
Semiparametric Gaussian Copula

Models:

Progress and Problems

Jon A. Wellner

University of Washington, Seattle

European Meeting of Statisticians,
Amsterdam

July 6-10, 2015



EMS Meeting, Amsterdam

Based on joint work with:

• Peter Hoff

• Xiaoyue (Maggie) Niu

• Chris Klaassen



Outline

• 0. Basics: notation and facts

• 1: Bivariate Gaussian copula models

• 2: d−variate Gaussian Copula models

• 3: Recent progress and results

• 4: Questions and open problems

Semiparametric Copula Models, EMS, Amsterdam, July 6, 2015 1.2



0. Basics: notation and facts

Notation:

• Θ ⊂ Rq, q ≥ 1; F = {all distribution functions on R}.

• Copulas: {Cθ : θ ∈ Θ} = a parametric family of distribu-

tion functions on [0,1]d with uniform marginal distributions

Cθ(1, . . . ,1uj,1, . . . ,1) = uj for uj ∈ (0,1) and j = 1, . . . , d.

• Semiparametric copula distribution functions and measures:

Fθ,F1,...,Fd
(x1, . . . , xd) = Cθ(F1(x1), . . . , Fd(xd)) for distribution

functions Fj on R,

Pθ,F1,...,Fd
(A) =

∫
A dFθ,F1,...,Fd

(x), A ∈ Bd.

• Semiparametric copula model:

P = {Pθ,F1,...,Fd
: θ ∈ Θ, Fj ∈ F , j = 1, . . . , d}.
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Main focus here: multivariate Gaussian copulas

Φθ(x) = Pθ(X ≤ x) = d.f. of Nd(0,Σ(θ)),

where

Σ(θ) =


1 ρ12 ρ13 · · · ρ1,d
ρ12 1 ρ23 · · · ρ2,d

... ... ...
ρ1,d ρd−1,d 1


and ρi,j ≡ ρi,j(θ). Then

Cθ(u) = Φθ(Φ−1(u1), . . . ,Φ−1(ud)),

cθ(u) =
φθ(Φ−1(u1), . . . ,Φ−1(ud))∏d

j=1 φ(Φ−1(uj))
,

for u = (u1, . . . , ud) ∈ (0,1)d, and . . .
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Fθ,F1,...,Fd
(x1, . . . , xd) = Cθ(F1(x1), . . . , Fd(xd)), θ ∈ Θ, Fj ∈ F ,

and Pd is a semiparametric Gaussian copula model based on cθ.

Now suppose that we observe X1, . . . , Xn i.i.d. with probability

distribution Pθ0,F0,1,...,F0,d
∈ Pd.

Questions:

• How well can we estimate θ ∈ Θ? (Lower bounds)

• Can we construct (rank-based) estimators achieving the

lower bounds?
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Since the model is invariant under monotone transformations on

each axis, it is clear that the (multivariate) ranks are a maximal

invariant.

More notation: let X denote the n × d matrix with rows

X1, . . . , Xn. Let R(X) : Rn×d → Rn×d be the corresponding n× d
matrix of ranks where R = (Ri,j) and

Ri,j = the rank of Xi,j among {X1,j, . . . , Xn,j}, j = 1, . . . , d.

Hoff (2007) has shown that the ranks R are partially sufficient

in several senses, and it seems natural to try base inference

procedures on them if possible.
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1. Bivariate Gaussian copulas

Here d = 2 and θ ∈ Θ = (−1,1). Klaassen and W (1997)

showed:

• Iθ(P2) = (1− θ2)−2.

• Normal margins are least favorable.

• θ̂n = normal scores rank correlation coefficient is asymptot-
ically efficient:

√
n(θ̂n − θ)→ N(0, (1− θ2)2).

• θ̂n is asymptotically equivalent to the maximum pseudo
likelihood estimator θ̂ple:

√
n(θ̂n − θ̂plen ) = op(1) where

θ̂plen = argmaxθ∈Θ`n(θ,Gn,Hn)

where Gn, Hn, are the marginal empirical distribution func-
tions of the data. (Note that this is also a function of the
ranks.)

