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Semiparametric models: an evaluation

We review ten years of work on semiparametric theory in stalistics on the
occasion of the recently published book by Bickel, Klaassen, Ritov and
Wellner,

1 Introduction

Semiparametric models have been a hot topic in research in statistics and related fields for
roughly ten years. The book ‘Efficient and Adaptive Estimation for Semiparametric Models’
(BKRW) by BICKEL, K1.AASSEN, RiTOv and WELLNER is the first large monograph on this topic.
Though it appeared only in 1993, preliminary versions of it were referenced in papers as early
as 1988. In this paper we review key concepts of semiparametric theory and at the same time
review the book BKRW.

The question as to what constitutes a semiparametric model is actually not easy to answer.
Different terms that are meant to cover roughly the same area, but put different emphasis, are
parametric-nonparametric, BEGUN, HaLL, HuanGg and WELLNER (1983), general statistical
model, PEANZAGL and WEFELMEYER (1983), and model with large parameter space, VAN DER
VAART (1988).

In the situation where the observations consist of a random sample from a common
distribution P on some sample space, the sitvation uniquely considered in BKRW, the model
is simply the set & of all possible values of P: a set of probability measures. Then a
semiparametric model might be described as not parametric and not nonparametric. Here a
parametric model could be defined as a model {P;: 6 € @} indexed by a parameter § ranging
over a subset of Euclidean space, such that the total variation distance | Py, — Py, |l is of the
order |8, — 8,|* for some a >0 as 8; — 8,—0. Strictly speaking the only nonparametric model
is the set of all probability measures, but models & that are restricted only in a qualitative
manner, such as finite moments or absolute continuity, are also considered nonparametric.
Semiparametric models are the intermediate models: larger than parametric, but smaller than
nonparametric.

Often interest in semiparametric models is focused on values of some function v: Z—+R* on
the model, in which case the remainder of the model is called a nuisance parameter. In
particular, the model may have a natural parametrization (8, G)— Py, where & = v(P,;) is
Euclidean and & runs itself through a nonparametric class of distributions. This gives a
semiparametric model in the strict sense. Examples, such as given in Section 2, make these
distinctions clearer.

At the present time there seems to be a reasonable understanding of ‘information bounds’
for estimating “smooth’ functions of P. Such ‘lower bounds’ are asymptotic in nature with the
number of observations tending to infinity. They extend the theory for classical, smooth
parametric models, which goes back to FisHer (1922), CraMER (1946} and Haek (1970). Five
out of the six major chapters of BKRW are concerned with information bounds.
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Even after ten years the extent to which the information bounds are sharp is unclear ang
general methods to construct efficient estimators are largely undeveloped. It seems certain that
the classical theory for parametric models, as developed for instance by LE CaM (1960), hag
no easy parallel for semiparametric models. Only the last chapter of BKRW, still almost 3
quarter of the book, is devoted to the construction of estimators; it is the least polished part
of the book. Many new developments are to be expected in this area, a number of which have
already taken place since BKRW went in print (e.g. VAN DER LAAN, 1993, MURPHY, 1992,
VAN DER VAART, 1992).

Section 1.2 of BKRW presents a list of subjects that are not covered. This includes statistica]
testing within models, goodness-of-fit testing, robustness considerations, boot-strapping and
non-i.i.d. observations. Of these goodness-of-fit and robustness are the most important {o be
further developed. Since semiparametric models are much larger than parametric ones, they
will general fit better on given data-sets. However, even a semiparametric model can only yield
an approximation to reality. Checking for goodness-of-fit should be a standard ingredient in
applying a semiparameiric model. Giving up some efficiency in order to allow for small
deviations from the model may be worthwhile. Being concerned with information bounds in
more than three quarters of the book, the authors of BKRW remark that even if the prime
interest is not in going for full efficiency, the information bounds are still of much interest.
They show exactly how much efficiency might be sacrificed by using for instance an
easy-to-apply or robust method.

The book BKRW is restricted to the estimation of ‘smooth’ functions of the model. This
concerns situations in which optimal estimators converge at a n ~"-rate and are asymptotically
normally distributed. In the case of parametric models such situations vastly outnumber the
‘nonregular’ ones, such as estimating the support boundaries of uniformly distributed
observations. In contrast, the case may be made that in semiparametric theory the nonregular
functionals outnumber the regular ones. Then the emphasis on regular functionals might
still be defended by ciaiming that these are the more interesting ones. It is Fair to say
that mathematically they are the casier ones. Nonregular functions include for instance
most objects of study in the smoothing literature, such as densities and regression functions
in infinite dimensional settings. More interestingly, nonregular functions occur next to
smooth functionals in almost every semiparamelric model, arising as natural functions of
parameters that describe the model. These situations, where the map from the underlying
distribution of the observations into the parameter is not differentiable, are sometimes called
inverse problems. They may be among the most interesting areas for semiparametric research
in the near future. The theory of both lower and upper bounds for estimation is largely
undeveloped.

