Nemirovski's inequality revisited: some comparisons

Jon A. Wellner
University of Washington

- joint work with

Lutz Dümbgen, Sara van de Geer, and Mark Veraar

- Talk at meeting on

Advances in Stochastic Inequalities and their Applications BIRS, Banff, Alberta, 7-12 June 2009

- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.htm/

Outline

- Introduction:

Bounds for sums of independent random elements

Outline

- Introduction:

Bounds for sums of independent random elements

- Nemirovski's inequality

Outline

- Introduction:

Bounds for sums of independent random elements

- Nemirovski's inequality
- Proofs of Nemirovski's inequality:
- Via deterministic inequalities for norms
- Via probabilistic methods for Banach spaces
- Via truncation and Bernstein's inequality (empirical process methods).

Outline

- Introduction:

Bounds for sums of independent random elements

- Nemirovski's inequality
- Proofs of Nemirovski's inequality:
- Via deterministic inequalities for norms
- Via probabilistic methods for Banach spaces
- Via truncation and Bernstein's inequality (empirical process methods).
- Comparisons in three settings

Outline

- Introduction:

Bounds for sums of independent random elements

- Nemirovski's inequality
- Proofs of Nemirovski's inequality:
- Via deterministic inequalities for norms
- Via probabilistic methods for Banach spaces
- Via truncation and Bernstein's inequality (empirical process methods).
- Comparisons in three settings
- Problems and further issues

1. Introduction

- Let X_{1}, \ldots, X_{n} be independent random variables with $E X_{i}^{2}<\infty, S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\begin{equation*}
\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) . \tag{1}
\end{equation*}
$$

- If $E\left(X_{i}\right)=0$ for $1 \leq i \leq n$, then (1) becomes

$$
\begin{equation*}
E S_{n}^{2}=\sum_{i=1}^{n} E X_{i}^{2} . \tag{2}
\end{equation*}
$$

- If X_{1}, \ldots, X_{n} are independent with values in a Hilbert space \mathbb{H} with inner product $\langle\cdot, \cdot\rangle$, and have $E X_{i}=0$ and $E\left\|X_{i}\right\|^{2}<\infty$, then

$$
\begin{equation*}
E\left\|S_{n}\right\|^{2}=\sum_{i=1}^{n} E\left\|X_{i}\right\|^{2} . \tag{3}
\end{equation*}
$$

- What if the X_{i} 's are independent with values in a (real) Banach space $(\mathbb{B},\|\cdot\|)$? Let X_{1}, \ldots, X_{n} be independent random vectors with values in \mathbb{B} with $E X_{i}=0$ and $E\left\|X_{i}\right\|^{2}<\infty$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. We want inequalities of the form

$$
\begin{equation*}
E\left\|S_{n}\right\|^{2} \leq K \sum_{i=1}^{n} E\left\|X_{i}\right\|^{2} \tag{4}
\end{equation*}
$$

for some constant K depending only on $(\mathbb{B},\|\cdot\|)$.

- Of special interest: $(\mathbb{B},\|\cdot\|)=\ell_{r}^{d} \equiv\left(\mathbb{R}^{d},\|\cdot\|_{r}\right)$ for $r \in[1, \infty]$ where

$$
\|x\|_{r} \equiv \begin{cases}\left(\sum_{j=1}^{d}\left|x_{j}\right|^{r}\right)^{1 / r} & \text { if } 1 \leq r<\infty \\ \max _{1 \leq j \leq d}\left|x_{j}\right| & \text { if } r=\infty\end{cases}
$$

2. Nemirovski's inequality

Theorem 1. (Nemirovski's inequality)
Let X_{1}, \ldots, X_{n} be independent random vectors in $\mathbb{R}^{d}, d \geq 3$, with $E X_{i}=0$ and $E\left\|X_{i}\right\|_{2}^{2}<\infty$. Then for every $r \in[2, \infty]$

$$
E\left\|\sum_{i=1}^{n} X_{i}\right\|_{r}^{2} \leq K_{N e m}(d, r) \sum_{i=1}^{n} E\left\|X_{i}\right\|_{r}^{2}
$$

