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Abstract

Ulam (1961) apparently first posed the following question: what is the average (or
distribution of) the length Ln of the longest increasing subsequence of a random permutation
of the first n integers? Experimental (Monte-Carlo) evidence has played an important role in
the study of Ln begining with Ulam (1961), and continuing with Baer and Brock (1969), and
Odlyzko and Rains (2000). We present experimental evidence concerning the distribution of the
length Ln of the longest increasing increasing subsequence of a random permutation of length
n. In particular, the experimental data confirm the known result E(Ln) ∼ 2

√
n and strongly

suggest that V ar(Ln) ∼ cn1/3 for a constant c ≈ .818 . . .. This supports and complements the
recent results of Baik, Deift, and Johansson (1999), who apparently knew of the monte-carlo
results of Odlyzko and Rains (2000). In the last section we also combine our experimental results
with those of Odlyzko and Rains (2000).
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1 Introduction.

For a recent survey of this problem with connections to “patience sorting”, see Aldous and Diaconis

(1999).

2 History, part 1.

Let Πn = (Πn1, . . . ,Πnn) be a random permutation of the first n integers {1, . . . , n}. Thus

P (Πn = πn) =
1
n!

for all permutations πn of {1, . . . , n} .

Let Ln = Ln(Πn) be the length of the longest increasing subsequence in Πn. For
example, if Π ≡ Π9 = (3, 2, 1, 4, 5, 9, 6, 7, 8), then L9 = 6 for this outcome since
(Π3, Π4, Π5, Π7, Π8, Π9) = (1, 4, 5, 6, 7, 8) is an increasing subsequence in Π of length 6. Note that
this subsequence is not unique: in the present example (Π2, Π4, Π5, Π7, Π8, Π9) = (2, 4, 5, 6, 7, 8)
and (Π1, Π4, Π5, Π7, Π8, Π9) = (3, 4, 5, 6, 7, 8) are also increasing subsequences in Π of length 6.

The length of the longest increasing subsequence is also the basis of a metric between
permutations: if π = πn and σ = σn are two permutations of {1, . . . , n}, then Ulam (1972) defined
U(π, σ) = n− Ln(σ ◦ π−1); see also Ulam (1981), Diaconis (1982) pages 118-119, and Critchlow

(1985).
Ulam (1961) posed the question:

Question 1: How fast does E(Ln) grow with n?

Ulam (1961) gave a preliminary monte-carlo analysis of this question, but the first steps towards
a definitive answer were first found by Baer and Brock (1968). and by Hammersley (1972). Baer

and Brock (1968) tabulated the distributions of Ln and of max{Ln, Kn}, where Kn is the length of
the longest decreasing subsequence, for n between 1 and 36, and then computed estimates of E(Ln)
for n up to 10, 000; see their Figure 1, and note the plotted line 2

√
n. The exact calculations of

Baer and Brock (1968) were extended to n ≤ 75 by MacKay (1976), and to n ≤ 120 by Odlyzko

and Rains (2000).
Hammersley (1972) used Kingman’s subadditive ergodic theorem and a clever embedding of

the problem in a bivariate Poisson process to show that

Ln√
n
→p c and

E(Ln)√
n

→ c

for a constant c ∈ (π/2, e), but he was unable to prove that the constant c = 2 as suggested by the
calculations of Baer and Brock (1968).

3 History, part 2: Young tableaux.

Schensted (1961) showed that there is a one-to-one correspondence between a random permuation
Πn and a pair of Young tableaux of the same shape

For our example, Π ≡ Π9 = (3, 2, 1, 4, 5, 9, 6, 7, 8), one of the corresponding Young tableau, Λ9,
is given (in the “English style”) by

2



1 4 5 6 7 8
2 9
3

or, rotating the axes by 90◦ (in the “French style”),

8
7
6
5
4 9
1 2 3

The hook lengths are the numbers of elements in the Young tableau above and to the right of each
cell in this version of the tableau: thus the hook lengths {hij} for the above tableau are

1 1 1
2 2 2
3 3 3
4 4 5 1
6 1 5 6 2
8 3 1 9 3 2 1 7 3

3456 6480 7560 hook product
.03038 .00864 .00634 probability

The corresponding hook product is∏
(i,j)∈Λn

hij = 8 · 6 · 4 · 3 · 2 · 1 · 3 · 1 · 1 = 3456 .

