Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010

Outline: Five Lectures on Shape Restrictions

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

Outline: Lecture 1

- A: Maximum likelihood and least squares estimators (and more?)
- B: Switching: a simple key result
- C: Limit theory via switching and argmax continuous mapping
- D: Complements: Pollard's localization method ??
- E: Other nonparametric function estimation problems ??

A. Maximum likelihood, monotone density

- Model: $\mathcal{D} \equiv$ all monotone decreasing densities (wrt Lebesgue measure) on $\mathbb{R}^{+}=(0, \infty)$.
- Observations: X_{1}, \ldots, X_{n} i.i.d. $f_{0} \in \mathcal{D}$.
- MLE: $\widehat{f}_{n} \equiv \operatorname{argmax}_{f \in \mathcal{D}}\left\{\sum_{i=1}^{n} \log f\left(X_{i}\right)\right\}$
- LSE: $\tilde{f}_{n} \equiv \operatorname{argmin}_{f \in \mathcal{D}} \psi_{n}(f)$
where

$$
\begin{aligned}
\psi_{n}(f) & \equiv \frac{1}{2} \int_{0}^{\infty} f^{2}(x) d x-\int_{0}^{\infty} f(x) d \mathbb{F}_{n}(x) \\
& =? \frac{1}{2}\left\{\int_{0}^{\infty}\left(f^{2}(x)-f_{n}(x)\right)^{2} d x-\int_{0}^{\infty} f_{n}^{2}(x) d x\right\}
\end{aligned}
$$

if \mathbb{F}_{n} had density f_{n} (which it doesn't, of course!).

A. Maximum likelihood, monotone density

Theorem. (a) $\widehat{f}_{n}=\widetilde{f}_{n}$ exists and is unique. It is a piecewise constant function with jumps (down) only at the order statistics. (b) The MLE \widehat{f}_{n} is characterized by the "Fenchel" conditions

$$
\begin{aligned}
& \mathbb{F}_{n}(x) \leq \widehat{F}_{n}(x) \equiv \int_{0}^{x} \widehat{f}_{n}(t) d t \text { for all } x \geq 0, \text { and } \\
& \mathbb{F}_{n}(x)=\widehat{F}_{n}(x) \text { if and only if } \widehat{f}_{n}(x-)>\widehat{f}_{n}(x+)
\end{aligned}
$$

The equality condition in the last display can be rewritten as

$$
\int_{0}^{\infty}\left(\widehat{F}_{n}(x)-\mathbb{F}_{n}(x)\right) d \widehat{f}_{n}(x)=0
$$

(c) Geometrically, \hat{f}_{n} is the left-derivative at x of the least concave majorant \widehat{F}_{n} of \mathbb{F}_{n}.

A. Maximum likelihood, monotone density

A. Maximum likelihood, monotone density

A. Maximum likelihood, monotone density

Proof; Existence and Uniqueness: The log-likelihood function (divided by n) is $L_{n}(f)=\mathbb{P}_{n} \log f=n^{-1} \sum_{i=1}^{n} \log f\left(X_{i}\right)$. If we define \breve{f} by $\breve{f}(x)=C \sum_{i=1}^{n} f\left(X_{(i)}\right) 1_{\left(X_{(i-1)}, X_{(i)}\right]}(x)$ where C is a normalizing constant to make $\int_{0}^{\infty} \bar{f}(x) d x=1$, then

$$
\begin{aligned}
& L_{n}(\breve{f})=\log C+L_{n}(f) \geq L_{n}(f) \quad \text { since } \\
& 1=\int_{0}^{\infty} \breve{f}(x) d x=C \sum_{i=1}^{n}\left(X_{(i)}-X_{(i-1)}\right) f\left(X_{(i)}\right) \leq C \int_{0}^{X_{(n)}} f(x) d x \leq C \text {. }
\end{aligned}
$$

Thus the MLE \widehat{f}_{n} can be taken to be a histogram type estimator with breaks only at the order statistics.
Existence follows since we can restrict the maximization of L_{n} to the compact set

$$
\mathcal{D}_{M} \equiv\{f \in \mathcal{D}: f \text { a histogram, } f(0) \leq M, f(M)=0\}
$$

for $M=\max \left\{1 / X_{(1)}, 2 X_{(n)}\right\}$.