where $\|\cdot\|_{r}$ is the ℓ_{r} norm, $\|x\|_{r} \equiv\left\{\sum_{1}^{d}\left|x_{j}\right|^{r}\right\}^{1 / r}$, and where
$K_{\text {Nem }}(d, r)=\inf _{q \in[2, r] \cap \mathbb{R}}(q-1) d^{2 / q-2 / r}\left\{\begin{array}{ll}=d^{1-2 / r}, & d \leq 7 \\ \leq r-1, & \text { for all } d \\ \leq 2 e \log d-e, & d \geq 3\end{array}\right\}$

$$
\leq \min \{r-1,2 e \log d-e\} .
$$

Corollary 1. ($r=\infty$ version of Nemirovski's inequality:) Under the assumptions of Theorem 1

$$
E\left\|\sum_{i=1}^{n} X_{i}\right\|_{\infty}^{2} \leq(2 e \log d-e) \sum_{i=1}^{n} E\left\|X_{i}\right\|_{\infty}^{2}
$$

where $\|\cdot\|_{\infty}$ is the ℓ_{∞} norm, $\|x\|_{\infty} \equiv \max \left\{\left|x_{j}\right|: 1 \leq j \leq d\right\}$.
3. Three Proofs of Nemirovski's inequality

Proof 1: via deterministic inequalities for norms:
For given $r \in[2, \infty)$ consider the map V_{r} from \mathbb{R}^{d} to \mathbb{R} defined by

$$
V_{r}(x) \equiv\|x\|_{r}^{2}
$$

Then V_{r} is continuously differentiable with Lipschitz continuous derivative ∇V_{r}. Furthermore

$$
\begin{equation*}
V_{r}(x+y) \leq V_{r}(x)+y^{\prime} \nabla V_{r}(x)+(r-1) V_{r}(y) \tag{5}
\end{equation*}
$$

for an absolute constant C. Thus, writing
$\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n-1} X_{i}+X_{n}$, it follows from (5) that

$$
V_{r}\left(\sum_{i=1}^{n} X_{i}\right) \leq V_{r}\left(\sum_{i=1}^{n-1} X_{i}\right)+X_{n}^{\prime} \nabla V_{r}\left(\sum_{i=1}^{n-1} X_{i}\right)+(r-1) V_{r}\left(X_{n}\right)
$$

Taking expectations across this inequality and using X_{n} and $\sum_{i=1}^{n-1} X_{i}$ independent and $E\left(X_{n}\right)=0$ yields

$$
\begin{aligned}
E V_{r}\left(\sum_{i=1}^{n} X_{i}\right) \leq & E\left\{V_{r}\left(\sum_{i=1}^{n-1} X_{i}\right)+X_{n}^{\prime} \nabla V_{r}\left(\sum_{i=1}^{n-1} X_{i}\right)\right\} \\
& +(r-1) E V_{r}\left(X_{n}\right) \\
= & E V_{r}\left(\sum_{i=1}^{n-1} X_{i}\right)+(r-1) E\left\|X_{n}\right\|_{r}^{2} .
\end{aligned}
$$

By recursion and the definition of $V_{r}(x)$ this yields

$$
\begin{equation*}
E\left\|\sum_{i=1}^{n} X_{i}\right\|_{r}^{2} \leq(r-1) \sum_{i=1}^{n} E\left\|X_{i}\right\|_{r}^{2}, \tag{6}
\end{equation*}
$$

so the claim holds with $r-1$ rather than $K_{N e m}(r, d)$.

To show that we can replace $r-1$ by $K_{N e m}(d, r)$ we use the following elementary inequalities: for $1 \leq q \leq r$

$$
\|x\|_{r} \leq\|x\|_{q} \leq d^{(1 / q)-(1 / r)}\|x\|_{r}
$$

for all $x \in \mathbb{R}^{d}$ (by Hölder's inequality). Thus for $2 \leq q \leq r \leq \infty$ with $q<\infty$,

$$
\begin{aligned}
E\left\|S_{n}\right\|_{r}^{2} & \leq E\left\|S_{n}\right\|_{q}^{2} \leq(q-1) \sum_{i=1}^{n} E\left\|X_{i}\right\|_{q}^{2} \\
& \leq(q-1) d^{2 / q-2 / r} \sum_{i=1}^{n} E\left\|X_{i}\right\|_{r}^{2} .
\end{aligned}
$$

