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Breslow Lecture

Alternative Titles:

• (Nearly) 50 years of the Cox model.

• Survival Analysis: Inference versus prediction?



Part I: Parameters defined by models (& estimators )

• A. Kullback - Leibler divergence and projections

• B. Questions / properties

• C. Four examples
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Part II: Extensions or enlargements of the Cox model.

• Parametric relative risk

• Semiparametric relative risk

• Nonparametric relative risk.

• Nonparametric
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Part III. Descriptive statistics (parameters) by design

• Bickel and Lehmann:

Descriptive Statistics for Nonparametric Models,

I (1975), II (1976), III (1976), IV - (1979).

• Buja, Brown, . . .: Models as Approximations I & II:

Statistical Science (2019) with discussions;

A Model-Free theory of parametric regression

• Followup(s) in survival analysis?

• Estimators that can be “plugged in”?

Bickel and Ritov (2003).
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Part I: Parameters defined by projection on

models

• Model misspecification: the basics

• Probability Model:

P ⊂M = all probability measures on (X ,A).

Often P = {Pθ : θ ∈ Θ} for some “parameter space” Θ.

• “true” P = the P that generated the data ≡ Q.

• Let K(Q,P ) be the Kullback-Leibler divergence between

Q ∈M and P ∈ P:

K(Q,P ) = EQlog
dQ

dP
= EQlog

q

p

where q = dQ/dµ, p = dP/dµ where µ dominates Q and P .
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Let

P (Q) ≡ Π(Q|P) ≡ argmin{K(Q,P ) : P ∈ P},
Pθ(Q) ≡ Π(Q|P) when P = {Pθ : θ ∈ Θ}.

This is called the Kullback-Leibler (or maximum likelihood)

projection of Q onto P, since at least heuristically,

θ̂n = argminθ∈ΘK(Pn, Pθ)

where Pn = n−1∑n
i=1 δXi is the empirical measure of X1, . . . , Xn.

This is the MLE considered as an “M- estimator”. Note that

K(Q,P ) = EQlog
dQ

dP
= EQlog

dQ

dµ
− EQlog

dP

dµ
,

so maximizing EQlogdP/dµ over P minimizes K(Q,P ) over P ∈ P.
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Assuming that Pθ has density pθ (w.r.t. µ, θ ∈ Θ ⊂ Rd) is

suitably differentiable w.r.t, θ, then we typically find that θ̂n is

characterized via a system of score equations:

0 = Pn ˙̀θ(X) =
1

n

n∑
i=1

˙̀θ(Xi).

where

˙̀θ(x) = ∇θlogpθ(x)

is the vector of scores. The corresponding (population) equa-

tions characterizing Π(Q|P) and θ(Q) = argminθ∈ΘK(Q,Pθ) are

simply

0 = Q ˙̀θ(X).

This is the “Z− estimator” view of the MLE and its correspond-

ing population version.

Breslow Lecture, Seattle, November 12, 2020 1.8



History: Building on Wald (1949)

• Peter Huber (1967) • R.H. Berk (1966, 1970)

• H. Akaike (1973) • van der Vaart & Kleijn (2006,2012)

• Halbert White (1982)

• Aad van der Vaart (1995)

• Valentin Patilea (2001) .

White (1982) writes:

If one does not assume that the probability model is

correctly specified, it is natural to ask what happens

to the properties of the maximum likelihood estimator.

Does it still converge to some limit asymptotically, and

does this limit have any meaning? . . .
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Questions: Π(Q|P) and θ(Q).

• 0. Do they exist for all Q ∈M large? Or for M large enough

to include Pn? Are they unique?

• 1. Is P̂n ≡ Π(Pn|P) computable?

• 2. Is the map Q 7→ Π(Q|P) continuous on M?

• 3. Is the map Q 7→ Π(Q|P) Lipschitz? Differentiable?

• 4. Are θ(Q) and/or P (Q) = Π(Q|P) interpretable?
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Four Examples:

• Example 1. P: Exponential distributions on R+. Θ = R+.

M = {Q on R+, Q(X) =
∫∞
0 xdQ(x) <∞}.

• Example 2. P: Weibull distributions on R+. Θ = R+× R+.