Semiparametric Copula Models, EMS, Amsterdam, July 6, 2015 1.7



1. Bivariate Gaussian copulas

Here with Xi = (Yi, Zi), i = 1, . . . , n,

θ̂n =
n−1∑n

i=1 Φ−1(G∗n(Yi))Φ−1(H∗n(Zi))

n−1∑n
i=1 Φ−1

(
i

n+1

)2

=
n−1∑n

i=1 Φ−1
(
R1,i
n+1

)
Φ−1

(
R2,i
n+1

)
n−1∑n

i=1 Φ−1
(

i
n+1

)2

Asymptotic linearity:

√
n(θ̂n − θ) =

1
√
n

n∑
i=1

˜̀
θ(Xi) + op(1)

where

˜̀
θ(y, z) = I−1

θ
˙̀∗
θ(y, z)

= Φ−1(G(y))Φ−1(H(z))−
θ

2

(
Φ−1(G(y))2 + Φ−1(H(z))2

)
.
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2. Multivariate Gaussian copulas, d > 2

• When Σ(θ) is unstructured (i.e.

θ = (ρ1,2, ρ1,3, . . . , ρ1,d, . . . , ρd−1,d) ∈ [−1,1]d(d−1)/2), then the

pseudo-likelihood estimator continues to be semiparametric

efficient, as noted by Klaassen & W (1997), and Segers, von

den Akker, Werker (2014).

• What if d > 2 and Σ(θ) is structured?

Examples:

• Example 1. (Exchangeable) Σ(θ) = (1 − θ)Id + θ11T with

θ ∈ [−1/(d+ 1),1). For example for d = 4

Σ(θ) =


1 θ θ θ
θ 1 θ θ
θ θ 1 θ
θ θ θ 1

 .
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• Example 2. (Circular) For d = 4,

Σ(θ) =


1 θ θ2 θ

θ 1 θ θ2

θ2 θ 1 θ

θ θ2 θ 1

 .
• Example 3. (Toeplitz). Here Σ = (σi,j) with σi,i = 1 for

all i, σi,j = θ|i−j| for θ = (θ1, θ2, . . . , θd−1) ∈ (−1,1)d−1. For

example, with d = 4,

Σ(θ) =


1 θ1 θ2 θ3
θ1 1 θ1 θ2
θ2 θ1 1 θ1
θ3 θ2 θ1 1

 .
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More background:

• Genest and Werker (2002): studied efficiency properties

of pseudo-likelihood estimators for general semiparametric

copula models:

Conclusion: θ̂plen is not efficient in general for (non-Gaussian)

copulas.

• Chen, Fan, and Tsyrennikov (2006) constructed semipara-

metric efficient estimators for general multivariate copula

models using parametric sieve methods. Their estimators

are not based solely on the multivariate ranks
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Questions:

• Do Maximum Likelihood Estimators based on rank likeli-

hoods achieve semiparametric efficiency for general multi-

variate copula models?

• Do alternative estimators based on ranks achieve semipara-

metric efficiency?

• Are the pseudo maximum likelihood estimators semiparamet-

ric efficient for structured Gaussian copula models?
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For θ ∈ Θ ⊂ Rq with q < d(d− 1)/2, let

L(θ; R) denote the likelihood of the ranks R,

L(θ, ψ; X) denote the likelihood of the data X,

where ψ ∈ Ψ denote parameters for the marginal transforma-

tions. For fixed θ ∈ Θ, ψ ∈ Ψ let

λR(t) ≡ log
L(θ + t/

√
n; R)

L(θ; R)
,

λX(t, s) ≡ log
L(θ + t/

√
n, ψ + s/

√
n; X)

L(θ, ψ; X)
.
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Theorem 1. (Hoff-Niu-W, 2014) Let {Fθ,ψ(x) : θ ∈ Θ, ψ ∈ Ψ}
be an absolutely continuous copula model where, for given θ and

t there exist ψ and s such that under i.i.d. sampling from Fθ,ψ
we have:

(1) λX(t, s) satisfies Local Asymptotic Normality (LAN):

λX(t, s)→d Z

(2) There exists an R-measurable approximation λ
X̂

(t, s) such

that λ
X̂

(t, s) − λX →p 0. Then λR(t) →d Z under i.i.d. sampling

from any population with copula Cθ(·) equal to that of F (·; θ, ψ)

and arbitrary absolutely continuous marginal distributions.