This implies

$$
E\left\|S_{n}\right\|_{r}^{2} \leq K_{\text {Nem }}(d, r) \sum_{i=1}^{n} E\left\|X_{i}\right\|_{r}^{2}
$$

where

$$
\begin{aligned}
& K_{\text {Nem }}(d, r)=\inf _{q \in[2, r] \cap \mathbb{R}}(q-1) d^{2 / q-2 / r} \\
& \left\{\begin{array}{ll}
=d^{1-2 / r}, & d \leq 7 \\
\leq r-1, & \text { for all } d \\
\leq 2 e \log d-e, & d \geq 3
\end{array}\right\} \quad \begin{array}{l}
\text { since } q=2 \text { achieves the inf } \\
\text { taking } q=r \\
\text { taking } q=2 \log d .
\end{array}
\end{aligned}
$$

Proof 2: via probabilistic methods for Banach spaces:

Let $\left\{\epsilon_{i}\right\}$ be a sequence of independent Rademacher random variables, and let $1 \leq p<\infty$. A Banach space \mathbb{B} with norm $\|\cdot\|$ is said to be of (Rademacher) type p if there is a constant T_{p} such that for all finite sequences $\left\{x_{i}\right\}$ in \mathbb{B},

$$
E\left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|^{p} \leq T_{p}^{p} \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}
$$

Similarly, for $1 \leq q<\infty, \mathbb{B}$ is of (Rademacher) cotype q if there is a constant C_{q} such that for all finite sequences $\left\{x_{i}\right\}$ in \mathbb{B},

$$
E\left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|^{q} \geq C_{q}^{-q} \sum_{i=1}^{n}\left\|x_{i}\right\|^{q}
$$

$\mathbb{B}=L_{r}(\mu)$ with $1 \leq r<\infty$ is type $\min \{r, 2\}$ and cotype $\max \{r, 2\}$.

The following proposition is an elementary consequence of a symmetrization inequality.
Proposition. If \mathbb{B} is of type $p \geq 1$ with constant T_{p}, then

$$
E\left\|S_{n}\right\|^{p} \leq\left(2 T_{p}\right)^{p} \sum_{i=1}^{n} E\left\|X_{i}\right\|^{p} .
$$

Corollary. For $2 \leq r<\infty$ the space $L_{r}(\mu)$ is of type 2 with constant $T_{2}=B_{r}$ where

$$
B_{r}=2^{1 / 2}\left(\frac{\Gamma((r+1) / 2)}{\sqrt{\pi}}\right)^{1 / r}
$$

is the optimal constant in Khintchine's inequality due to Haagerup (1981). Hence for X_{1}, \ldots, X_{n} independent in $L_{r}(\mu)$ with $E X_{i}=0$ and $E\left\|X_{i}\right\|_{r}^{2}<\infty$,

$$
E\left\|S_{n}\right\|_{r}^{2} \leq 4 B_{r} \sum_{i=1}^{n} E\left\|X_{i}\right\|_{r}^{2}
$$

The Banach space ℓ_{r}^{d} can be viewed as $L_{r}(\mu)$ with μ counting measure on $\{1, \ldots, d\}$, so the Corollary covers the case ℓ_{r}^{d} with $r<\infty$.

What about $\ell_{\infty}^{d}=\left(\mathbb{R}^{d},\|\cdot\|_{\infty}\right)$? This case requires a separate treatment. Here is one basic result:

Lemma 2.1. ℓ_{∞}^{d} is type 2 with constant $T_{2}\left(\ell_{\infty}^{d}\right) \leq \sqrt{2 \log (2 d)}$.
This yields the following Nemirovski-type inequality:
Corollary 2.1. For $(\mathbb{B},\|\cdot\|)=\ell_{\infty}^{d}$, inequality (4) holds with $K \equiv K_{\text {Type } 2}(d, \infty)=8 \log (2 d)$.