M = {Q on R+, Q(XlogX) <∞}.

• Example 3. P: log-concave distributions on Rd: dP/dµ =

p(x) = eθ(x) where θ is concave:

Θ = {θ : Rd → R, θ concave with
∫
eθdµ = 1}.

M = {Q on Rd : Q(‖X‖) <∞; Q(H) < 1 for all hyperplanes H}.

• Example 4. P: The (classical) Cox model for right

- censored survival data with covariates, (T,∆, Z) where

T = min{X,Y }, ∆ = 1[X≤Y ], X and Y are conditionally

independent given Z.
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Example 1. Here pθ(x) = θ−1exp(−x/θ), so

˙̀θ(x) = −
1

θ
+

x

θ2
= θ−2(x− θ),

so the solution of 0 = Q ˙̀θ(X) = θ−2(Q(X) − θ) is given by

θ(Q) = EQX = Q(X). Here the projection map θ(Q) is simply the

mean of Q, an easily interpretable parameter. This is connected

with the fact that the model P is an exponential family.
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Example 2. P = Weibull: Here θ = (α, β), the density is
pα,β(x) = (β/α)(x/α)β−1exp(−(x/α)β), and the resulting score
functions are

˙̀α(x) =
β

α

{(
x

α

)β
− 1

}

˙̀β(x) =
1

β

{
1− log

(
x

α

)β ((x
α

)β
− 1

)}
.

So the projection Pθ(Q) is given by θ(Q) = (α(Q), β(Q)) solving

0 = Q( ˙̀θ) =

(
Q ˙̀α
Q ˙̀β

)
.

Each fixed β > 0 the first equation can be solved explicitly:
αβ(Q) = {Q(Xβ)}1/β. Substitution of this into the second
equation (just as in the derivation of the profile likelihood
estimator) shows that

K(Q,Pαβ,β) = −logβ − (β − 1)Q(logX) +Q(Xβ) + a constant
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which has a unique maximizer Pα(Q),β(Q) = Pθ(Q) if Q is not

degenerate.

I do not know of a natural interpretation of this projection -

- other than the fact that it minimizes the Kullback-Leibler

divergence between Q and the Weibull family P = {Pθ : θ ∈ Θ}.
Note that this P is not an exponential family.

Breslow Lecture, Seattle, November 12, 2020 1.14



Example 3. P = {Pθ : dPθ/dµ = pθ = eθ on Rd, θ concave}.

M = {Q on Rd : Q(‖X‖) <∞, Q(X ∈ H) < 1 for all hyperplanes H}.

Let

H2(p1, p2) = 2−1
∫
Rd

(
√
p1 −

√
p2)2dµ,

dW (Q1, Q2) = inf
{
EJ‖X − Y ‖ : (X,Y ) ∼ J on Rd × Rd,

X ∼ Q1, Y ∼ Q2}
≡ Wasserstein1 distance between Q1, Q2.

Theorem: (Dümbgen, Samworth, Schumacher, 2011): Pθ(Q) =
Π(Q|P) exists and is unique for all Q ∈ M. Furthermore Q 7→
Π(Q|P) is continuous - - w.r.t. H on P and dW on M.

Corollary: If X1, . . . , Xn are i.i.d. Q ∈M, then

H(Pθ(Pn), Pθ(Q))→a.s. 0.
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Example 4. Right-censored survival data; continued:

Primer: notation and basic facts, hazards and hazard rates

• Suppose T ∼ F on R+ = [0,∞): F (t) = P (T ≤ t).

• If F has density f(t) = F ′(t) = (d/dt)F (t), then T has hazard

rate function

λ(t) ≡
f(t)

1− F (t)
.

• The cumulative hazard function Λ(t) is given by

Λ(t) =
∫ t

0
λ(s)ds =

∫ t
0

f(s)

1− F (s)
ds =

∫ t
0

1

1− F (s−)
dF (s)

= −log(1− F (t)) for continuous F.