Frame, Robinson, and Thrall (1954) showed that the number of (standard) tableaux of a given
shape λn is

n!∏
(i,j)∈Λn

hij
≡ n!

h(λn)
.

As a consequence of this together with the Schensted correspondence, for any given shape λn,

P (Λn = λn) =
n!

h2(λn)
=

1
n!

n!
h(λn)

n!
h(λn)

.

For our example with n = 9, n! = 362880, the shape corresponding to our given permutation π has
probability

P (Λ9 = λ) =
362880
(3456)2

= .03038 .

Summing over all shapes λ with a fixed height of the first column, yields the distribution of Ln:

P (Ln = k) =
∑

λ(0)=k

P (Λn = λ) =
∑

λ(0)=k

n!
h2(λ)

.
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For our example,

P (L9 = 6) =
3∑

i=1

P (Λ9 = λi) =
16465
362880

= .04537 ,

in agreement with the tabled probability in Baer and Brock (1968), Table 1a, page 390.
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Figure 1: Scaled Young tableau with limiting shape.

The corresponding cumulative tableau is given by

3 . . .
9 9
2 2

8 8 8 . . .
7 7 7
6 6 6
5 5 5 . . .
4 4 4 . . .
1 1 1 . . .

Because the tableaux Λn have total area n, it is useful to rescale the picture to have total area
1. Thus if Λn(t) is the (random) function giving the upper boundary of the tableaux in the plane
(with total area n), set

fn(t) = n−1/2Λn(tn1/2), t ∈ [0,∞) .

Figure 1 shows an example of a scaled random Young tableaux for n = 625 together with the limit
function of Logan and Shepp (1977) Note that the area under fn is 1 for every n so that fn can
be viewed as a random density function on [0,∞).

5



Similarly, corresponding to the cumulative tableau displayed above, set

Fn(t) =
∫ t

0
fn(s)ds .

Thus Fn is a (random) distribution function on [0,∞) with Fn(0) = 0 and Fn(∞) = 1.
Logan and Shepp (1977) found the “shape” λ which maximizes

P (Λn = λ) =
n!

h2(λ)
;

equivalently, minimize

log h(λ) =
∑

(i,j)∈Λn

log hij

=
∑

S∈Λn

log{λ(xS) − yS + λ−1(yS) − xS} .

After rescaling by
√

n, and passing to the limit this becomes equivalent to finding the “shape” (a
non-increasing function from [0,∞) to [0,∞) ) f which minimizes

H(f) ≡
∫ ∞

0

∫ f(x)

0
log{f(x) − y + f−1(y) − x}dydx . (1)

subject to ∫ ∞

0
f(x)dx = 1 . (2)

Theorem 1. (Logan and Shepp, 1977). For t ∈ (0, 2),

fn(t) →p f0(t)

(with respect to a complicated metric d) where f0, given by

f0(t) =
2
π

(sin θ − θ cos θ) , (3)

t =
2
π

(sin θ − θ cos θ) + 2 cos θ , (4)

0 ≤ θ ≤ π, minimizes H in (1) subject to (2); i.e.

H(f0) ≤ H(f) for all f with
∫ ∞

0
f(x)dx = 1 .

Logan and Shepp (1977) used this to show that the constant c in Hammersley’s theorem satisfies
c ≥ 2. Now define gn(t) by rotating the coordinate system for fn by 45◦ and scaling both new axes
by

√
2.

Theorem 2. (Vershik and Kerov, 1977). For t ∈ (0, 2),

gn(t) →p g0(t),
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Figure 2: Limit function with coordinate system rotated by 45◦.

where g0 is given by

g0(t) =
{

2
π (t arcsin(t) +

√
1 − t2), |t| ≤ 1

|t|, |t| ≥ 1 .

Note that g0 is just the function f0 in the new coordinate system with both axes scaled by
√

2.
Vershik and Kerov (1977) succeeded in using this to show that c ≤ 2 and in fact that c = 2.
Figure 2 gives a plot of the limiting shape g0 in the rotated coordinate system.