2 Some examples

Semiparametric models have been put forward by researchers from such diverse fields as
biostatistics, econometrics, demography and spectroscopy. The following list of examples
shows some of the scope of semiparametric theory. The book BKRW describes many more

examples and the level of detail explains in part the length of the book.
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In the description of the examples X denotes a typical observation. Random vectors Y, Z,
¢ and f are used to describe the model, but are not necessarily observed. The parameters 8
and v are always Euclidean. The following descriptions do not include censoring mechanisms
of the data, though this would be natural in many examples.

ExamPLE | (REGRESSION). Let (Y, Z) and e be independent random vectors satisfying the
relationship ¥ = u(Z, 0) + ¢(Z, #)e for given functions u and ¢ that are known up to 8. The
observation is the pair X = (¥, Z). If the distribution of e is known to belong to a certain
parametric family, such as the family of N(0, ¢?) distributions, and the Z are modelled as
constants, this is just a classical regression model, allowing for heteroscedasticity. A
s_emiparamctric version is obtained by letting the distribution of e range over all distributions
on the real line, or, alternatively, all distributions that are symmetric about zero.

ExampLE 2 (PROJECTION PURSUIT REGRESSION). Once again let (Y, Z) and ¢ be independent
random vectors and let X = (¥, Z). Now assume that ¥ =r(87Z) + ¢ for a function r ranging
over a set of (smooth) functions and e having a N(0, o %)-distribution. In this model # and r
are confounded, but the direction of 8 is estimable up to its sign.

ExaMPLE 3 {LOGISTIC REGRESSION). Given a vector Z let the random variable Y take the value
] with probability e"2(1 + ¢"®) and be 0 otherwise. Let Z =(Z,, Z,) and let the function r
be of the form r(z,,z;) = t(z,) + 07z,. Observed is the pair X = (¥, Z).

ExamPLE 4 (PAIRED EXPONENTIAL). Given a variable Z with completely unknown distribution
let X =(X,, X;) be a vector of independent exponentially distributed random variables with
parameters Z and Z¢. The interest is in the ratio § of the conditional hazard rates of X; and
Xz.

EXAMPLE 5 (ERRORS-IN-VARIABLES). The observation is a pair X = (X, X;) where X, =2 + ¢
and X;=ua 4+ $Z + f for a bivariate normal vector (e,f) with mean zero and unknown
covariance matrix. Thus X, is a linear regression on a variable Z which is observed with error.
The distribution of Z is unknown.

ExAMPLE 6 (TRANSFORMATION REGRESSION). Suppose that X =(¥,Z) where the random
vectors ¥ and Z are known to satisfy t1{(¥) = 87Z + e for an unknown map t and independent
random vectors ¢ and Z with known or parametrically specified distributions. The transform-
ation 1 ranges over an infinite dimensional set.

EXampLE 7 (TRANSFORMATION). Suppose that X = (¥, Z) where the conditional distribution of
t(¥) given Z belongs to a parametric model {P,(-|Z): & € @ }. The unknown transformation
T ranges over an infinite dimensional set.

ExaMPLE 8 (Cox). The observation is a pair X = (7, Z). The distribution of Z is unknown and
the conditional cumulative hazard function of T given Z is of the form e’2A(r) for A being
a completely unknown cumutative hazard function. If Z, is a 0 — 1 variable then % can be
interpreted as the ratio of the hazards of two individuals who have Z,=1 and Z;,=0,

respectively, but who are identical otherwise.
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ExaMpLE 9 (CopuLa). The observation X is two-dimensional with cumulative distribution
function of the form Cy(G,(x,), G,(x;)) for a parametric family of cumulative hazard functiong
C, on the unit square with uniform marginals. The marginal distribution functions G; may be
completely unknown or known.

ExaMpLE 10 (FRAILTY). The conditional cumulative hazard function of Y given (Z, W) is of *
the form We”ZA(y). The random variable W possesses a Gamma (v, v) distribution and js
independent of the variable Z which possesses a completely unknown distribution. The
observation is X =(Y, Z).

ExampLE 11 (INTERVAL CENSORING). A ‘death’ that occurs at time T is only observed to have

taken place or not at a check-up time C. The observation is X = (C, YT <C}Pand Tand

C are assumed independent with completely unknown or partially specified distributions.

3 Tangent spaces

The tangent space is a key concept in semiparametric and a substantial part of BKRW is
devoted to computing and studying properties of tangent spaces for specific examples. 7

Information bounds are expressed in terms of tangent spaces.

It is convenient to develop this concept first for parametric models. Assume that a ;

parametric model with parameter & ranging over an open subset of R* is described by densities
po with respect to some measure g. In BKRW the model is called reguiar 1if lor all 8 there exists
a vector-valued measurable map f; such that as A —0

j[l’a’)”ifs —pi* ~ 4 hThp T dp = o (N0 1),

J‘“[oupt'rrik - uPB’zﬂz du = o(1),

L= E,(XOIT(X) is nonsingular.

In most situations /, is the vector of classical score functions of the model and its value at x
can be computed as the gradient

)
hx)= 75 108 P ().

The matrix J, is the Fisher information matrix. The point of taking a derivative in mean square
(of the root density, not the logarithm) in the definition of a regular model is that this is exactly

right for the theory of asymptotic efficiency.