• Thus for F continuous,

exp(−Λ(t)) = 1− F (t) = the survival function.
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More generally, for an arbitrary d.f. F ,

1− F (t) =
∏
s≤t

(1−∆Λ(s))exp(−Λc(t))

=
∏
s≤t(1− dΛ(s)) = the “product integral”

where Λc(t) ≡ Λ(t)−
∑
s≤t∆Λ(s), and ∆Λ(s) ≡ Λ(s)−Λ(s−).
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Example 4, Cox model; with right-censored survival data,

continued

• The underlying random variables and assumptions:

for 1 ≤ i ≤ n,

• Xi ∼ F (x|Zi) for x ∈ R+, Zi ∈ Rp. (the survival times)

• Yi ∼ G(x|Zi) for x ∈ R+, Zi ∈ Rp. (the censoring times)

• Xi, Yi conditionally independent given Zi.

• Zi ∼ H on Rp.

• The observed data:

• Ti = min{Xi, Yi}, ∆i = 1{Xi ≤ Yi}, and Zi.
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The “classical” Cox model (1972): parametric relative risk:

• The model:

λ(t|Z) = λ0(t)exp(βTZ)

where

• λ0 is an unknown (baseline) hazard (rate) function,

• β ∈ Rp is a vector of unknown regression parameters.

• The Cox partial likelihood estimator β̂ of β: maximize the

Partial Likelihood PL(β) defined by

PL(β) =
n∏
i=1

 eβ
TZi∑

j∈Ri e
βTZj


∆i

where Ri ≡ {j : Tj ≥ Ti}, i = 1, . . . , n. Then

β̂ = argmaxβPL(β). (1)
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• The Breslow (Aalen) estimator of Λ0: Λ̂0(t; β̂) where

Λ̂0(t;β) =
n∑
i=1

∆i1[Ti≤t]∑
j∈Ri e

βTZj
= argmaxλ0

L(β, λ0) (2)

where L(β, λ0) is an appropriate “full likelihood” for (β,Λ).

• This leads to the corresponding estimator of the conditional

survival function at time t and covariate value Z = z:

Ŝ(t|z) = exp
(
−
∫ t

0
eβ̂

T zdΛ̂0(s)
)

= exp
(
−eβ̂

T zΛ̂0(t)
)
.

where Ŝ(t|z) = 1− F̂ (t|z).
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Sir David Cox: 1980 and 2003
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• Classical Cox estimators when the model holds
Write X = (T,∆, Z) for the observed data with n = 1.
Let N(t) ≡∆1[T≤t], Y (t) ≡ 1[T≥t], and define

M(t) ≡Mβ,Λ(t) ≡ N(t)−
∫ t

0
eβ

TZY (s)dΛ(s).

Then M0 ≡Mβ0,Λ0
(t) is a martingale under P0 ∈ PCox.

• Score function for β and score operator for Λ:

˙̀β,Λ(X) =
∫ τ

0
ZdMβ,Λ(s),

(Bβ,Λh)(X) =
∫ τ

0
h(s)dMβ,Λ(s), for h ∈ H ≡ BV [0, τ ],

B∗0 ˙̀0 = P0(Zeβ
TZY ),

B∗0B0h = hP0(Zeβ
TZY ).

Thus

(B∗0B0)−1h =
h

P0(eβTZY )
.
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Now set

m(t) ≡
P0(Zeβ

T
0ZY (t))

P0(eβ
T
0ZY (t))

= E(Z|T = t,∆ = 1).

Then the efficient score for β, efficient information for β, and

efficient score operator for Λ are given by

`∗0 =
[
I −B0(B∗0B0)−1B∗0

]
˙̀0

≡
∫ τ

0
(Z −m)dM0,

Ĩ0 = = P0

(
eβ

T
0Z

∫ τ
0

[Z −m]⊗Y dΛ0

)
, ˜̀0 = Ĩ−1

0 `∗0

Ah =
∫ τ

0

h

P0(eβ
T
0ZY )

dM0 − P0

∫ τ
0

h

P0(eβ
T
0ZY (t))

dM0

 ˜̀0
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These lead, via the infinite-dimensional Z− theorem of van der

Vaart (1995) or Bickel et al. (1993) to the following expansions:

√
n(β̂n − β0) = Gn(˜̀0) + op(1),

√
n(Λ̂n − Λ0)(h) = Gn(Ah) + op(1),

where Gn ≡
√
n(Pn − P0). This yield asymptotic normality and

efficiency when the model holds; i.e. when P0 ∈ PCox.