A. Maximum likelihood, monotone density

Proof; Characterization: Let $\mathcal{M}=\{f: f(x) \geq 0$ for all $x \geq$ $0, f \searrow\}$. Then $\mathcal{D} \subset \mathcal{M}$ and \mathcal{M} is a convex cone. We replace maximization of the log-likelihood

$$
\mathbb{P}_{n} \log f=n^{-1} \sum_{i=1}^{n} \log f\left(X_{i}\right)=\int_{0}^{\infty} \log f(x) d \mathbb{F}_{n}(x)
$$

over \mathcal{D} by minimization of

$$
\ell_{n}(f) \equiv-\mathbb{P}_{n} \log f+\int_{0}^{\infty} f(x) d x \text { over } \mathcal{M}
$$

Suppose \widehat{f}_{n} minimizes $-\mathbb{P}_{n} \log f$ over \mathcal{D}. Then \widehat{f}_{n} minimizes $\ell_{n}(f)$ over \mathcal{M}. To see this, let $g \in \mathcal{M}$ with $\int_{0}^{\infty} g(x) d x=c \in$ $(0, \infty)$. Since $g / c \in \mathcal{D}$

$$
\begin{aligned}
\ell_{n}(g)-\ell_{n}\left(\widehat{f}_{n}\right) & =-\mathbb{P}_{n} \log (g / c)-\log c+c+\mathbb{P}_{n} \log \widehat{f}_{n}-1 \\
& =\ell_{n}(g / c)-\ell_{n}\left(\widehat{f}_{n}\right)-\log c-1+c \\
& \geq 0+0=0
\end{aligned}
$$

since $g / c \in \mathcal{D}$ and $c-1 \geq \log c$. Equality holds if $g=\widehat{f}_{n}$. Thus \widehat{f}_{n} maximizes ℓ_{n} over \mathcal{M}.

A. Maximum likelihood, monotone density

Now for $g \in \mathcal{M}$ and $\epsilon>0$ consider

$$
\ell_{n}\left(\widehat{f}_{n}+\epsilon g\right) \geq \ell_{n}\left(\widehat{f}_{n}\right)
$$

Thus

$$
\begin{align*}
0 & \leq \lim _{\epsilon \downarrow 0} \frac{\ell_{n}\left(\widehat{f}_{n}+\epsilon g\right)-\ell_{n}\left(\widehat{f}_{n}\right)}{\epsilon} \\
= & -\int_{0}^{\infty} \frac{g}{\hat{f}_{n}} d \mathbb{F}_{n}+\int_{0}^{\infty} g(x) d x \\
= & -\int_{0}^{\infty} \frac{1_{[0, y]}(x)}{\widehat{f}_{n}(x)} d \mathbb{F}_{n}(x)+y \text { for all } y>0 \\
& \quad \text { by taking } g(x)=1_{[0, y]}(x) \\
= & y-\int_{0}^{y} \frac{1}{\hat{f}_{n}(x)} d \mathbb{F}_{n}(x) \\
= & \int_{0}^{y} \frac{1}{\hat{f}_{n}} d\left(\widehat{F}_{n}-\mathbb{F}_{n}\right) . \tag{1}
\end{align*}
$$

A. Maximum likelihood, monotone density

If y satisfies $\widehat{f}_{n}(y-)>\widehat{f}_{n}(y+)$, then the function $\widehat{f}_{n}+\epsilon 1_{[0, y]} \in \mathcal{M}$ for $\epsilon<0$ and $|\epsilon|$ sufficiently small.
Repeating the argument for $\epsilon<0$ and these values of y yields

$$
\begin{equation*}
0=\int_{0}^{y} \frac{1}{\hat{f}_{n}} d\left(\widehat{F}_{n}-\mathbb{F}_{n}\right) \text { if } \widehat{f}_{n}(y-)>\widehat{f}_{n}(y+) \tag{2}
\end{equation*}
$$