Proof. For $1 \leq i \leq n$ let $x_{i}=\left(x_{i j}\right)_{j=1}^{d}$ be fixed vectors in \mathbb{R}^{d}, and set

$$
S \equiv \sum_{i=1}^{n} \epsilon_{i} x_{i}, \quad S_{j}=j^{\text {th }}-\text { component of } S
$$

so $\operatorname{Var}\left(S_{j}\right) \equiv v_{j}^{2}=\sum_{i=1}^{n} x_{i j}^{2}$.

Then

$$
v^{2} \equiv \max _{1 \leq j \leq d} v_{j}^{2} \leq \sum_{i=1}^{n}\left\|x_{i}\right\|_{\infty}^{2}
$$

and it suffices to show that

$$
E\|S\|_{\infty}^{2} \leq 2 \log (2 d) v^{2}
$$

Define $h:[0, \infty) \rightarrow[1, \infty)$ by $h(t)=\cosh (\sqrt{t})$. Then h is one -to-one, increasing, and convex. Thus $h^{-1}:[1, \infty) \rightarrow[0, \infty)$ is increasing, concave, and

$$
h^{-1}(s)=\left(\log \left(s+\left(s^{2}-1\right)^{1 / 2}\right)\right)^{2} \leq(\log (2 s))^{2}
$$

Thus by Jensen's inequality, for arbitrary $t>0$,

$$
\begin{align*}
E\|S\|_{\infty}^{2} & =t^{-2} E h^{-1}\left(\cosh \left(\|t S\|_{\infty}\right)\right) \leq t^{-2} h^{-1}\left(E \cosh \left(\|t S\|_{\infty}\right)\right) \\
& \leq t^{-2}\left(\log \left(2 E \cosh \left(\|t S\|_{\infty}\right)\right)\right)^{2} \tag{7}
\end{align*}
$$

Furthermore,

$$
\begin{align*}
E \cosh \left(\|t S\|_{\infty}\right) & =E \max _{1 \leq j \leq d} \cosh \left(t S_{j}\right) \leq \sum_{j=1}^{d} E \cosh \left(t S_{j}\right) \\
& \leq d \exp \left(t^{2} v^{2} / 2\right) \tag{8}
\end{align*}
$$

by using the exponential moment bound

$$
E \exp \left(t \sum_{i=1}^{n} x_{i j} \epsilon_{i}\right) \leq \exp \left(t^{2} v_{j}^{2} / 2\right) \leq \exp \left(t^{2} v^{2} / 2\right)
$$

which is the basis of Hoeffding's inequality

$$
P\left(\left|\sum_{i=1}^{n} x_{i j} \epsilon_{i}\right| \geq z\right) \leq 2 \exp \left(-\frac{z^{2}}{2 v_{j}^{2}}\right), \quad z>0
$$

Combining (8) with (7) yields

$$
\begin{aligned}
E\|S\|_{\infty}^{2} & \leq t^{-2}\left(\log \left(2 d \exp \left(t^{2} v^{2} / 2\right)\right)\right)^{2}=\left(\frac{\log (2 d)}{t}+\frac{t v^{2}}{2}\right)^{2} \\
& =2 \log (2 d) v^{2}
\end{aligned}
$$

by choosing $t=\sqrt{2 \log (2 d) / v^{2}}$.
Refinements: Hoeffding's inequality

$$
P\left(\left|\sum_{i=1}^{n} a_{i} \epsilon_{i}\right| \geq z\right) \leq 2 \exp \left(-\frac{z^{2}}{2}\right), \quad z>0
$$

for constants a_{1}, \ldots, a_{n} with $\sum_{1}^{n} a_{i}^{2}=1$ has been refined by Pinelis (1994, 2007): for a constant K with $3.18 \leq K \leq 3.22$,

$$
P\left(\left|\sum_{i=1}^{n} a_{i} \epsilon_{i}\right| \geq z\right) \leq 2 K(1-\Phi(z)), \quad z>0
$$