What happens when (Ti,∆i, Zi) are i.i.d. Q 6∈ PCox?
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The estimating equations for β and Λ ≡ Λ0 can now be written

as

Pn
∫
ZdMβ,Λ = Pn(∆Z − Λ(Zeβ

T
Y ) = 0, and

Pn
∫
hdMβ,Λ = Pn

(
∆h(T )− Λ(hZeβ

TZY )
)

= 0,

for all h in the unit ball of BV [0, τ ], where Λ(h) ≡
∫ τ
0 hdΛ.

Now suppose that (β̂n, Λ̂n) solve the estimating equations in the

last display, but that Q does not satisfy the Cox model. The

infinite-dimensional system of equations can again be reduced

to a finite dimensional system as follows: Taking h(s) =

1[s≤t]/Pneβ
TZY (s) in the score equation for Λ yields

Λ̂(β)(t) = Pn
(

∆1[T≤t]
(PneβTZY )(T )

)
.

Using this Λ̂(β) in the first equation above shows that the
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resulting β̂n solves

Pn∆

Z − PnZeβ
TZY

PneβTZY
(T )

 = 0.

Letting n → ∞ (so Pn →d Q), we see that the limiting versions
of the score equations are given by

Ψ1:β,Λ = Q∆
(
Z − Λ

(
QZeβ

TZY

))
= 0,

Ψ2:β,Λ = Q∆h(T )− Λ
(
hQ(eβ

TZY )
)

= 0, h ∈ H.

Choosing h = Q(Zeβ
TZY )/Q(eβ

TZY ) and subtracting we see that
β0 ≡ β0(Q) solves

Q∆

Z − QZeβTZY
Qeβ

TZY
(T )

 = 0. (3)

See Struthers and Kalbfleisch (1986) and Sasieni (1992) for a
careful treatment of existence and uniqueness. By convexity
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arguments Struthers and Kalbfleisch show that β̂n →p β0 =

β0(Q). It then follows that

Λ̂n(t) = Pn

 ∆1[T≤t]

Pn(eβ̂TZY )(T )


→p Q

 ∆1[T≤t]

Q(eβ
T
0ZY )(T )

 ≡ Λ0(t).

Is β0 ≡ β0(Q) an interpretable parameter when Q /∈ PCox?

As Sasieni (1992) notes, if Q ∈ PCox, then

E(Zeβ
T
0Z)

Eeβ
T
0Z

= E{Z|T = t,∆ = 1},

and hence β0(Q) = β0 is a solution of (3).
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But what happens when:

(a) Hazards are not proportional?

(b) A relevant covariate is (incorrectly) left out?

(c) The correct model involves additive hazards?

(d) Is Q 7→ β0(Q) continuous?
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Figure 2: β(Q) as a function of α; λ1(t) = αtα−1, λ0(t) = 1
C(t|z = 0,1) = exp(γ0), exp(γ1).
Whitney, Shojaie, and Carone (2019).
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Figure 3: α1(Q) as a function of α2, the regression coefficient
of the missing covariate for three levels of α1. Z1, Z2 indep.
Bernoulli(1/2) (From Struthers and Kalbfleisch (1986).)
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Part II. Extensions of the Cox model: beyond

parametric relative risk:

Parametric relative risk:

λ(t|Z) = λ0(t)exp(βTZ)

λ(t|Z) = λ0(t)r(βTZ), r known; Prentice and Self (1983)

• Precursors with parametric λ0: Feigl and Zelen (1965)

Prentice (1973);

• Efficiency of the the partial likelihood estimators: Efron

(1977), Begun, Hall, Huang and W (1983)

• Robustness: Sasieni (1993a,1993b); Bednarski (1993).

• Martingale theory: P.K. Andersen - R. Gill (1982), Odd Aalen
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Semiparametric relative risk:

λ(t|Z) = λ0(t)exp(βTZ1 + η(Z2))

where Z = (Z1, Z2) ∈ Rp = Rp1 × Rp2;

Zη : Rp2 → R.

