

We owe special thanks to Peter Gaenssler for providing us with a long list of
typographical errors which provided the starting point for section 3 here.

The corrections of Chapters 7, 21, and 23 given in section 2 were aided by
discussions and correspondence with Richard Gill and Ben Winter (in the case of
Chapter 7), I. Bomze and E. Reschenhofer, and W.D. Kaigh (in the case of Chapter
21), and Keith Knight (in the case of section 23.3).

2 Major changes and revisions

Here we give substantial corrections and revisions of section 7.3 (pages 304–306)
and section 23.3 (pages 767–771).

2.1 Revision and correction of section 7.3

The last two lines (pages 305, lines -7 and -6) of the proof of (1) of Theorem 1
(page 304) are false. Hence there are also difficulties in the cases (i)–(v) on pages
305–306. The following revision of section 7.3 should replace that entire section.
As indicated in the following text, these results are due to Peterson (1977), Gill
(1981), and Wang (1987).

We owe thanks to Richard Gill and Ben Winter for pointing out these difficul-
ties and for correspondence concerning their solution.

Section 7.3, pages 304–306, should be replaced by the following:

901



902 Errata

3. CONSISTENCY OF Λ̂n and F̂n.

In this section we use the representations of Theorem 7.2.1 and continuity of
the product integral map E which takes Λ to F (see section B.6 and especially
example B.6.1, page 898) to establish weak and strong consistency of Λ̂n and F̂n.
Our first result gives strong consistency of both Λ̂n and F̂n on any interval [0, θ]
with θ < τ ≡ τH ≡ H−1(1).

Theorem 1. Suppose that F and G are arbitrary df’s on [0,∞). Recall τ ≡ τH ≡
H−1(1) where 1 −H ≡ (1 − F )(1 −G). Then for any fixed θ < τ

‖F̂n − F‖θ
0 →a.s. 0 as n→ ∞(1)

and

‖Λ̂n − Λ‖θ
0 →a.s. 0 as n→ ∞.(2)

The following theorems strengthen (1) of Theorem 1 in different directions.

Theorem 2. Suppose F and G are df’s on [0,∞) with τ ≡ τH ≡ H−1(1)
satisfying either H(τ−) < 1 or F (τ−) = 1 (where τ = ∞ is allowed). Then

sup
0≤t≤τ

|F̂n(t) − F (t)| = ‖F̂n − F‖τ
0 →a.s. 0 as n→ ∞,(3)

and, with T ≡ Zn:n,

sup
0≤t≤T

|F̂n(t) − F (t)| = ‖F̂n − F‖T
0 →a.s. 0 as n→ ∞.(4)

The following theorem is more satisfactory since F and G are completely ar-
bitrary; the price is that the consistency is in probability (and the supremum in (5)
is just over the interval [0, τ)).

Theorem 3 (Wang). Suppose that F and G are completely arbitrary. Then

sup
0≤t<τ

|F̂n(t) − F (t)| →p 0 as n→ ∞,(5)

and, with T ≡ Zn:n,

sup
0≤t≤T

|F̂n(t) − F (t)| →p 0 as n→ ∞.(6)

Open Question 1. Does Wang’s Theorem 3 continue to hold with →p replaced
by →a.s.? (The hard case not covered by Theorem 2 is F (τ−) < 1, G(τ−) = 1.)



Errata 903

Recall that for an arbitrary hazard function Λ (of a df F on R+), the (product
integral) or exponential map E(−Λ) recovers 1 − F :

1 − F (t) = E(−Λ)(t) ≡
∏

0≤s≤t

(1 − dΛ)

= exp(−Λc(t))
∏

0≤s≤t

(1 − ΔΛ(s));

see section B.6 and Example B.6.1. Our proofs of Theorems 1–3 will use the
following basic lemma which is due to Peterson (1977), Gill (1981), and, in the
present form, Wang (1987).