Since \hat{f}_{n} is piecewise constant, the inequalities and equalities in (1) and (2) can be rewritten as claimed:

$$
\begin{aligned}
& \mathbb{F}_{n}(x) \leq \widehat{F}_{n}(x) \equiv \int_{0}^{x} \widehat{f}_{n}(t) d t \text { for all } x \geq 0, \text { and } \\
& \mathbb{F}_{n}(x)=\widehat{F}_{n}(x) \text { if and only if } \widehat{f}_{n}(x-)>\widehat{f}_{n}(x+)
\end{aligned}
$$

Now consider the LSE \tilde{f}_{n}. Suppose that \tilde{f}_{n} minimizes

$$
\psi_{n}(f)=\frac{1}{2} \int_{0}^{\infty} f^{2}(x) d x-\int_{0}^{\infty} f d \mathbb{F}_{n}
$$

over \mathcal{M}.

A. Maximum likelihood, monotone density

Then for $g \in \mathcal{M}$ and $\epsilon>0$ we have $\psi_{n}\left(\tilde{f}_{n}+\epsilon g\right) \geq \psi_{n}\left(\tilde{f}_{n}\right)$ and hence

$$
\begin{align*}
0 & \leq \lim _{\epsilon \downarrow 0} \frac{\psi_{n}\left(\tilde{f}_{n}+\epsilon g\right)-\psi_{n}\left(\widetilde{f}_{n}\right)}{\epsilon} \\
& =\int_{0}^{\infty} g(x) \tilde{f}_{n}(x) d x-\int_{0}^{\infty} g d \mathbb{F}_{n}=\int_{0}^{\infty} g d\left(\widetilde{F}_{n}-\mathbb{F}_{n}\right) \\
& =\int_{0}^{y} d\left(\widetilde{F}_{n}-\mathbb{F}_{n}\right)=\widetilde{F}_{n}(y)-\mathbb{F}_{n}(y) \text { for all } y>0 \tag{3}
\end{align*}
$$

by choosing $g(x)=1_{[0, y]}(x)$ for $x \geq 0, y>0$. If $\widetilde{f}_{n}(y-)>\widetilde{f}_{n}(y+)$, then $\tilde{f}_{n}+\epsilon 1_{[0, y]} \in \mathcal{M}$ for $\epsilon<0$ with $|\epsilon|$ small, so repeating the argument for $\epsilon<0$ and these y 's yields

$$
\begin{equation*}
\widetilde{F}_{n}(y)-\mathbb{F}_{n}(y)=0 \text { if } \tilde{f}_{n}(y-)>\tilde{f}_{n}(y+) . \tag{4}
\end{equation*}
$$

But (3) and (4) give exactly the same characterization of \tilde{f}_{n} derived above for \hat{f}_{n}. Thus $\widetilde{f}_{n}=\widehat{f}_{n}$ in this case.

B. Switching: a simple key result

- Groeneboom (1985), Prakasa Rao (1969)?
- Introduce first in the context of \widehat{f}_{n}
- More general version.

Switching for \widehat{f}_{n} : Define

$$
\begin{aligned}
\widehat{s}_{n}(a) & \equiv \operatorname{argmax}_{s \geq 0}\left\{\mathbb{F}_{n}(s)-a s\right\}, \quad a>0 \\
& \equiv \sup \left\{s \geq 0: \mathbb{F}_{n}(s)-a s=\sup _{z \geq 0}\left(\mathbb{F}_{n}(z)-a z\right)\right\}
\end{aligned}
$$