• Sasieni (1992), SJS; Jian Huang (1999), AOS,

• J. Cai, J. Fan, J. Jiang, and H. Zhou (2007), Biometrika

• R. Tibshirani (1996, 1997): Z ∈ Rp with p > n. Lasso!

• Pang Du, Shuangge Ma, and Hua Liang (2010), AOS.
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Nonparametric relative risk:

λ(t|Z) = λ0(t)exp(η(Z)); η : Rp → R, or

λ(t|Z) = λ0(t)r(Z); r : Rp → R

where λ0, η, and r are unknown functions.

• Hastie and Tibshirani (1987), Biometrics

• Fan, Gijbels, and King (1997), AOS

• Huang, J.Z., Kooperberg, Stone and Truong (2000)

• LeBlanc and Crowley (1993, 1995, 1999) (JASA, JASA,CJS)

• Gentleman and Crowley (1991), Biometrics

• · · ·
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Nonparametric: Beyond relative risk

λ(t|Z) ≥ 0 an “arbitrary” hazard rate function;

Xi, Yi conditionally independent given Zi.

and (reminder):

Ti ≡ min{Xi, Yi}, ∆i ≡ 1{Xi ≤ Yi}.

First attempts:

• Beran (1981): unpubl. UC Berkeley, Tech Report

• Dabrowska (1987). Kernel methods

• Zucker and Karr (1990). Time dependent β’s

• O’Sullivan (1988), (1993). Spline methods

• · · ·
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Nonparametric approaches, more recent work:

• Random survival forests:
• Ishwaran, Kogalur, Blackstone, and Lauer; (2008), AOAS

• Neural nets:
• Faraggi and Simon (1995). Statistics in Medicine.
• Fotso (2018). arXiv
• Katzman, Shaham, Cloninger, Bates, and Jiang (2018).

BMC Medical Research Methodology.
• Kvamme, Borgan, Scheel (2019), JMLR

Non-linear Cox & non-proportional Cox
• Tarkan and Simon (2020). arXiv

Main focus so far:
• Computation via tree-based methods and/or stochastic gradi-
ent descent
• empirical performance measures based on prediction of survival.

Breslow Lecture, Seattle, November 12, 2020 1.38



Progress on theory front? without survival complications:

Consistency

• Random forests: Bernoulli random forest framework (in-

volves additional randomization). (2018) A novel consistent

random forest framework: Bernoulli random forests. Wang,

Xia, Tan, Wu, and Zhu (IEEE transactions on neural

networks and learning systems).

• Neural networks:

Schmidt-Hieber, Johannes.

Nonparametric regression using deep neural networks with

ReLU activation function.

Ann. Statist. 48 (2020), no.4 1875 - 1897.

Breslow Lecture, Seattle, November 12, 2020 1.39



Figure 4: Directed graph representation of a network with two

hidden layers, L = 2, and p = (4,3,3,2).

σv

 y1
...
yr

 =

 σ(y1 − v1)
...

σ(y1 − vr)
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Part III: Descriptive statistics (parameters) by

design

Descriptive statistics for nonparametric models:

• I: Introduction (1975).

• II: Location (1975).

• III: Dispersion (1976). Birnbaum (1948)

• IV: Spread (1979).

Question 1. What properties do we want for a measure of

location?

Question 2. Are the properties resulting from Q1 logically

independent?

Question 3. Do there exist measures satisfying the properties

from our answer to Q1?
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Bickel & Lehmann, II: Suppose X ∼ F on R.

Let F be the collection of all distribution functions F on R. Then

µ : F → R is a measure of location if it satisfies the following:

• If X <s Y then µ(X) ≤ µ(Y ).

• If a > 0 and b ∈ R, then µ(aX + b) = aX + b.

• µ(−X) = −µ(X).

Here are some consequences of this definition:

(a) If F is symmetric about θ, then µ(F ) = θ.

(b) If P (X = c) = 1, then µ(X) = c.

(c) If P (a ≤ X ≤ b) = 1, then a ≤ µ(X) ≤ b.
(d) If P (X ≥ 0) = 1, then µ(X) ≥ 0.
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Examples of measures of location: (carefully chosen) L, M ,

and R estimators.