Lemma 2.1 (Continuity of the product integral map E) Suppose that {gn}n≥0

is a sequence of nondecreasing functions on A = [0, τ ] or [0, τ) satisfying Δg0 <
1, and set hn ≡ E(−gn), n = 0, 1, . . .. If

sup
t∈A

|gn(t) − g0(t)| → 0 as n→ ∞,(7)

then

sup
t∈A

|hn(t) − h0(t)| → 0 as n→ ∞.(8)

Proof of Theorem 1. Now ‖Hn − H‖ →a.s. 0 by Glivenko–Cantelli, so that
‖Hn(·−) −H−‖ →a.s. 0 also. Thus for any fixed t ≤ θ we have a.s. that

|Λ̂n(t) − Λ(t)| ≤
∫ t

0
|(1 − Hn−)−1 − (1 −H−)−1|dH1

n

+
∣∣∣∣ ∫ t

0
(1 −H−)−1d(H1

n −H1)
∣∣∣∣

→a.s. 0 + 0 = 0(a)

by the Glivenko–Cantelli theorem and H(t−) ≤ H(θ) < 1 for the first term, and
by the SLLN for the second term. Since Λ̂n and Λ are ↑, the standard argument of
(3.1.83) improves (a) to (2).

But then (1) follows from (2) and continuity of the product integral map E
given in Lemma 2.1. �
Proof of Theorem 2. First suppose H(τ−) < 1. Then as in (a) of the proof of
theorem 1,

|Λ̂n(t) − Λ(t)| ≤
∣∣∣∣ ∫ t

0
{(1 − Hn−)−1 − (1 −H−)−1}dH1

n

∣∣∣∣
+

∣∣∣∣ ∫ t

0
(1 −H−)−1d(H1

n −H1)
∣∣∣∣,
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where the first term converges to zero uniformly on [0, τ ] by the Glivenko–Cantelli
theorem since 1−H(τ−) > 0 and Ĥ

1
n(τ) ≤ 1. Now the second term: for 0 ≤ t ≤

τ , ∣∣∣∣ ∫ t

0

1
1 −H−

d(H1
n −H1)

∣∣∣∣
≤

∣∣∣∣Ĥ1
n(t) −H1(t)
1 −H(t−)

−
∫ t

0
(Ĥ1

n(s) −H1(s))d
(

1
1 −H(s−)

) ∣∣∣∣
+

∣∣∣∣ΔĤ
1
n(τ) − ΔH1(τ)
1 −H(τ−)

∣∣∣∣
≤ 2

‖Ĥ1
n −H1‖τ

0

1 −H(τ−)
+

∣∣∣∣ΔĤ
1
n(τ) − ΔH1(τ)
1 −H(τ−)

∣∣∣∣
→a.s. 0 + 0 = 0,

so the second term converges to zero a.s. uniformly in t ∈ [0, τ ]. Hence

‖Λ̂n − Λ‖τ
0 ≡ sup

0≤t≤τ
|Λ̂n(t) − Λ(t)| →a.s. 0.(a)

If ΔΛ(τ) < 1, then (3) follows from Lemma 1. If ΔΛ(τ) = 1 (so F (τ) = 1), then
lemma 1 and (a) imply that

sup
0≤t<τ

|F̂n(t) − F (t)| →a.s. 0

and

0 ≤ 1 − F̂n(τ) ≤ 1 − ΔΛ̂n(τ)
→a.s. 1 − ΔΛ(τ) = 0 = 1 − F (τ),

so again (3) holds.
Now suppose that F (τ−) = 1. Given ε > 0, choose θ < τ such that F (θ) >

1 − ε. For θ ≤ t ≤ τ both

F̂n(θ) ≤ F̂n(t) ≤ 1

and

1 − ε ≤ F (τ) ≤ 1.