Pinelis's inequality can be used to obtain refined bounds for $T_{2}\left(\ell_{\infty}^{d}\right)$. To state the result, let

$$
c_{d}^{2} \equiv E \max _{1 \leq j \leq d} Z_{j}^{2}
$$

where Z_{1}, \ldots, Z_{d} are i.i.d. $N(0,1)$.
Proposition: The constants c_{d} and $T_{2}\left(\ell_{\infty}^{d}\right)$ satisfy the following inequalities:
$2 \log d+h_{1}(d) \leq c_{d}^{2} \leq \begin{cases}T_{2}^{2}\left(\ell_{\infty}^{d}\right) \leq 2 \log d+h_{2}(d), & d \geq 1, \\ 2 \log d, & d \geq 3, \\ 2 \log d+h_{3}(d), & d \geq 1,\end{cases}$
where ...

$$
\begin{aligned}
& \begin{array}{l}
h_{2}(d) \equiv 2 \log (c / 2)-\log (2 \log (d c / 2)) \\
\\
+\frac{8 \sqrt{2 \log (c d / 2)}}{3 \sqrt{2 \log \left(\frac{c d}{2 \sqrt{2 \log (c d / 2)}}\right)}+\sqrt{2 \log \left(\frac{c d}{2 \sqrt{2 \log (c d / 2)}}\right)+8}}, \\
\begin{aligned}
h_{3}(d) \equiv-\log (\pi)-\log (\log (c d))
\end{aligned} \\
\\
+\frac{8}{3 \sqrt{1-\frac{\log (2 \log (c d))}{2 \log (c d)}+\sqrt{1-\frac{\log (2 \log (c d))}{2 \log (c d)}+\frac{4}{\log (c d)}}}} \\
\text { where } h_{2}(d) \leq 3, h_{2}(d)<0 \text { for } d>4.13795 \times 10^{10}, h_{3}(d)<0 \text { for }
\end{array} \\
& d \geq 14 \text {, and } h_{j}(d) \sim-\log \log d \text { as } d \rightarrow \infty \text { for } j=1,2,3 .
\end{aligned}
$$

Proof 3: via truncation and Bernstein's inequality

Let Y_{1}, \ldots, Y_{n} be independent random variables with mean zero satisfying $\left|Y_{i}\right| \leq \kappa$. Then the usual form of Bernstein's inequality is as follows: for $v^{2}=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)$,

$$
P\left(\left|\sum_{i=1}^{n} Y_{i}\right| \geq x\right) \leq 2 \exp \left(-\frac{x^{2}}{2\left(v^{2}+\kappa x / 3\right)}\right), \quad x>0 .
$$

We will not use this inequality itself, but rather an exponential moment inequality which is implicit in its proof.
Lemma 3.1 For $L>0$ define $e(L) \equiv \exp (1 / L)-1-1 / L$. Let Y be a random variable with mean zero and variance σ^{2} such that $|Y| \leq \kappa$. Then for any $L>0$,

$$
E \exp \left(\frac{Y}{\kappa L}\right) \leq 1+\frac{\sigma^{2} e(L)}{\kappa^{2}} \leq \exp \left(\frac{\sigma^{2} e(L)}{\kappa^{2}}\right)
$$

This exponential moment inequality yield the following second moment bound for sums of random vectors in \mathbb{R}^{d} with bounded components:
Lemma 3.2 Suppose that $X_{i}=\left(X_{i, j}\right)_{j=1}^{d}$ satisfies $\left\|X_{i}\right\|_{\infty} \leq \kappa$ and suppose that $\Gamma \geq \max _{1 \leq j \leq d} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i, j}\right)$. Then for any $L>0$

$$
\sqrt{E\left\|S_{n}\right\|_{\infty}^{2}} \leq \kappa L \log (2 d)+\frac{\Gamma L e(L)}{\kappa}
$$

Now consider again our general random vectors $X_{i} \in \mathbb{R}^{d}$ with mean zero and $E\left\|X_{i}\right\|_{\infty}^{2}<\infty$. We decompose these as
$X_{i}=X_{i}^{(a)}+X_{i}^{(b)}$ via truncation with

$$
X_{i}^{(a)} \equiv X_{i} 1\left\{\left\|X_{i}\right\|_{\infty} \leq \kappa_{0}\right\}, \quad X_{i}^{(b)} \equiv X_{i} 1\left\{\left\|X_{i}\right\|_{\infty}>\kappa_{0}\right\}
$$

where κ_{0} is a constant to be specified later.