Define an estimator T, = T,(X. ..., X,) as 2 measurable map of the observations (an iid.

sample of size n). Then an asymptotically efficient estimator sequence for the parameter ina =
regular parametric model must have the property that ﬁ(T,, — ) is asymptotically normal
N(0, I;") distributed under 8. This statement may be split into a ‘lower bound’ assertion,
saving that the limit distribution cannot be ‘better’ than the given normal one, and an upper ,

bound or attainability assertion, saying that there exist estimators with this normal limit
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distribution. Rigorous statements of the lower bound, in terms of a local asymptotic minimax
and convolution theorem, are due to CHERNOFF (1956), Hassx (1970), Hasex (1972) and LE
Cam (1972}, but an informal statement goes back to Fisher (FISHER, 1922). Fisher also claimed
the asymptotic efficiency of the maximum likelihood estimator, which was later rigorously
proved under regularity conditions by Cramér (CramER, 1946), among others. Le Cam (LE
CaM, 1956) showed the existence of asymptotically N¥(0, I;") estimators in regular parametric
models under the only further (necessary) condition that the parameter is identifiable.
(Actuaily the second requirement in the definition of a regular parametric model in BKRW
is necessary neither for lower bound nor for attainability.)

While lower bound results have been extended to semiparametric models, a generalization
of the attainability proved in LE Cam (1956), or even CrRAMER (1946), is lacking.

The tangent space at a fixed element P, of a parametric model is defined as the linear space
(hTlyhe R*} spanned by the score functions. A general statistical model # can be viewed as
a union of finite dimensional ‘submodels’ and its tangent space is defined as a union of finite
dimensional tangent spaces. More precisely, in BKRW the tangent set @, at a fixed element
P, of the model is defined as the union of the tangent spaces (at P,) of all one-dimensional
regular submodels passing through Pg. The rangent space 2 (at P,) is defined as the closure
of the linear span of the tangent set. Here the closure is taken in the Hilbert space L, (P) of
functions with finite second moment, equipped with norm and inner product given by

Il ||p° = (jh’ dPo)lﬂ; Ay, hz).vo = jiilhl dp,.

Because of the insistence on regular submodels the definition of a tangent space in BKRW
differs from that used by others LEviT (1978), PFaNZAGL and WEFELMEYER (1983), VAN DER
VaART (1988), among others in not admitting one-sided derivatives as scores. The benefits of
this difference are not clear to me, even more so since one-sided derivatives are important later
on (See page 306).

Just as the definition of tangent spaces, lower bounds for estimation in semiparametric
models are based on finite dimensional submodels. Estimation of some aspect of P is clearly
not easier when knowing that P belongs to the model 2 than when knowing that P belongs
to a given parametric submodel. Therefore the supremum of the lower bounds resulting from
all (regutar) submodels yields a lower bound for the semiparametric model. There is nothing
in this simple argument, usually attributed to Stein (STEIN, 1956), that suggests that the lower
bound obtained in this manner is sharp. In general it is not, but in many interesting cases it
has been shown to be sharp by explicit construction of estimators that have asymptotic
variance equal to the bound.

We close this section with two examples of tangeni spaces.

ExampLE 12 (NONPARAMETRIC MODELS). Suppose # consists of all probability laws on the
sample space. Then the tangent space consists of all measurable functions g satisfying
f2dPy=0 and |g?dP, < c.

It suffices to exhibit suitable one-dimensional submodels. For a bounded function g consider

for instance the exponential family py(x) = ¢(8) exp (8g(x))p,{(x) or, alternatively, the model
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pe(x) = (1 + 8g(x})py(x). Both have score function g — {gdPy at 6 =0. Both submodels
are of the form py(x)=c(OW (@ (Bg(x)Np(x) for a nonnegative function ¥ with
¥(0) = '(0) = 1. The function W (x)=(1+¢~*) ' is bounded and can be used with any g,

ExaMpLE |3 (INFORMATION LOSS MODELS). Suppose the common distribution of the obser.
vations is the distribution of a measurable transformation X =m(Y) of an (unobservable)
variable Y. Assume that the form of m is known and that the distribution of ¥ is known (o
belong to a class %. This yields a natural parametrization G — Pg of the model. A nice property
of differentiability in quadratic mean is that it is preserved under ‘censoring’ mechanisms of
this type. If # =G, is a (regular parametric) submodel of %, then the induced submodel ¢ ~ Pl

satisfies the first two requirements of a regular parametric model of {Pg: G € ¥}. The score

function k (at 8 = 0) for the induced model 8 — Pg, is related to the score function b (at 8 = ()
of the model 8 -G, by

h(x) = Eg,(b(Y)IX =x).

If the scores b and 4 are considered the carriers of information about &in ¥ ~ Gyand X ~ P,
respectively, the intuitive meaning of the conditional expectation operator should be
clear.

Given a tangent set & for the model %, it follows that the set {Agb:b €%}, where 4,
is ihe conditional expectation operator b—Eg(b(Y)IX =x), is contained in the tangent
space @. The sel of distiibutions of 1 may itsell have one of many possible struciures,
parametric, nonparametric or semiparametric, which leads to a variety of possible tangent
spaces &.