By now there are several other proofs that c = 2: Aldous and Diaconis (1995) prove it again via
a limit theorem for an interacting particle system process, the Hammersley process. Seppäläinen

(1996) attacks the problem by way of “stick breaking” and a related “inviscid Burgers equation.

4 History, part 3: how big is V ar(Ln)?

The next questions about Ln are, quite naturally:

Question 2: How fast does V ar(Ln) grow with n?

Question 3: Does nα(Ln/
√

n − 2) converge in distribution for some α?

For some time there was little progress on the theoretical front, but partial results were obtained
by Pilpel (1990), Talagrand (1995), Bollobás and Janson (1997), and Kim (1996). Meanwhile
Odlyzko and Rains (2000), in an effort apparently dating back to about 1994, carried out an
extensive monte-carlo study of Ln = L

(1)
n and L

(2)
n , the height of the second row of the Young

tableaux, with n ranging up to 1010. [Note: I did not see the paper Odlyzko and Rains (2000)

until April 2002.]
Meanwhile, because of some analogies with the Grenander estimator of a monotone density

(Grenander (1956), Groeneboom (1985), Groeneboom (1989)), I made the following conjecture
in 1996 or 1997, and started the monte-carlo study reported here, finally getting up to n = 3× 107

with a C program running on a cluster of Pentium machines under Linux.
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Conjecture 1.

n1/3(
Ln√

n
− 2) →d Z

for some (tight) random variable Z with EZ < 0 and V ar(Z) < ∞.
Assuming Conjecture 1 is true, then it would follow that

−E
{
Ln − 2

√
n
}
� −n1/6E(Z)

and
V ar

(
Ln − 2

√
n
)
� n1/3V ar(Z)

and hence both
log(−E

{
Ln − 2

√
n
}
) � log(−EZ) +

1
6

log n

and
log

(
Ln − 2

√
n
)
� log(V ar(Z)) +

1
3

log n.

Thus, if Conjecture 1 is correct, plots of means and variances of Ln − 2
√

n respectively would yield
slopes of 1/6 and 1/3 in log− log plots, and the intercepts in these plots will yield log(−E(Z)) and
log(V ar(Z)).

5 The Monte-Carlo Data and Plots.

To obtain experimental evidence in favor of Conjecture 1, I carried out a Monte-Carlo study. The
C-program for calculating random permutations Πn and their lengths Ln was obtained from David
Eppstein, University of California at Irvine, and put into operation by Greg Warnes.
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Table 1. Summary Data from the Monte-Carlo Experiment;
Means and Variances of Ln;

104 monte-carlo replications for each n

n mean variance n mean variance
10 1.9846 .7940 30000 9.3761 24.1153
20 2.4074 1.4275 40000 9.7963 27.0503
30 2.5638 1.4651 50000 10.2146 28.3498
40 2.7075 1.7717 60000 10.5591 30.8597
50 2.8080 1.9632 70000 10.8896 32.7036
60 2.9246 2.1264 80000 11.1427 33.3355
70 3.0463 2.2318 90000 11.1930 35.0279
80 3.1203 2.4505 100000 11.4946 36.8715
90 3.1808 2.6093 200000 13.0704 46.0337

100 3.2948 2.6673 300000 14.1246 51.8134
200 3.7251 3.6400 400000 14.7358 60.0396
300 4.0184 4.2844 500000 15.3908 63.0627
400 4.2123 4.8889 600000 15.7583 67.7113
500 4.4615 5.3338 700000 16.2124 71.1916
600 4.5971 5.6174 800000 16.5686 73.1944
700 4.7434 6.0837 900000 16.8825 77.5627
800 4.8923 6.4946 1000000 17.2997 81.6902
900 4.9798 6.8566 2000000 19.3319 100.5800

1000 5.0660 7.0709 3000000 20.7775 116.3620
2000 5.7218 9.0217 4000000 21.7820 126.7600
3000 6.2123 10.5477 5000000 22.4748 141.4180
4000 6.5214 11.8464 6000000 23.5006 146.7880
5000 6.8619 12.6437 7000000 24.1026 153.6630
6000 7.0178 13.5061 8000000 24.4065 161.0180
7000 7.2737 14.6082 9000000 25.2880 176.0870
8000 7.4252 15.0599 10000000 25.6300 177.1350
9000 7.6560 15.4328 20000000 29.0000 215.5790

10000 7.7355 15.6385 30000000 30.7069 256.0870
20000 8.7173 21.0034
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All the data generated in the experiments are available at

http://www.stat.washington.edu/jaw/RESEARCH/TABLES/table.list.html .