• µ(F ) =
∫ 1
0 F
−1(t)dK(t) where K is any d.f. on (0,1) which

is symmetric about 1/2.

• µ(F ) = argminθ∈R
∫
ρ(x − θ)dF (x) where ρ is positive, even,

convex and twice differentiable with derivative ψ.

• µ(F ) = median of the distribution of (X1+X2)/2 with X1, X2

i.i.d. F ; i.e. the solution θ of
∫
F (2θ − x)dF (x) = 1/2.
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Coefficients in linear regression as functionals?

• Models as approximations II: a model-free theory of paramet-

ric regression. (Perhaps regard this as “Bickel & Lehmann

V”?)

• Buja, Brown, Kuchibhotla, Berk, George, and Zhao (2019).

• Statistical Science 34, 545 - 565. (with discussion).

θ(P ) = θ(PY |X ⊗ PX)

Definition: The regression functional θ(P ) is well-specified for

PY |X if

θ(PY |X ⊗ PX) = θ(PY |X ⊗ PX ′)

for all (acceptable) regressor distributions PX and PX ′.
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Examples from survival analysis?

• Sasieni , P. (1996) Proportional excess hazards. Biometrika.

λ(t;X,Z) = α(t|Z) + λ0(t)exp(βTZ)

where α is known.

• Sasieni, P. and Brentnall (2017). On standardized relative

survival. Biometrics.

• Wanted: A functional R of two conditional survival functions

and a covariate distribution that is a function of time t only

(i.e. it is not a function of covariates Z) which describes the

ratio of survival functions: for example, R might be the net

survival

R(SC, SP , H)(t) = EH

{
SC(t|Z)

SP (t|Z)

}
,
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(where C denotes the cohort of interest and P stands for the

general population from which the cohort was derived) or it

could be the relative survival

R(SC, SP , H)(t) =
EHS

C(t|Z)

EHS
P (t|Z)

.

The authors write:

If the purpose is to recreate the ratio of survival functions

when they are independent of covariates, then this should

be a requirement:

R(SC, SP , H)(t) = SC(t)/SP (t)

whenever SC(t|z) = SC(t) and SP (t|Z) = SP (t) for all Z.

. . ..
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Sasieni and Brentnall (2017) go on to develop five different

criteria that such a measure R should satisfy (their A1 - A5,

page 474), and then identify candidates for such a functional

R which satisfy at least the first three of their requirements or

criteria. They credit Bickel and Lehmann (1975) for at least

part of their approach:

“Our argument mirrors Bickel and Lehmann (1975) who

showed that although a trimmed mean is not an unbiased

estimate of the mean of an asymmetric distribution, it has

a place as a measure of central location of a distribution,

and may be better for this than the mean in many

situations.”
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Problems and Questions:

• Q1: Is there an appropriate notion of “well-specified regres-

sion functionals” for semiparametric models?

• Q2: Other desirable properties in the survival context?

transitivity? collapsibility?

• Q3: What properties do we want a multivariate measure of

location to satisfy?

• Q4: Which model-based functionals yield interpretable K-L

projections?
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• Q5: What properties do we want a multivariate depth

functional to satisfy?

• Q6: What properties do we want a multivariate clustering

functional to satisfy?

• Q7: Once we (I?!) understand some of the machine -

learning algorithms better, can we achieve both improved

prediction and reliable inference? (Can the machine-learning

methods be “plugged in” in the sense of Bickel and Ritov

(2003)?)

Breslow Lecture, Seattle, November 12, 2020 1.49



Breslow Lecture, Seattle, November 12, 2020 1.50



Breslow Lecture, Seattle, November 12, 2020 1.51



MANY THANKS!
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Two papers with application to breast cancer:

• S. Gore, S. J. Pocock, and G. Kerr (1984).

Regression models and non-proportional hazards in the

analysis of breast cancer.

J.R.S.S. 33, 176 - 195.

n = 3922; p = 14.

• Weina Zhang, W. and Yilun Zhang (2020).

Integrated survival analysis of mRNA and microRNA signa-

ture of patients with breast cancer based on Cox model.

J. Computational Biology 27, 1486 - 1494.

n = 626; number censored = 560; p ≥ 77,697.
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