Nemirovski’s inequality revisited: some comparisons

Jon A. Wellner

University of Washington

Nemirovski’s inequality revisited: some comparisons — p. 1/29



* joint work with
Lutz Dimbgen, Sara van de Geer, and Mark Veraar

* Talk at meeting on

Advances in Stochastic Inequalities and their Applications
BIRS, Banff, Alberta, 7-12 June 2009

* Email: jaw@stat.washington.edu
http: //www.stat.washington.edu/jaw/jaw.research.html|

Nemirovski’s inequality revisited: some comparisons — p. 2/29



Outline

* |ntroduction:
Bounds for sums of independent random elements

Nemirovski’s inequality revisited: some comparisons — p. 3/29



Outline

* |ntroduction:
Bounds for sums of independent random elements

* Nemirovski’s inequality

Nemirovski’s inequality revisited: some comparisons — p. 3/29



Qutline

* |ntroduction:
Bounds for sums of independent random elements

* Nemirovski’s inequality

* Proofs of Nemirovski’s inequality:
° Via deterministic inequalities for norms
° Via probabilistic methods for Banach spaces

° Via truncation and Bernstein’s inequality
(empirical process methods).

Nemirovski’s inequality revisited: some compar

isons — p. 3/29



Qutline

* |ntroduction:
Bounds for sums of independent random elements

* Nemirovski’s inequality

* Proofs of Nemirovski’s inequality:
° Via deterministic inequalities for norms
° Via probabilistic methods for Banach spaces
° Via truncation and Bernstein’s inequality
(empirical process methods).

* Comparisons in three settings

Nemirovski’s inequality revisited: some comparisons — p. 3/29



Qutline

* |ntroduction:
Bounds for sums of independent random elements

* Nemirovski’s inequality

* Proofs of Nemirovski’s inequality:
° Via deterministic inequalities for norms
° Via probabilistic methods for Banach spaces
° Via truncation and Bernstein’s inequality
(empirical process methods).
* Comparisons in three settings

* Problems and further issues

Nemirovski’s inequality revisited: some comparisons — p. 3/29



1. Introduction

* Let X4,...,X,, be independent random variables with
EX? < 00, S, = >, X;. Then

Var(S Z Var(X (1)

° If E(X;) =0for1 <i<n,then (1) becomes

ES? = Z EX?. 2)

* If Xq1,...,X, are independent with values in a Hilbert space
H with inner product (-, -), and have EX; = 0 and

E||X;||* < oo, then

E|S.l? =) El Xl 3)
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* What if the X;’s are independent with values in a (real)
Banach space (B, || - ||)? Let X4, ..., X, be independent
random vectors with values in B with £X; = 0 and
E||X;||* < co. Let S, = 31" | X;. We want inequalities of
the form

E|Su|* < K ) E| X (4)
1=1

for some constant K depending only on (B, || - ||).

* Of special interest: (B, || - ||) = ¢¢ = (R, || - ||,) for r € [1, o0]
where

[ d 1/r
(ijl \a:j\r) if 1 <r < oo,

] maxi<;<d ‘ZIZJ‘ If r = 0.

]l =

Nemirovski’s inequality revisited: some comparisons — p. 5/29



2. Nemirovski’s inequality

Theorem 1. (Nemirovski’s inequality)
Let X1,..., X,, be independent random vectors in R?, d > 3, with
EX; =0and E|X;||3 < oco. Then for every r € [2, ]

E|Y " X||2 < Enem(d,r) > B|| X2
1=1 1=1

where || - ||, is the ¢, norm, |||, = {3°¢ |z;|"}!/", and where

[ dl_Q/T, d<T7 A
Knem(d,r) = infyepnrr(q — 1)d¥ 74" { <r—1, foralld »
. < 2elogd—e, d>3

< min{r —1,2elogd — e}.
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Corollary 1. (r = oo version of Nemirovski’s inequality:)
Under the assumptions of Theorem 1

EHZX H < (2elogd — e) ZEHX 12,
1=1

where || - ||« iS the l norm, ||z||cc = max{|z;|: 1 < j < d}.

Nemirovski’s inequality revisited: some comparisons — p. 7/29



3. Three Proofs of Nemirovski’s inequality

Proof 1: via deterministic inequalities for norms:
For given r € [2, c0) consider the map V,. from R? to R defined by

Vi (@) = [lz]7.

Then V.. is continuously differentiable with Lipschitz continuous
derivative VV,.. Furthermore

Vi(x+y) < Vi(z) +y'VVi(z) + (r — 1)V (y) (5)

for an absolute constant C. Thus, writing
D1 Xi =D ' X; + X,,, it follows from (5) that

ZX ) < Vio( ZX )+ X! VV,.( ZX (r — DVo(X,).