Then $S_{n}=A_{n}+B_{n}$ for centered random sums

$$
A_{n} \equiv \sum_{i=1}^{n}\left(X_{i}^{(a)}-E X_{i}^{(a)}\right), \quad B_{n} \equiv \sum_{i=1}^{n}\left(X_{i}^{(b)}-E X_{i}^{(b)}\right)
$$

The sum A_{n} involves centered random vectors in $\left[-2 \kappa_{0}, 2 \kappa_{0}\right]^{d}$ and will be treated by means of Lemma 3.2. The sum B_{n} will be treated directly. Choosing the truncation level κ_{0} and the parameter L carefully yields the following theorem.

Theorem 3.1 In the case $(\mathbb{B},\|\cdot\|)=\ell_{\infty}^{d}$ for some $d \geq 1$, inequality (4) holds with

$$
K=K_{T r B e r n}(d, \infty) \equiv(1+3.46 \sqrt{\log (2 d)})^{2}
$$

If the random vectors X_{i} are all symmetric about 0 , then (4) holds with

$$
K=K_{\text {TrBern }}^{(\text {symm })}(d, \infty) \equiv(1+2.9 \sqrt{\log (2 d)})^{2} .
$$

4. Comparisons in three settings

Three different setting in which to compare the methods:

- General case:

The X_{i} 's are independent with $E\left\|X_{i}\right\|_{\infty}^{2}<\infty$ for $1 \leq i \leq n$.

4. Comparisons in three settings

Three different setting in which to compare the methods:

- General case: The X_{i} 's are independent with $E\left\|X_{i}\right\|_{\infty}^{2}<\infty$ for $1 \leq i \leq n$.
- Centered case: In addition, $E X_{i}=0$ for all $1 \leq i \leq n$.

4. Comparisons in three settings

Three different setting in which to compare the methods:

- General case: The X_{i} 's are independent with $E\left\|X_{i}\right\|_{\infty}^{2}<\infty$ for $1 \leq i \leq n$.
- Centered case: In addition, $E X_{i}=0$ for all $1 \leq i \leq n$.
- Symmetric case: In addition, X_{i} is symmetrically distributed around 0 for $1 \leq i \leq n$.

4. Comparisons in three settings

Three different setting in which to compare the methods:

- General case:

The X_{i} 's are independent with $E\left\|X_{i}\right\|_{\infty}^{2}<\infty$ for $1 \leq i \leq n$.

- Centered case: In addition, $E X_{i}=0$ for all $1 \leq i \leq n$.
- Symmetric case: In addition, X_{i} is symmetrically distributed around 0 for $1 \leq i \leq n$.

	General	Centered	Symmetric
Nem	$8 e \log d-4 e$	$2 e \log d-e$	$2 e \log d-e$
Type-2	$8 \log (2 d)$	$8 \log (2 d)$	$2 \log (2 d)$
	$8 \log d+4 h_{2}(d)$	$8 \log d+4 h_{2}(d)$	$2 \log d+h_{2}(d)$
TrBern	$(1+3.46 \sqrt{\log (2 d)})^{2}$	$(1+3.46 \sqrt{\log (2 d)})^{2}$	$(1+2.9 \sqrt{\log (2 d)})^{2}$

Table 4: The different constants $K(d, \infty)$.

Define

$$
K^{*} \equiv \lim _{d \rightarrow \infty} \frac{K(d, \infty)}{\log d} .
$$

	General	Centered	Symmetric
Nem	$8 e \doteq 21.7463$	$2 e \doteq \mathbf{5 . 4 3 6 6}$	$2 e \doteq 5.4366$
Type-2	$\mathbf{8 . 0}$	8.0	$\mathbf{2 . 0}$
TrBern	$3.46^{2}=11.9716$	$3.46^{2}=11.9716$	$2.9^{2}=8.41$

Table 5: The different limits K^{*}.

Figure 1: Comparison of $K(d, \infty)$ obtained via the three proof methods: Medium dashing (bottom) $=$ Nemirovski; Small and tiny dashing (middle) $=$ type 2 inequalities; Large dashing (top) $=$ truncation and Bernstein inequality

Full paper, to appear in the American Mathematical Monthly available at:

- arXiv:math.ST/0807.2245