Hence

‖F̂n − F‖τ
θ ≤ max{ε, 1 − F̂n(θ)} →a.s. max{ε, 1 − F (θ)} = ε(b)
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by (1). Since ε is arbitrary, (1) and (b) imply (3) in this case (F (τ−) = 1), too.
Since T ≡ Zn:n ≤ τ a.s., (4) follows from (3) . �

Proof of Theorem 3. We first suppose θ ≤ τ with F (θ−) < 1 and show that

sup
0≤t<θ

|Λ̂n(t) − Λ(t)| →p 0 as n→ ∞(a)

and

sup
0≤t<θ

|F̂n(t) − F (t)| →p 0 as n→ ∞.(b)

Let Dn ≡ Λ̂n − Λ. Then, with T ≡ Zn:n, D
T
n ≡ {Dn(t ∧ T ) : t ≥ 0} is a square

integrable martingale with predictable variation process

〈DT
n 〉(t) =

∫ t∧T

0

1 − ΔΛ(s)
n(1 − Hn(s−))

dΛ(s).(c)

Now

〈DT
n 〉(θ−) →a.s. 0.(d)

To see this, let ε > 0, and choose σ < θ so that Λ(θ−) − Λ(σ) < ε, and hence
H(σ) < 1 also. Then

〈DT
n 〉(θ−) − 〈DT

n 〉(σ) =
∫

(σ,θ)
1[T≥s]

1 − ΔΛ(s)
n(1 − Hn(s−))

dΛ(s)

≤ Λ(θ) − Λ(σ) < ε,

and, by the Glivenko–Cantelli theorem

n〈DT
n 〉(σ) =

∫ σ

0

1 − ΔΛ(s)
1 − Hn(s−)

dΛ(s)

→a.s.

∫ σ

0

1 − ΔΛ(s)
1 −H(s−)

dΛ(s) <∞.

Therefore,

〈DT
n 〉(σ) →a.s. 0

and

lim sup
n→∞

〈DT
n 〉(θ−) ≤ ε a.s.



906 Errata

Since ε > 0 is arbitrary, (d) holds.
By Lenglart’s inequality B.4.1,

sup
0≤t<θ

|DT
n (t)| →p 0 as n→ ∞.(e)

Since we also have (recall that T ≡ Zn:n)

{Λ(θ−) − Λ(T )}1[T<θ] →a.s. 0 as n→ ∞,

in view of F (θ−) < 1, (a) holds.
Now (a) implies that for every subsequence {n′} there is a further subsequence

{n′′} ⊂ {n′} so that

sup
t<θ

|Λ̂n′′(t) − Λ(t)| →a.s. 0 as n→ ∞.(f)

But by continuity of E given by Lemma 1, it follows from (f) that

sup
0≤t<θ

|F̂n′′(t) − F (t)| →a.s. 0,(g)

and hence (b) holds when F (θ−) ≤ 1.
To complete the proof of (5), it remains only to consider the case F (τ−) = 1.

But then (5) follows from (3).
To prove (6), consider the two casesH(τ−) = 1 andH(τ−) < 1: IfH(τ−) =

1, then T ≡ Zn:n < τ a.s., and hence (6) follows from (5). If H(τ−) < 1, then
(6) follows from (4). �
Proof of Lemma 1. By (7) and Δg0 < 1 we can assume that

Δgn < 1 for n = 1, 2, . . . .(a)

Since gn are nondecreasing and finite and (a) holds, it is easy to verify that hn > 0,
n = 0, 1, 2, . . .. For t ∈ A and ε > 0, define (note (B.5.3))

gε
n
(t) ≡ gc

n(t) −
∑
s≤t

log(1 − Δgn(s))1[|Δgn(s)|≤ε](b)

and

gε
n(t) ≡ −

∑
s≤t

log(1 − Δgn(s))1[|Δgn(s)|>ε](c)

so that

gε
n
(t) + gε

n(t) = − log hn(t).(d)
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Now gε
n(t) is the sum of at most a finite number of terms. Thus by (7) for every

ε > 0 with

ε ∈ {a < 1/2 : Δg0(t) �= a for all t ∈ A}(e)

it follows that

sup
t∈A

∣∣∣∣ ∑
s≤t

Δgn(s)1[|Δgn(s)|>ε] −
∑
s≤t

Δg0(s)1[|Δg0(s)|>ε]