Conclusion: To show that the local likelihood ratio of the

ranks satisfies LAN (from which an information bound follows

for procedures based on the ranks follows), we need to construct

suitable rank-measurable approximations of the local likelihood

ratios of the data for parametric submodels.
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Let X1, . . . , Xn be i.i.d. from a member Pθ,ψ of a collection of

Nd(0,Σθ,ψ) where θ is parameterizes the correlations and ψ are

the variance parameters. Then

λX(t, s) =
1
√
n

n∑
i=1

XT
i AXi + c(θ, ψ, t, s) + op(1)

where A = At,s,θ,ψ. A natural rank-based approximation is

λX̂(t, s) =
1
√
n

n∑
i=1

X̂T
i AX̂i + c(θ, ψ, t, s)

where

X̂i,j ≡
√
V ar(Xi,j)Φ−1

(
Ri,j

n+ 1

)
.

This leads to the following theorem:
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Theorem 2. (Hoff, Niu, & W, 2014) Let X1, . . . , Xn be

i.i.d. Nd(0, C) where C is a correlation matrix and let X̂i,j =

Φ−1(Ri,j/(n + 1)). Let A be a matrix such that the diagonal

entries of AC +ATC are zero. Then

1
√
n

n∑
i=1

{X̂T
i AX̂i −XT

i AXi} = op(1).

• The proof of Theorem 2 is based on some classical results

of de Wet and Venter (1972).

• It remains to apply the results of Theorems 1 and 2 to the

setting of Gaussian copulas:
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Theorem 3. (Hoff, Niu, & W, 2014). Suppose that {Σ(θ) : θ ∈
Θ ⊂ Rq} is a collection of positive definite correlation matrices

such that Σi,j(θ) is twice differentiable with respect to each θk,

1 ≤ k ≤ q. If X1, . . . , Xn are i.i.d. Pθ,ψ with absolutely continuous

marginals and Gaussian copula Cθ for some θ ∈ Θ, then

λR(t)→d N(−(1/2)tT Iθθ·ψt, t
T Iθθ·ψt)

where Iθθ·ψ is the information for θ in the Gaussian model with

correlation matrix Σ(θ) and precisions ψ.

Summary: Let B(θ) ≡ Σ−1(θ). Then, for q = 1,

• The efficient score function `∗θ is:

`∗θ(y) = ˙̀θ − IθψI−1
ψψ

˙̀ψ =
1

2
yT

{
ψ

p
tr(BθC)B − ψBθ

}
y.
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• The efficient influence function ˜̀
θ for θ is:

˜̀
θ(y) = I−1

θθ·ψ`
∗
θ(y), where

Iθθ·ψ = (1/2){tr(BθCBθC)− tr(BθC)2/d}.

Consequences:

• No information concerning θ is lost (asymptotically) by

reducing to the ranks R.

• Gaussian marginals are least favorable.

• The information bounds for estimation of θ in such a

Gaussian copula model are given in terms of I−1
θθ·ψ.
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The efficient influence function ˜̀
θ(x) can be shown to be

˜̀
θ(x) = I−1

θθ

{
˙̀θ(x)− Iθψ ˜̀ψ(x)

}
The influence function of the pseudo likelihood estimator is given

by

ψθ(x) = I−1
θθ

 ˙̀θ(x)−
d∑

j=1

Wj(xj)


where

Wj(xj) =
∫

(0,1)d

(
∂2

∂θ∂uj
logcθ(u)

)(
1{Φ(xj) ≤ uj} − uj

)
cθ(u)du.

Corollary: The maximum pseudo likelihood estimator is semi-

parametric efficient if

d∑
j=1

Wj(xj) =
1

2
tr (BΣθ{I − diag(x ◦ x)}) .
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When q = 1 (and then ψ ∈ R), this simplifies to

˜̀
ψ(x) =

1

p

d∑
j=1

(1− x2
j ).
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Examples, continued:

• Example 1. (Exchangeable) Σ(θ) = (1 − θ)Id + θ11T . For

d = 4, calculation yields

I−1
θθ·ψ =

1

6
(1 + 2θ − 3θ2),

˜̀
θ(x) =

1

12

2
∑

1≤i<j≤4

xixj − 3θ
4∑

j=1

x2
j

 , and

−Iθψ ˜̀ψ(x) =
6θ

1 + 2θ − 3θ2

1

4

4∑
j=1

(x2
j − 1)