Taking expectations across this inequality and using X,, and
S "~ ! X; independent and E(X,,) = 0 yields

o) < () o ()

+ (r — 1)EV,.(X,)
EV, (Zx> + (r—1)E|X.|>

By recursion and the definition of V,.(x) this yields

EI) X|2<(r—1)) E|Xi|? (6)
1=1 1=1

so the claim holds with » — 1 rather than Ky, (r, d).
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To show that we can replace » — 1 by Kye,(d, ) we use the
following elementary inequalities: for 1 < g <r

el < llellg < dHO=0 2],

for all z € R (by Holder’s inequality). Thus for 2 < ¢ < r < o
with ¢ < oo,

E|S.|7 < ElSal; <(g—1)>_ ElIXll
1=1
< (q- DY EIX
1=1
This implies

E|Sull? < Enem(d,7) Y Ell Xl
1=1
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where

KNem(da 7“) — infq€[2,’r]ﬂR(q - 1)d2/q—2/r

[ gl-2/r
. <r-—1,
| < Z2elogd —e,

d<T
for all d
d>3

\

%

/

since q = 2 achieves the inf
taking g = r
taking ¢ = 2logd.
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Proof 2: via probabilistic methods for Banach spaces:

Let {¢;} be a sequence of independent Rademacher random
variables, and let 1 < p < co. A Banach space B with norm || -||
IS said to be of (Rademacher) type p if there is a constant 7T,
such that for all finite sequences {z;} in B,

n n
Bl ) el <TDY il
i=1 i=1

Similarly, for 1 < ¢ < oo, B is of (Rademacher) cotype ¢ if there
is a constant C, such that for all finite sequences {z;} in B,

n n
Bl Y exl?=Cr7) [l
1=1 =1l

B = L,(u) with 1 <r < oo is type min{r, 2} and cotype
max{r, 2}.
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The following proposition is an elementary consequence of a
symmetrization inequality.
Proposition. If B is of type p > 1 with constant 7},, then

E||Sa|lP < (2T,)F ) Ell X"
1=1

Corollary. For 2 < r < oo the space L, (u) is of type 2 with
constant 7, = B, where

B _ouz (L 1D/2\
VT
IS the optimal constant in Khintchine’s inequality due to

Haagerup (1981). Hence for X1,...,X,, independentin L, (u)
with EX; = 0 and E|| X;||? < oo,

BIS 2 < 4B, S B X2

1=1
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The Banach space /¢ can be viewed as L, (1) with ;. counting

measure on {1, ...
r < OQ.

,d}, so the Corollary covers the case /¢ with

What about /¢ = (R%, || - || )? This case requires a separate

treatment. Here is one basic result:

Lemma 2.1. /¢_ is type 2 with constant T5(¢%))
This yields the following Nemirovski-type inequality:

Corollary 2.1. For (B, || - ||) = ¢%., inequality (4) holds with

K = KType2(d7 OO) = 810g(2d).

< /2log(2d).

Proof. For 1 <i < nletz; = (z4)J_, be fixed vectors in R?, and

set

S = Zeixi, Sj — jth

— component of S
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Then
2 _ 2 ~ 112
v 1rélja§dej — Zzzl HxZHooa
and it suffices to show that
E||S|% < 2log(2d)v*.
Define h : [0,00) — [1,00) by h(t) = cosh(v/t). Then h is one

-to-one, increasing, and convex. Thus h=! : [1,00) — [0, 00) is
Increasing, concave, and

2
h(s) = (log(s + (s> = 1)M/2))” < (log(25))*,
Thus by Jensen’s inequality, for arbitrary ¢t > 0,

E|S|% t=*Eh™ (cosh([[tS]|0)) < t*h ™ (E cosh([|tS]|0))

< 72 (log(2E cosh(|[tS]|s0)))* . (7)
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Furthermore,

Ecosh(||tS||c) = E max cosh(tS;)
1<5<d

”M&

< dexp(tv?/2)
by using the exponential moment bound
FE exp (tZ:cijei> < exp(t2vj2-/2) < exp(t*v?/2)
1=1

which is the basis of Hoeffding’s inequality

n 2
P >z | < 2exp _z_2 , 2> 0.
i=1 2”3’

..67:

E cosh(tS;)
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Combining (8) with (7) yields

2\ 2
BISIE, < ¢ (og(zdenp(o?/2))* = (220 4 1)

= 2log(2d)v?

by choosing t = \/2log(2d) /v2. ]

Refinements: Hoeffding’s inequality

2
P >z <2exp(—?),z>0

for constants a4, ..., a, with >_7 a? = 1 has been refined by
Pinelis (1994, 2007): for a constant K with 3.18 < K < 3.22,

n

E ;€4

1=1

> z) <2K(1—-®(z)), z>0.
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Pinelis’s inequality can be used to obtain refined bounds for
To(¢4)). To state the result, let

¢z =F max Z?