∣∣∣∣ → 0(f)

as n→ ∞ and

sup
t∈A

∣∣gε
n(t) − gε

0(t)
∣∣ → 0 as n→ ∞.(2.1)

But note that∣∣gε
n
(t) − gε

0
(t)

∣∣
≤ ∣∣gε

n
(t) − gc

n(t) −
∑
s≤t

Δgn(s)1[|Δgn(s)|≤ε]

∣∣
+

∣∣gc
n(t) +

∑
s≤t

Δgn(s)1[|Δgn(s)|≤ε] − gc
0(t) −

∑
s≤t

Δg0(s)1[|Δg0(s)|≤ε]

∣∣
+

∣∣gε
0
(t) − gc

0(t) −
∑
s≤t

Δg0(s)1[|Δg0(s)|≤ε]

∣∣
≤ ∣∣ ∑

s≤t

{log(1 − Δgn(s)) + Δgn(s)} 1[|Δgn(s)≤ε]

∣∣
+

∣∣∑
s≤t

Δgn(s)1[|Δgn(s)|>ε] −
∑
s≤t

Δg0(s)1[|Δg0(s)|>ε]

∣∣
+ |gn(t) − g0(t)|
+

∣∣∑
s≤t

{log(1 − Δg0(s)) + Δg0(s)} 1[|Δg0(s)|≤ε]

∣∣
≤ ε(|gn(t)| + |g0(t)|)

+
∣∣∑

s≤t

Δgn(s)1[|Δgn(s)|>ε] −
∑
s≤t

Δg0(s)1[|Δg0(s)|>ε]

∣∣
+ |gn(t) − g0(t)|.

Therefore, for every ε satisfying (e), (f) yields

lim sup
n→∞

sup
t∈A

|gε
n
− gε

0
(t)| ≤ 2εg0(τ),
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and hence, by (d) and (g),

lim sup
n→∞

sup
t∈A

| log hn(t) − log h0(t)| ≤ 2εg0(τ).(h)

Since ε is arbitrary, (h) implies (8). �

2.2 Revision and correction of Section 7.7. Weak convergence ⇒ of
Bn and Xn in ‖ · /q‖T

0 -metrics

On page 325 in Exercise 3, the displayed equation should read as follows:

(1 −K)/(1 − F ) =
(

1 +
∫ ·

0
C̃dF

)−1

,

and then “Hence (1 −K)/(1 − F ) is ↘.”

2.3 Revision and correction of Section 19.4

Page 689, lines 9–12, should be replaced by the following:∣∣∣∣ ∫ 1

0
[1[ξ≤t] − t]J(t)dg(t)

∣∣∣∣
≤

∫ ξ

0
tB(t)dg(t) +

∫ 1

ξ
(1 − t)B(t)dg(t)

≤ tB(t)D(t)
∣∣ξ
0
+

∫ ξ

0
D(t)d(tB(t))

+ (1 − t)B(t)D(t)
∣∣1
ξ
+

∫ 1

ξ
D(t)d(tB(t))

≤ M ′[ξ(1 − ξ)]−a where a < 1/2.

2.4 Revision and correction of Section 23.3. The Shorth

There is an error here in the grouping of the n1/6 factor leading to (i) on page 768;
and exercise 1 on page 771) is not correct. The following correction is perhaps the
simplest. A different, somewhat longer correction, was suggested to us by Keith
Knight. Knight’s alternative correction changes the “centering” in the definition of
Mn in (6) from 2F−1(1 − a) to F

−1
n (1 − a) − F

−1
n (a).)

Beginning on page 768 just after (g):
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Moreover, since g′ exists and is continous,

sup
|t|≤K

∣∣∣∣g(
1 − a+

At

n1/3

)
n1/6

Bn

(
1 − a+

At

n1/3

)
− g(1 − a)n1/6

Bn

(
1 − a+

At

n1/3

) ∣∣∣∣
≤

{
n1/6 sup

|t|≤K

∣∣∣∣g(
1 − a+

At

n1/3

)
− g(1 − a)

∣∣∣∣
}

·
{

sup
|t|≤K

∣∣∣∣Bn

(
1 − a+

At

n1/3

)}

≤
{
n1/4 sup

|t|≤K

∣∣∣∣g(
1 − a+

At

n1/3

)
− g(1 − a)

∣∣∣∣
}

·
{
n−1/12 sup

|t|≤K

∣∣∣∣Bn

(
1 − a+

At

n1/3

)}
= o(1)O(1) a.s.