EXaMPLE 14 (Cox MODEL). The density of an observation in the Cox model takes the form
(t, z)—exp (— e N (1) g (2).

Differentiable submodels varying @, 2 and g yield score functions
]
z —ze"AQ@), alt) -—e”EJ adA, b(2),
0

where a and b are the derivatives with respect to A and g. The tangent space contains the linear
span of these functions. Note that the scores for A can be found as an ‘operator’ working on
functions a.

ExaMpLE 15 (TRANSFORMATION REGRESSION MODEL). If the transformation t is increasing and
¢ has density ¢, then the density of the observation can be written ¢{r(y) — BTz (p)g(z)
Scores for # and 7 take the form

’

¢’ ¢’ a
—z— (1(y)~0872), () —8)a(p)+ =)
¢ ¢ 1

where « is the derivative for 7. If the distribution of e or Z is (partly) unknown, there are
additional scores corresponding to their distributions. Again scores take the form of an

operator acting on a set of functions.
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4 Lower bounds

For simplicity we restrict our discussion of lower bounds to the estimation of real-valued
functions on the model. Chapters 3 and 4 of BKRW give discussions of the vector-valued and
infinite dimensional cases.

For a regular one-dimensional parametric model # = {P;:8 € @} the Cramér-Rao lower
bound for the variance of unbiased estimators of a differentiable function y(#) equals

¥ ()
L

The information for estimating (&) could be defined as the inverse of this quantity.

Consider a real-valued function v(P) of the underlying distribution in a general model 2.
Clearly the supremum of the expression in the preceding display over all regular parametric
submodels for which i (8) = v(P,) is differentiable gives a lower bound for the variance of
unbiased estimators. A submodel for which the supremum is taken is called a least favourable
submodel. In this mode] (which does not necessarily exist} estimation of v(P) is hardest. The
supremum <an be given an attractive form if the function v(P) is pathwise differentiable. In
BKRW this is defined to be the case if there exists an element v, in L,(P,) such that for every
one-dimensional, regular parametric submode} passing through P,,

v(Py)={vp, lDp,
30 b (Py) = {py, g,
where £ is the score function of the submodel (at 0 = 0). This requires both that the function
W (0) =v(P,) is differentiable (at 8 = 0) and that the derivative can be written as an inner
product of the score and some fixed gradient or influence function. The latter is not restrictive:
in VAN DER VAART (1991) it is shown to be necessary for the supremum that we wish to
calculate to be finite. For a pathwise differentiable function the lower bound for the asymptotic
variance takes the form

<\;P07 h >§’0
h 1Y,

where the supremum is taken over all (regular) parametric submodels. Equivalently, since the
expression depends on the scores A only, the supremum may be taken over the tangent space.

THEOREM 1. The supremum in the preceding display is equal to
I7(Pyly, P) = |5, (96, |23,

The notation is taken from BKRW. The left side is a formal notation for the inverse of the
information for estimating v given the model 2 evaluated at true underlying distribution P,.
The right side is the square expectation of the orthogonal projection of Vp, On the tangent
space. In general the notation Iy, (#|L) in BKRW is the orthogonal projection of & in L,(P,)

onto a given closed subspace L: it s the element of L that minimizes |/ — h]li,0 when [ varies
over [.
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Even though the Cramér-Rao bound was a good starting point for motivating the preceding
definition of information, its restriction to unbiased estimators is not satisfying, in particuly,
for semiparametric models. It is better to give the lower bound an asymptotic interpretation,
Among asymptotic lower bound statements the local asymptotic minimax theorem and (h,
convolution theorem are the most popular. In BKRW only the convolution theorem j
developed. Here we choose to include the minimax theorem.

THEOREM 2. Assume that the tangent set @, contains a convex cone with closed, linear span equg;
to the tangent space P. For every element h in this cone let {Py,: |01 <1} be a (regular) g
parameiric submodel with score h. Then for any estimalor sequence {T.} and function
1[0, e0)—{0, c0)

sl.}p limjonf E;‘l:? Ep,,ﬁ,, 1(\/;|Tn - "(Puﬁ.m)l < I’(L"l) ANy wpeman (%),

where the first supremum is taken over all finite subseis I of the tangent set.

At first sight the local asymptotic minimax theorem looks somewhat complicated. Thé‘
problem is that expressions of the type Epl(\/r;(T,, — v(P))) can converge to zero for a given
P. Only the maximum risk over certain neighbourhoods can be bounded below in a nontrivial .".
manner. This is why the two suprema on the left side appear. Since the variational distance
17y fas — Pyl converges to zero as 1 — o0, for every h, the left side of the theorem is for every: &

8 > 0 smaller than

AAT TR 4

lim inf Epl T,— v(P)).
iminf sup £, (VrIT, — v(P))
The theorem implies that this asymptotic local maximum risk cannot fall below the [
corresponding risk of a given normal distribution. A popular interpretation is that the best’ 8
possible limit distribution of the sequence \/r_r(T,, —v(P,)) is normal with mean zero and
variance I~'(Pylv, #). !