1<j<d ’

where Z;,...,Z; are i.i.d. N(0,1).

Proposition: The constants c; and T»(¢%.) satisfy the following

iInequalities:

2logd + hi(d) < c5 <

where ...

9

2log d,

| 2logd + hs(d),

[ T2(0%) < 2logd + ho(d), d>1,
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ho(d) = 2log(c/2) —log(2log(dc/2))
8v/2log(cd/2)

_|_

cd cd
3\/2 log (2\/210g(cd/2)> T \/2 log (2\/2 10g(cd/2)> €

ha(d) = —log(w) — log(log(cd))

log(2log(cd)) log(2log(cd)) 4
3\/1 ~ 2log(cd) + \/1 2 log(cd) —I_ log(cd)

where hsy(d) < 3, ho(d) < 0 for d > 4.13795 x 109, h3(d) < 0 for
d > 14, and h;(d) ~ —loglogd as d — oo for j = 1,2, 3.

Y
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Proof 3: via truncation and Bernstein’s inequality
Let Y7,...,Y,, be independent random variables with mean zero
satisfying |Y;| < k. Then the usual form of Bernstein’s inequality

is as follows: for v* = > Var(Y;),

( Z _a:) - exp( 2(v2+/<;:1:/3)) .

1=1
We will not use this inequality itself, but rather an exponential
moment inequality which is implicit in its proof.

Lemma 3.1 For L > 0 define e(L) = exp(1/L) —1—1/L. LetY be

a random variable with mean zero and variance o2 such that
Y| < k. Then for any L > 0,

Y e(L e(L
Eexp(—L)gH”g )Sexp<a e )).
K K
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This exponential moment inequality yield the following second

moment bound for sums of random vectors in R¢ with bounded
components:

Lemma 3.2 Suppose that X; = (X ;){_, satisfies || X;||o, < x and
suppose that I' > max;<;j<q4> .. Var(X; ;). Thenforany L > 0

T'Le(L)

VE|Sn|% < rLlog(2d) +

Now consider again our general random vectors X; € R? with
mean zero and E|| X;||2, < co. We decompose these as

X; = XZ.(C”) + XZ.(b) via truncation with

X% = X1{||Xillo < 5o}, X" = Xil{[| Xilloo > o}
where kg is a constant to be specified later.
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Then S,, = A,, + B,, for centered random sums

n n

4, = (XY - EX®), B, =Y (x - ExX]).

(2

The sum A,, involves centered random vectors in [—2xq, 2%
and will be treated by means of Lemma 3.2. The sum B,, will be
treated directly. Choosing the truncation level k, and the
parameter L carefully yields the following theorem.

Theorem 3.1 In the case (B, || - ||) = ¢¢ for some d > 1, inequality
(4) holds with

K = Kpyrpern(d,0) = (1 + 3.46+/1og(2d))
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If the random vectors X; are all symmetric about 0, then (4)
holds with

K = K7™ (4, 00) = (14 2.9y/log(2d))?.
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4. Comparisons in three settings

Three different setting in which to compare the methods:

* General case:
The X;’s are independent with E||X;||?2, < cofor1 <i < n.
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4. Comparisons in three settings

Three different setting in which to compare the methods:
* General case:
The X;’s are independent with E||X;||?2, < cofor1 <i < n.
* Centered case: In addition, EX; =0forall 1 <i <n.

* Symmetric case: In addition, X; is symmetrically distributed
around 0 for 1 < i < n.

General Centered Symmetric
Nem Selogd — 4e 2elogd — e 2elogd — e
Type-2 8log(2d) 8log(2d) 2log(2d)

8logd + 4ha(d) 8logd + 4ha(d) 2logd + ha(d)

TrBern ||(1 + 3.461/log(2d))”|(1 + 3.461/log(2d))”| (1 + 2.91/log(2d) )

Table 4: The different constants K (d, co).
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Define

K* = lim K(d,oo).
d—oo logd
General Centered Symmetric
Nem 8e = 21.7463 2¢ =5.4366 | 2e = 5.4366
Type-2 8.0 8.0 2.0
TrBern || 3.46% = 11.9716 | 3.46% = 11.9716 | 2.9° = 8.41

Table 5: The different limits K.
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Figure 1: Comparison of K (d, oc) obtained via the
three proof methods: Medium dashing (bottom)
= Nemirovski; Small and tiny dashing (middle) =
type 2 inequalities; Large dashing (top) = trunca-

tion-and Bernsteininequality ——+
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Full paper, to appear in the American Mathematical Monthly available
at:

* arXiv:math.ST/0807.2245
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