= o(1) a.s.

Continue on page 769, line 1.

Correction of Exercise 23.3.1, page 771. Replace Exercise 1 by the following:

Exercise 1. Show that for any 0 ≤ K < ∞ and 0 ≤ A < ∞ and 0 ≤ a < 1 we
have

n−1/12 sup
|t|≤K

∣∣Bn(a+ tA/n1/3)
∣∣ = O(1) a.s.

Knight’s alternative correction for this section involves the following alternative
exercise.

Exercise 1′. Show that for any 0 ≤ K < ∞ and 0 ≤ A < ∞ and 0 ≤ a < 1 we
have

sup
|t|≤K

n1/2
∣∣Bn(a+ tA/n1/3) − Bn(a)

∣∣ = O(1) a.s.
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3 Typographical errors, spelling errors, and minor changes

Page Line or equation Error or change
12 (10) factor of (−1)k+1 is missing
14 (7) factor of (−1)k+1 is missing
15 (14)+1

∑∞
j=1 χ

2
i → ∑∞

j=1 χ
2
j

16 -1 (2.2.11) → (2.2.13)
25 Exercise 4 replace G on the LHS by g (lower case)
25 -4 left continuous inverse K−1

27 (11) d(x, y) is the d0(x, y) of Billingsley (1968, pp. 112–115)
28 (15) X → x (is needed in 5 places)
29 (18)+1 x→ X
29 (18)+5 the set of continuous
30 (5) +1 (s1 ∧ s2)(t1 ∧ t2 − t1t2)
37 (j)+1 5.9 → 9.9
37 (15)-4 5.6 → 9.6
47 -12 replace “to then” by “then to”
47 Theorem 4 referred to on p. 113 as “Skorokhod’s theorem”
47 (16)+1 MS δ-separable implies MS

is MB
δ -measurable (cf. lemma in Gaenssler)

49 (24)-1 ‖Z −AmZ‖ → ‖Z −Am ◦ Z‖
52 (26′)+1 insert “with μn([0, 1]) → some # ∈ (0,∞) ”
59 4 change to: . . . independent of S

59 5 dF (a) → dF (−a)
61 Exercise 8 Keifer → Kiefer
61 -2 (23) → (30)
63 -8 (1.1.31) → (0.1.31)
65 12 (E‖X − Y ‖)1/p → (E‖X − Y ‖p)1/p

69 (2)–(3) b→ bn
70 16 Brieman → Breiman
73 -8 limSn → lim|Sn|
83 -3 E|X| = . → E|X| = ∞.
88 (21) ξni → ξi
90 (33) +1 X → ξ twice
90 (35) =→≡
90 (35)+1 identify → identity
92 (54) Σ
112 2 Lemma 2.3.1 → Lemma 1.3.1
124 -6 1(tj−1,tj ] → 1(tj−1,tj ](t)
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Page Line or equation Error or change
126 7 νn → νn

135 (a) EVn → EV
2
n

138 -5 martingale → submartingale
140 (37) xni → Xni

150 -8, -9 replace “with m = n” by “with m = m′ = n”
151 (2)

∑
i=1 → ∑n

i=1

153 -2 Xni = F−1
n (ξni) → Xni = F−1

ni (ξni)
154 (16)+1 Xni ≡ F−1

ni (ξni) again
156 6 Theorem 1 → Theorem 3
160 (d)