ExaMPLE 16 (PARAMETRIC MODEL). Consider estimation of a differentiable, real function (7))
in a regular parametric model. For a given vector A the one-dimensional submodel ,
{Po,+u: 111 < €} (well-defined for sufficiently small e > 0) possesses score function A Thoatt=0. " '
If i, denotes the gradient of  at 8 (the row vector of partial derivatives), then

a ]
51,V G0t 1) = uh = By i (X (7l (). |

This shows that the function v(P,)=(#) is pathwise differentiable with influence &=
function

‘if'an = !"}oolgol Iﬂn'

Since this is already contained in the tangent space, the projection operation is unnecessary-

This leads to the lower bound g!},,ulon' W7, for the asymptotic variance.
© VVS, 1995
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ExaMPLE 17 (LINEAR FUNCTION). Consider estimation of the function v(P) = { f dP for a fixed
measurable map J. The choice f = 1,_,, 4 vields the distribution function of P at the point c.
For a given parametric submodel we can argue that

v{Py} = v(Py) = Jf(pé’z — PPl + pi) dp

w0 _[f(%iopé”)Zpé” dp + 0(0) =8, ly>p, + 0(8).

This suggests that the function f itself can be taken as the derivative vp,. In BKRW this is
shown to be true if there exists a constant M such that [ f2dP < M for every P in the model.

Actually for many functions f the approximation in the preceding display is not valid for
afl regular submodels without some restrictive condition. Then the functional is not pathwise
differentiable in the sense of BKRW. A similar problem arises in other semiparametric models,
because the regularity of a submodel is in general not related to the differentiability of the
functional of interest. In BKRW this problem is overcome by arguing heuristically when
discussing concrete examples. See the discussion on page 71.

If the model is nonparametric, then the projection of vp, = f on the tangent space equals
f—v(Py)- Then the bound ||v,, %, for the asymptotic variance is the variance of f{X) and the
empirical estimator »~' E7_, f(X}) is asymptotically efficient. If the tangent space does not
contain the function f — v{P,), then the bound for the asymptotic variance is smaller. Efficient
estimators are known in many examples, but not in general.

Even though the information bound for pathwise differentiable functions given by the
preceding theorem and obtained by KosHEVNIK and LEvIT (1976), LEvIT (1978) and PFANZAGL
and WEFELMEYER (1983), covers all possible situations, it is worthwhile to memorize the bound
for special parametrizations.

Consider first the problem of estimating the parameter 8 in a semiparametric model of the
form 2 = {Py5: 0 € &, G € ¥}. Suppose that the submodel {Pyq,: 6 € @} in which Gj is fixed,
is a one-dimensional regular submode! with score function f,,o at 6, and let &, be the tangent
space for the submodel {Py 4: G & ¥} in which 6, is fixed. Then

13‘0 = [DU - Hpﬂo.Go(ionlgbg)’
is called the efficient score function for 8.

THEOREM 3. The information lower bound I-\(Py, |0, P) for estimating 0 in a semiparametric
model equals | I} |72 the inverse of the square expectation of the efficient score function.

iThis theorem, proved in BeGun, HarL, Huang and WELLNER (1983), has an intuitive
interpretation. The score function Iy, gives the information for 6 when G is known; to find the
information for the semi-parametric model we must subtract the part that is also explainable
by a score for G.

Next consider the problem of estimating a functional of G. Consider first the situation that
G is itself a probability measure on some measurable space and that there is no Euclidean

Mrameter. Thus the model is {P;: G € #} and we are interested in a function of the type
©Vvs, 1995
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v{P;) = x(G). Assume that a smooth parametric submodel 6 -G, induces a smooth paramet.
ric submodel 8§ — P, where the scores are related by an operator 4,: L,(Go)— L,(Pg,):

h = A,b.

Since A, turns scores for the model ¥ into scores for 2 it is called a score operator. In Example
3.13 the score operator in information loss models was seen to be a conditional expectation
operator. Assume also that the function G —x(G) is pathwise differentiable with gradient Xep-
Then by definition v(P;) = x(G) is pathwise differentiable if and only if

8 a .
@Io_u"(f’aﬂ)—%w_01(60)= <ch,b>oo

can be written as an inner product {¥p_, Agb>p, , for every submodel and score b (at G,) in :
Poor 10l P pg, [}

the model %. The resulting equation can be rewritten in terms of the adjoint operator
A¥: L, (Py)— L,(G,), which by definition satisfies {, Ayb s, = (A h, b)g, for every hand b,
We obtain

ST
Al Ve, = Yoo

Under the two assumptions we have made, the function v(P;) = x(G) is pathwise differentiable
if and only if this equation can be solved for v, . Equivalently if and only if %, is contained
in the range of the adjoint Af.

If it is contained in the smaller range of 4§ 4,, then the equalion can be solved, of course,
and the solution can be written in the attractive .form

Bpe, = Ao(AF A0) iy

The information operator A¥ A, performs a similar role as the matrix X7.X in the least squares

solution of a linear regression model, which is obtained by projecting the dependent vector.

onto the regression space.

In a semiparametric model {Pyc:# € @, G € ¥} the information calculation for a function

of the type v(P;) = x(G) is slightly more complicated, because the tangent space will also
contain the score f; for the Euclidean parameter.