Figures 3 and 4 display the empirical means and variances of (2
√

n−Ln) plotted versus n. The
straight lines were obtained by varying the intercept and keeping the slopes fixed at 1/6 and 1/3
respectively. Figure 5 displays the empirical means of Ln/

√
n.
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2
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Figure 3: Empirical means of −(Ln − 2
√

n) and line with slope 1/6.
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Figure 4: Empirical variances of −(Ln − 2
√

n) and line with slope 1/3.
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Figure 5: Empirical means of Ln/
√

n.
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Figure 6: Empirical variances of n1/3(Ln/
√

n − 2).

11



Table 2. Estimated constants (Wellner, Odlyzko and Rains);
and theoretical results from Baik, Deift, Johansson (1999)

and Tracy and Widom (1994)

Estimated Estimated
n −E(Z) V ar(Z)

5 × 105 1.727 .794
1 × 107 1.746 .822
3 × 107 1.742 .824

fitted lines 1.768 .818
estimates (OR) 1.758 .819

theory (BDJ) 1.7711 .8132

6 History, part 4: Conjecture 1 is true!

In fact Conjecture 1 is true, as has been proved by Baik, Deift, and Johansson (1999).

Theorem 3. (Baik, Deift, and Johansson, 1999).

n1/3(Ln/
√

n − 2) →d Z

where

P (Z ≤ z) = exp
(
−

∫ ∞

z
(x − z)u2(x) dx

)
≡ F (z)

and the function u satisfies the Painlevé II equation

u′′(x) = xu(x) + 2u3(x)

subject to the boundary condition

u(x) ∼ −Ai(x) as x → ∞ .

By earlier results of Tracy and Widom (1994), the solution u exists, is unique,

u(x) = −Ai(x) + O

(
e−(4/3)x3/2

x1/4

)
x → ∞ ,

and

u(x) = −
√

|x|
2

(
1 + O(x−2)

)
as x → −∞ .

By numerical calculations, Tracy and Widom (1994) and Baik, Deift, and Johansson (1999) find
that for Z ∼ F , E(Z) = −1.7711... and V ar(Z) = 0.8132... . For discussions of further related
results, see Aldous and Diaconis (1999), Deift (2000), and the lecture notes of Tracy (2001).
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Figure 7: Histogram of 104 simulated values of n1/3(Ln/
√

n − 2) with n = 3 × 107.
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Figure 8: The Tracy-Widom distribution F together with Histogram of 104 simulated values of
n1/3(Ln/

√
n − 2) with n = 3 × 107.

7 Part 5: Combining the Monte-Carlo results of Section 3 with
Odlyzko and Rains

Given the Monte-Carlo results of Odlyzko and Rains (2000) posted at

http://www.dtc.umn.edu/~odlyzko/tables/index.html

it seems reasonable to combine with the results presented here in Section 3. Plots 10 - 13 below
parallel the plots 3-6 in Section 3, but with the mean and variance summaries from the experiments
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of Odlyzko and Rains (2000) added. Note that all the black dots (Wellner) are based on 104 Monte-
Carlo replications; the red dots (Odlyzko-Rains) are based on 107 replications for n = 104, 6× 105

replications for n = 105, 105 replications for n = 106 and n = 107, 104 replications for n = 108,
2 × 103 replications for n = 109, and 4 × 103 replications for n = 1010.

10000 100000. 1. ∂ 106 1. ∂ 107 1. ∂ 108 1. ∂ 109 1. ∂ 1010

10

15

20

30

50

70

Figure 9: Empirical means of (2
√

n − Ln) and line with slope 1/6.
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Figure 10: Empirical variances of (2
√

n − Ln) and line with slope 1/3.
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Figure 11: Empirical means of Ln/
√

n.
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Figure 12: Empirical variances of n1/3(Ln/
√

n − 2).
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Figure 13: Empirical means of n1/3(2 − Ln/
√

n).
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