∫ → ∫ x
−∞

160 (e) +1 (the second occurrence of a′a) → √
a′a

163 -2 |[·]| → |[·]|2
168 Corollary 1 F0 → F
168 (5)-1 3.6 → 3.8
169 1 Theorem 14.1.4 → Theorem 4.1.1
169 -12 Theorem 4.1.2 → Theorem 4.1.5
169 -1 P̃ → P ; Theorem 4.1.2 → Theorem 4.1.5
193 -6 Xn → Xj

195 1 vector → matrix; constant → constants
195 -10 X ′

1 → X ′
i

224 (32) G2
n → G2

224 (32)+1 change Gn →d G to G2
n →d G

2

224 (33) change P (G > λ) to P (G2 > λ)
262 (25)+3 dΛ(x) = → dΛ(x) ≡
264 (6) 1[Xi≤y] → 1[Xni≤y]

264 (6) 1 ≤ i ≤ n· → 1 ≤ i ≤ nj

265 (14) Xi → Xni twice
266 7-8, -2 Xi → Xni throughout
270 (32)-1 change (A.9.6) to (A.9.16)
272 (40) Xi → Xni twice
273 (1) Xi → Xni twice
274 -3 ψ(x) = x2 → ψ(x) = x
275 (9) ‖ · ‖1

0, ‖ · ‖ → ‖ ‖1
0, ‖ ‖1

0

275 -1
∫ θ
−∞ → ∫ θ

0

276 (1) Xi → Xni (twice)
279 (9) N → K on RHS
282 (21) delete nonsymbol before =
288 -4 [Kn −K] → [Kn − K]



912 Errata

Page Line or equation Error or change
294 (4)+3 τ ≡ τH = τF ∨ τG → τ ≡ τH = τF ∧ τG
295 -4 change (10) to (12)
304-306 see the major revision in Section 2 of this Errata
323 2 change “Proof of (10)” to “Proof of (9)”
325 Exercise 3 see the major revision in Section 2 of this Errata
339 -1 Un → UNn

369 (38) change 1
n! to n! on the right side of this display

419 (4) change < ε. to < M/
√
n.

424 9 delete an ↓ 0
425 -7 G − I → Gn − I
425 (15) +3 Mason (1981) → Mason (1981b)
425 -1 Mason (1981) → Mason (1981b)
429 (a) = 0 becomes = 0 a.s.
450 10 ]εg2(t) → ]εg

2(t) (at the end of the line)
451 (16)+1 see Bretagnolle and Massart (1987) for

P (‖U‖b
0 ≥ λ) ≤ exp

(
− λ2

2b(1−b)

)
.

454 (7) ≤→ ≥.
478 Exercise 4. +1 Anderson’s
483 (13)

(n
i

) → ( n
i−1

)
twice

492 -1 Esseen → Esséen
545 (18) #Un → U

#
n

558 section title Kn → K

584 (3) - 1 ((log2 n)1/4
√

log n/
√
n

→ ((log2 n)(log n)2/n)1/4

604 (2) + 10 n → t
604 (2) + 11 t → n
661 5 Ψ → Ψn twice
661 (5) +1 would → might
661 (9) + 1 in the next section → in section 4
662 (12) = → .=
688 (1) -1 “since the . . .” → “since for the . . .”
695 (3) + 2 k

n → k
n+1

696 (3) + 1 (3.7.4) → (3.6.4)
697 (15) 0 ≤ t ≤ 1
698 (21)

∫ Pn,i+1

0 → ∫ pn,i+1

0

699 (7)
∫ 1
0 → ∫ t

0
731 (22) f ◦ F−1 → f ◦ F−1ρn(1, c)
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Page Line or equation Error or change
732 (10) log(1 − t) → (log(1 − t))ρn(1, c)
732 (11) (1 − 2ρ1,c) → −ρ2

1,c

740 (32) (1 − 2ρ1,c) → −ρ2
1,c

746 5 change to: The definition of Sn is found first
in Smirnov (1947); see also Butler (1969).

747 (11) + 2 change to: Smirnov (1947) and Butler (1969) give an
expression for the exact distribution.