THEOREM 4. In a semiparametric model the gradient Ve, . of the function v(Pyg)=x(G)
salisfies

<‘7Pe°_a,,a "'u,, >Pao,60 =0 A¥ ""Pgo,gn = ¥g,-
Here yg, is the gradient of G—x(G) and Iy, the score function for 0.

If %, is contained in the range of 47 4,, then the solution of the equations in the display
is

— 8 18020 6y CALAE A0) Hays Iy D pog.ooly + AalAT Ao} ey

This formula was first found in BEGuN, HaLL, HUANG and WELLNER (1983).
The preceding calculations can be generalized and extended and lead to a ‘calculus of score

functions’, given in Chapters 5 and 6 of BKRW.
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5 Construction of estimators

The approach towards construction of estimators in Chapter 7 of BKRW is characterized on
page 380: ‘Find a tractable procedure using whatever heuristic principles are appropriate
rather than sticking to an “optimal” method of estimation whose optimality can only be
guaranteed under conditions which are both difficult to check and often do not apply’.

Given that maximum likelihood is a unifying idea in the theory of estimation in parametric
models, it is not surprising that most methods of constructing estimators in semiparametric
models are modifications of the method of maximum likelihood. Given a model & the
maximum likelihood estimator of a function v(P) is the value v(#) for £ maximizing the log
likelihood

" "
p— El logp(X}=n Jlogp ar,; P,= Z. By
im i=

Here p is a density of P with respect to some fixed measure and the maximization is carried
out over all 2. In a large number of semiparametric models a maximum likelihood estimator
exists and is asymptotically efficient. In equally many models the maximum likelihood method
breaks down: there may not be natural versions of the densities p; the likelihood may be
infinite; there may be many points of maximum; there may even be a unique maximum
likelihood estimator which is asymptotically inconsistent.

In cases where the maximum Lkelihood mcethod fails, it can often be repaived by a
modification. In BKRW four types of modifications are discussed: sieves, penalization,
regularization and the one-step method.

The method of sieves restricts maximization of the likelihood to sets 22, which ‘converge’
to the - model & as n —oo. The idea is that for finite n the likelihood varies 100 much on the
whole model, but may attain unique maxima on smaller sets. Popular sieves in function spaces
are sets of spline functions with a fixed number of nodes, with the distance between the nodes
tending to zero at a suitable rate as 7 —00. In a semiparametric model sieves %, in the nuisance
parameter space lead naturally to sieves for the model, though it has been found convenient
10 use sieves that are not submodels as well.

Penalized likelihood estimators are obtained by maximization over the whole model, but the
log likelihood is replaced by

p= 3. logp(X) = 1,J(p),

for a given ‘penalty function’ J(p). Densities for which the penalty is high are less likely to
yield the maximum value. A popular penalty is the integral of the square of the derivative of

; 'a'fiensity and penalizes roughness of p. The ‘tuning’ constants A, determine the influence of

ih_e penalty term and should converge to zero as n—co.

The method of regularization is based on an initial estimator P, of P and choses as estimator
ll_ag distribution that maximizes

P *Jlogp dfs,.
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likelihood, but there is a variety of other choices, such as the smoothed empirical distributigy
with density (ns,)~" Zi_, k((X, — x)/s,) and other methods to ‘smooth out’ the observations,

Each of the three modifications of maximum likelihood depends on a tuning rate. This j
the rate of decrease of the discrepancy between 2, and 2 in sieve estimation, and the
rate at which the constants 1, and o, decrease to zero in the cases of penalization apg
regularization. The choice of tuning constants is an important problem, both theoreticaily ang
practically. Cross validation schemes to choose optimat values based on the data have not beep

122 A. van der Vaap
Choosing [P, equal to the empirical distribution P, of the observations leads back to maximyn, :

developed.

As usual the asymptotic analysis of these estimators consists of separate proofs of
consistency and asymptotic normality. We restrict ourselves to asymptotic normality. In the .
terminology of BKRW the estimators discussed previously are generalized minimum contrayy = 8
estimators: they maximize a criterion function. The asymptotic normality proof is carried
through by characterizing the estimators as generalized M -estimators, which are defined in
BKRW as estimators that solve a system of estimating equations. This system is found by
differentiating the criterion function along one-dimensional submodels. If the elements of the
tangent set #,(P, ?) (at P for the model 2) can also be obtained as pointwise limits, then
maximum likelihood estimators satisfy :

ot

J hdP, =0, cvery he @ (B P).