=
3θ/2

1 + 2θ − 3θ2

4∑
j=1

(x2
j − 1) =

4∑
j=1

Wj(xj),

so the pseudo-likelihood estimator is semiparametric effi-

cient.
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Figure 1, Example 1: Information bounds and Monte-carlo

variance of p-mle: red, n = 800.
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• Example 2. (Circular) For d = 4, calculation yields

Iθθ·ψ =
4

(1− θ2)2
,

˜̀
θ(x) =

1

8(1− θ2)

(1 + θ2)
∑

j=i+1,i+3

xixj

− 2θ
4∑

j=1

x2
j − 2θ

∑
j=i+2

xixj

 , and

−Iθψ ˜̀ψ(x) = a complicated quadratic in xj’s and cubic in θ

6=
4∑

j=1

Wj(xj) = −
θ

1− θ2

4∑
j=1

(x2
j − 1).

so the pseudo-likelihood estimator is not semiparametric

efficient.
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Figure 1, Example 2: Information bound and variance of p-mle
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Figure 2, Example 2: Difference, variance of p-mle and Information bound
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Figure 3, Example 2: Relative difference, variance of p-mle and Information bound
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Summary:

• Information bounds for (structured) multivariate Gaussian
models are available and computable.

• Gaussian marginal distributions are least favorable.

• The pseudo likelihood estimator is not always semiparametric
efficient (but perhaps not missing efficiency by much).

Questions:

• Can we construct rank-based semiparametric efficient esti-
mators?

• Are the pseudo likelihood estimators sometimes seriously
inefficient?

Segers, van den Akker, and Werker (2014) give affirmative
answers to both questions!
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Recent progress and results

Segers, van den Akker, and Werker (2014) give affirmative

answers to both questions!

Rank-based semiparametric efficient estimators:

via a “one-step” method:

• Start with a
√
n−consistent rank based estimator θ̂0

n;

e.g the pseudo likelihood estimator θ̂plen .

• Construct the natural one-step estimator starting from θ̂0
n

and based on the efficient score function ˙̀∗
θ.
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Recent progress and results

Inefficiency of pseudo likelihood estimator θ̂plen :

Example 3: (Toeplitz correlation model) Suppose that θ =
(θ1, . . . , θd−1) ∈ (−1,1)d−1 and Σ = (σi,j)

d
i,j=1 = (σi,j(θ) where

σi,i = 1 and σi,j(θ) = θ|i−j| for j 6= i. For example: when d = 3,
θ = (θ1, θ2) ∈ (−1,1)2 and

Σ(θ) =

 1 θ1 θ2
θ1 1 θ1
θ2 θ1 1

 ;

when d = 4, θ = (θ1, θ2, θ3) ∈ (−1,1)3 and

Σ(θ) =


1 θ1 θ2 θ3
θ1 1 θ1 θ2
θ2 θ1 1 θ1
θ3 θ2 θ1 1

 .
Segers, vd Akker, and Werker (2014) show that:
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Recent progress and results

• For d = 3 the Pseudo-Likelihood Estimator (PLE) θ̂
ple
n is

semiparametric efficient.

• For d = 4, θ̂
ple
n is not efficient, and some times severely

so. When θ = (0.494546,−0.450276,−0846249), the

asymptotic relative efficiencies of the PLE with respect to

the information bound are

(18.3%, 19.8%,96.9%).

• The PLE is semiparametric efficient for a large class of

“factor models”: if θ is a d × q matrix, q < d, Θ =

an open subset of {θ ∈ Rd×q : (θθT )jj < 1, j = 1, . . . , d}
and

Σ(θ) ≡ θθT + (Id − diag(θθT )).
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4: Questions and open problems

• Semiparametric efficient estimation of the marginal distribu-
tions?

B Can we improve on the marginal empirical distribution
functions? (Apparently not known even for bivariate
Gaussian copula model?)

B Asymptotic behavior of the sieve estimators of Chen, Fan,
and Tsyrennikov (2006)?

• Asymptotic behavior of the MLE’s of θ based on the rank
likelihood. (Rank likelihood is difficult to compute!)

• Rank-based semiparametric efficient estimators of θ for non-
Gaussian copula’s?

• Asymptotic theory for P. Hoff’s “extended rank likelihood”
(Hoff 2007, 2008)?

• What happens under model miss-specification? (Remember
David X. Li (2000)!)
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Many thanks!

veel dank!
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