771 2 t missing just before K
778 (16)+3 Wang → Yang
790 (4) π → Π
802 (d) 2.1[T2,∞) → 2 · 1[T2,∞)

804 (j) F belongs with S1 and Sm as part of the subscript
813 -4 by (A.14.7) → by (A.14.8)
819 -3 (ex − 1 − x2) → (ex − 1 − x)
820 9 (A.14.14) → (A.14.15)
821 -2 nonidentically → not identically
821 -3 combinations of

→ combinations of a function of
844 (6)

√
2sn → √

2 sn

850 3 γ3
1 → γ2

1

850 -2 Mill’s → Mills’

851 (5) exp
(
− λ

2σ2ψ
(

λb
σ2

√
n

))
→ exp

(
− λ2

2σ2ψ
(

λb
σ2

√
n

))
852 (a) E exp(

∑n
1 Xi) → E exp(r

∑n
1 Xi)

853 7 0 < λ < 1 − μ → 0 < λ/
√
n < 1 − μ

855 (12) exp
(−2λ2/

∑n
1 (bi − ai)2

)
→ exp

(−2nλ2/
∑n

1 (bi − ai)2
)

856 (21) +2 Steinback → Steinebach
859 -6 Renyi → Erdös and Rényi
863 4 i− 1/m → (i− 1)/m
863 -2 dt). → dt) be monotone
868 -5 U i

+U
r−i+1
− → U i

+U
k−i+1
−

868 -1 r → k twice
873 -12 [0, θ] → (0, θ]
873 -2 5 → S
879 13 max0≤j≤k → max0≤j<k

890 (8) + 2 replace Ac(t) − ∑
s≤t ΔA(s) by

Ac(t) ≡ A(t) − ∑
s≤t ΔA(s)

896 (2) dX → dXi

896 (3) dX → dXi

897 (6)
∫
(0,t] → ∫

[0,t]

898 3 and (9) (0, t] → [0, t]
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Page Line or equation Error or change
903 -5 enchantillon → echantillon
904 4 Burk → Burke
910 20 tall → tail
915 -6 Steinbach → Steinebach
916 -2 theroy → theory
925 -16, right Wang → Yang
925 -7, left Steinbach → Steinebach
929 -7, right 877 → 878
936 9, left Rebelledo → Rebolledo
938 17, left 676 → 677



Errata 915

4 Accent mark revisions

Page Line Error or change
xxxiii 3.8.3 Rényi
xvii -3 Rényi
16 8 Tusnády
19 -4 Lévy
223 -6, -3 Csörgő
559 4 Csörgő
274 -2 Horváth
492 -6 Horváth
903 -5 nonéquiréparti
904 4 Horváth
905 -6 Horváth
906 1, 3, 7 Horváth
923 23 Horváth
843 -7 Loève
844 -5 Loève
846 6 Loève
855 -10 Loève
861 1 Loève
913 13 Loève
924 24, left Loève
924 4, left Komlós
905 24 Csáki
905 24 Tusnády
908 -23, -21 Rejtő
913 1 Poincaré
270 9 Doléans-Dade
897 7, 12 Doléans-Dade
907 1 Doléans-Dade
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5 Solutions of “Open Questions”

Problem Page Reference for solution
OQ 9.2.1 353 Götze (1985)
OQ 9.2.2 356 Massart (1990)
OQ 9.8.1 400 Khoshnevisan (1992)
OQ 9.8.2 400 Khoshnevisan (1992)
OQ 9.8.3 400 Bass and Khoshnevisan (1995)
OQ 10.6.1 428
OQ 10.7.1 431
OQ 12.1.1 495
OQ 12.1.3 495 Deheuvels (1998, 1997)
OQ 13.4.1 526 Einmahl and Mason (1988)
OQ 13.5.1 530 Lifshits and Shi (2003)
OQ 13.6.1 530
OQ 14.2.1 544 Deheuvels (1991)
OQ 14.2.2 545 Einmahl and Ruymgaart (1987)
OQ 15.2.1 596
OQ 16.2.1 605
OQ 16.4.1 616 Einmahl and Mason (1988)
OQ 17.2.1 628
OQ 25.3.1 809
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