Sieve type estimators satisfy this equation for 4 € #,(P, #,) and regularized estimators satisfy, ? !
the equation with P, replaced by P,. The equation obtained for penalized likelihood estimators  # =
is slightly more complicated, because it includes the derivative of the penalty. = 4

Typically the elements of (a subset of) the tangent set 24(P, 2) can be written as A,b for, '
b running through some index set. For instance, a score operator A, could be acting on a set i
of functions &. Then all types of estimators considered previously satisfy equations of the type .!
W, (,)b = 0. For instance, for regularized estimators take W,(P)b = { 4,5 d®,. The set o, =
equations is linearized and inverted to oblain asymptotic normality. Appropriate technical B
assumptions are §

.
i

SnW, — W,)(B,) — /a(W, — W,)(P)——0 &
SR, (B,) — Wo(Py)) — W, (P/n(v(B,) = v(Pe)) —— 0. ﬁ‘

i
The functions W, are centering functions that should ensure that the processes \/E(W,, - Wl :. E
converge in distribution to a normal distribution. Typically the true value P is a zero of Wy

just as 15,, is a (near) zero of W,. The first condition is a technical regularity condition. The M ]
second requires some type of differentiation of the centering functions ¥, at the true valie '- ;|
P, with derivative denoted by W,(P,). In most situations the W, and W, are stochastic.
processes indexed by a set of score functions. Their convergence should take place in some

functional sense.
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TegoreM 5. 1E W, (B,) = Wo(Po) + 0p(n~'7), then W, (Po)/n(v(By) = v(Po)) is asymptotically
guivalent 10 — (W, — W,)(Po) + 0p(1).

This theorem is trivial: it follows immediately from the two conditions. As indicated in the
quote at the beginning of this section the point of view in BKRW is that it is impossible to
obtain workable results beyond the very abstract level of a theorem of this type.

If the centered process ﬂ(W,,—W,,)(PD) is asymptotically normal and the inverse
operators W' e.xist and converge in a suilable manner to a (continuous) limit, then the
sequence \/};(v(P,,) —v(P,)) converges to a normal distribution as well.

A heuristic discussion in Section 7.8 of BKRW indicates that maximum likelihood
estimators should be asymptotically efficient in every case where the approach outlined above

works. Furthermore, the three modifications ought to yield asymptotically efficient estimators

s well, provided the effect of modifying the likelihood wears off as n—co. In BKRW this is
{ilustrated for several examples, but no rigorous results are formuiated. Results for maximum

likelihood estimators can be found in GiLL (1989), GiLL and VAN DER VAART (1993) and VaN

~ pER VAART (1984).

_Finally we discuss the one-step modification of maximum likelihood. Consider estimation
of the parameter § in a semiparametric model {Py;:0 €0,G € %}. Suppose that the model

= {Poc, 0 € @} with G, fixed is a regular parameiric submodel and assume that the efficient score

functions {¥g, for @ satisfy the regularity condition

j Vtoup i — Ih coplcl2du—0, 08,

Then' the one-step method yields asymptotically efficient estimators for 8 provided suitable

- preliminary estimators for 8 and [¥; are available.

THEOREM 6. Suppose that there exist {function-valued) estimators I¥ such that for every
0,= 8,4+ O(n~"?)

Jn Jfg; 4Py, G — 0; J|f;; — 1} P APy, g~ 0.
Then there exists an efficient estimator for 0 provided there exists an asymptoticaily normal

estimator. These conditions are necessary.

The proof of the theorem is based on an explicit construction. The idea is to solve an
estimator 6, from the estimating equation

Thirx)=0.

'[!ais is simifar to solving the maximum likelihood estimator from the likelihood equation. The
present case is more complicated in that the estimating equation involves an estimator of the

; .e_lﬂfcient score function. In case the estimating equation is ill-behaved one may use instead of

a 2ero the estimator

0,=8,— iy, (XN Tl (XD,
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for given preliminary asymptotically normal estimators f,. This estimator is called a one-step

estimator, because it is the next approximation to a zero of the estimating equation -

Z [¥(X;) =0, when running the Newton-Raphson algorithm with starting value . Under

regularity conditions the one-step method improves a given asymptotically normal (or at least :

.\/:_z-consistent) estimator into an efficient estimator. The preliminary estimator is usually

constructed by ad-hoc methods. A number of theoretical tricks can be used to reduce the

regularity conditions to those of the theorem, which is due to KrLaassen (1987).

The theorem reduces the problem of efficient estimation of 0 to estimation of the efficien

score function. The two conditions that [ must satisfy can be characterized as a bias and a3

consistency condition. The consistency is usually easy to arrange. The bias condition may be

harder to achieve, because the ‘bias’ [ /¢ dP, ¢, is required to disappear at the rate n-2 = £

This is trivially true for an estimator of the type /3, if

ji;:a dPys, =0, every 0, G, G,.

This full unbiasedness occurs in semiparametric models that are convex linear in the nuisance

parameter. Without a special structure of the model the unbiasedness condition requires that E

the nuisance parameter is estimable at some rate.
In semiparametric models that are convex linear in the nuisance parameter functions of the
type

Pos

—_ 1 =— IO )
Pocs Blueo B Po.6 + 01 - 06y

are score functions (for possibly one-sided submodels). The orthogonality of {3, to the tangent ]
space readily yields the unbiasedness of the efficient score function.

6 Concluding remarks Ty

The work BKRW is strong in information calculations. It is less strong in the construction

of estimators. While this largely reflects the current state of affairs in semiparametrics, it

appears that the authors are too pessimistic about the possibility of a rigorous, general theory
of the asymptotic behaviour of various types of estimators. The modern theory of empirical -

e r R Ll ;e i

processes (see POLLARD, 1992) is promising, where the theorems would be formulated in terms [

of Donsker classes and entropy numbers. Some may regret that this will lead to further use
of functional analytic concepts (which are already used in the lower bound theory), but these
seem indispensable given that models are described in terms of abstract parameters rather than
vectors of numbers.

Soine subjects omitted from BKRW were already noted. Since every of the four authors has
made important contributions to the field of semiparametrics, it is understandable that the:
choice of subjects and presentation is somewhat biased towards the authors’ own work. One

el 8 o

striking example of this is the omission of a reference to the paper SEVERINI and WonG (1992). ';::

This paper puts forward the nice idea that least favorable submodels may be constructed by "

minimizing a (smoothed) Kullback-Leibler divergence. In SEVERINI and WoNG (1992} this i ==
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presented as an alternative to the one-step method as discussed in BKRW. Even though in
sgveriNt and WONG (1992) this approach is carried through only under somewhat forbidding
regularity conditions, the paper deserves to be mentioned.

References

peGuN, J. M., W. J. HaLl, W. HUANG and J. A. WELLNER (1983), Information and asymptotic efficiency
in parametric-nonparametric models, Annals of Statistics 11, 432452,

pickeL, P. J., C. A. J. KLaASSEN, Y. RITov and J. A. WELLNER (1993), Efficient and adaptive estimation
for semiparamelric models, Johns Hopkins University Press.

CuerNoFF, H. (1956), Large sample theory: pacametric case, Annals of Mathematical Statistics 27, 1-21.

CraMEr, H. (1946), Mathematical methods of statistics, Princeton University Press.

Fisger, R. A. (1922), Theory of statistical estimation, Proceedings Cambridge Philosophical Society 22,
700-7235.

GiL, R. D. (1989), Non- and semi-parametric maximum likelihood estimators and the von Mises method,
Part I, Scandinavian Journal of Statistics 16, 97-128.

G, R. D. and A. W. VAN DER VAART (1993), Non- and semi-parametric maximum likelihood estimators
_and the von Mises method, Part 11, Scandinavian Journal of Statistics 20, 171-288.

- HuE, J. (1970}, A characterization of limiting distributions of regular estimates, Zeitschrift Wahrschein-

lichkeitstheorie under Verwante Gebiete 14, 323-330.

" Hamx, J. (1972), Local asymptotic minimal and admissibility in estimation, Preceedings Sixth Berkeley

Symposium on Mathematical Statistics and Probability 1, 175-194.

Krasssen, C. A. J. (1987), Consistent estimation of the influence function of locally asymptotically linear
estimates, Annails of Statistics 15, 1548-1562.

KOSHEVNIK, YU. A. and B. Ya. LEvIT (1976), On a non-paramectric analogue of the infurmation mairx,
Theory Probability and Applications 21, 138-753.

LECaM, L. (1956), On the asymptotic theory of estimation and testing hypotheses, Proceedings Third
Berkeley Symposium on Mathematical Statistics and Probability 1, 129-156.

Le:CaM, L. (1960), Locally asymptotically normal families of distributions, University California
Publications in Siatistics 3, 37-98.

Le.Cam, L. (1970), On the assumptions used to prove asymptotic normality of maximum likelihood
estimators, Annals of Mathematical Statistics 41, 802~828.

~ LeCaum, L. (1972), Limits of experiments, Sixth Berkeley Symposium on Mathematical Statistics and

Probability 1, 245-261,
Le Cam, L. (1986), Asymprotic methads in statistical decision theory, Springer-Verlag.

- VANDER LAaN, M. (1983), Efficient and inefficient estimation in semiparametric models, University of Utrecht.

Lewit, B. Ya. (1978). Infinite-dimensional informational lower bounds, Theory Probability and Appli-
cations 23, 388-394.

Murrsy, 5. (1992), Asymptotic theory for the frailty model, (preprint},

PPANZAGL, J. and WEFELMEYER, W, (1982), Contributions to a general asymptotic theory, Lecture Notes
in Statistics 13, Springer Verlag.

POLLARD, D, (1950}, Empirical processes: theory and applications, NSF-CBMS Regional Conference Series
it Probability and Statistics 2, IMS, ASA.

SEVERINI, T. A. and W. H. WonG {1992), Profile likelihood and conditionally parametric models, Annals
of Statistics 20, 1768-1862.

STEWN, C. (i956), Efficient nonparametric estimation and testing, Proceedings Third Berkeley Symposium
Mathematical Statistics and Probability 1, 187195,

YAN DER VAART, A. W. (1988), Statistical estimation in large parameter spaces, CWI, Amsterdam.

- VANDER VAART, A. W. (1991), On differentiable functions, Annals of Statistics 19, 178-204.

VANDER VAART, A. W. (1992), Maximum likelihood estimation with partially censored data, (to appear).

- VANDER VAART, A, W. (1994), Efficiency of infinite dimensional M-estimators, Statistica Neerlandica 9-30.

AAD VAN DER VaagrT, Department of Mathematics and Computer Science, Free University, De Boelelaan
10812, 108!, HV Amsterdam, The Netherlands.

0 YVS, 1995