Then for each fixed $t \in(0, \infty)$ and $a>0$

$$
\left\{\widehat{f}_{n}(t)<a\right\}=\left\{\widehat{s}_{n}(a)<t\right\} .
$$

B. Switching: a simple key result

B. Switching: a simple key result

More general result: Suppose $\Phi: D \subset \mathbb{R} \rightarrow \mathbb{R}$ where D is closed. Let

$$
\begin{aligned}
\widehat{\Phi}(x) & \equiv \text { least concave majorant of } \Phi \\
& =\inf \{g(x) \mid g: D \rightarrow \mathbb{R}, g \text { closed, } g \text { concave, } g \geq \Phi\} .
\end{aligned}
$$

Let $\widehat{\phi}_{L}$ and $\widehat{\phi}_{R}$ denote the left and right derivatives of $\widehat{\Phi}$.
Define

$$
\begin{aligned}
\kappa_{L}(y) & \equiv \operatorname{argmax} \\
& =\inf \{x \in D: \Phi(x)-y x\} \\
\kappa_{R}(y) & \equiv \operatorname{argmax} x=\sup _{z \in D}^{R}\{\Phi(x)-y x\} \\
& =\sup \{x \in D: \Phi(x)-y z)\} \\
& \left.=\sup _{z \in D}(\Phi(z)-y z)\right\}
\end{aligned}
$$

B. Switching: a simple key result

Theorem. Suppose that Φ is a proper upper-semicontinuous real-valued function defined on a closed subset $D \subset \mathbb{R}$. Then $\widehat{\Phi}$ is proper if and only if $\Phi \leq l$ for some linear function l on D. Furthermore, if $\operatorname{conv}($ hypo $(\Phi))$ is closed, then the functions κ_{L} and κ_{R} are well defined and the following switching relations hold:

$$
\begin{aligned}
& \widehat{\phi}_{L}(x)<y \text { if and only if } \kappa_{R}(y)<x ; \\
& \widehat{\phi}_{R}(x) \leq y \text { if and only if } \kappa_{L}(y) \leq x .
\end{aligned}
$$

Proof. See Balabdaoui, Jankowski, Pavlides, Seregin, and W (2010) - which is based on Rockafellar (1970).

We will apply this theorem with Φ taken to be various random processes, including:

- $\Phi=\mathbb{U}$, a Brownian bridge process on $[0,1]$.
- $\Phi=a W(h)-b h^{2}$ for $a, b>0$ and W two-sided Brownian motion.

B. Switching: a simple key result

Reminder:

$$
\begin{aligned}
& \operatorname{hypo}(f)=\left\{(x, \alpha) \in \mathbb{R}^{d} \times R: \alpha \leq f(x)\right\}, \\
& \operatorname{conv}(C)=\left\{\sum_{i=1}^{k} \lambda_{i} x_{i}: x_{i} \in C, \lambda_{i} \geq 0, \sum_{1}^{k} \lambda_{i}=1, k \geq 0\right\} .
\end{aligned}
$$

f is upper semicontinuous at all $x \in \mathbb{R}^{d}$ if and only if hypo (f) is closed.

C. Limit theory via switching and argmax CM

Two illustrative cases:

- Case 1: $f_{0}(x)=1_{[0,1]}(x)$ (degenerate mixing, $G=\delta_{1}$).
- Case 2: f_{0} with $f_{0}\left(x_{0}\right)>0, f_{0}^{\prime}\left(x_{0}\right)<0$. (Strictly decreasing at x_{0}).

Case 1: Groeneboom (1983), Groeneboom and Pyke (1983). If $f_{0}(x)=1_{[0,1]}(x)$, then for $0<x_{0}<1$,

$$
\mathbb{S}_{n}\left(x_{0}\right) \equiv \sqrt{n}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d} \mathbb{S}\left(x_{0}\right)
$$

where \mathbb{S} is the left-derivative of the least concave majorant \mathbb{C} of a standard Brownian bridge process \mathbb{U} on $[0,1]$.

C. Limit theory via switching and argmax CM

Proof, Case 1: By the switching relation

$$
\begin{align*}
& P\left(\sqrt{n}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right)<t\right) \\
& \quad=P\left(\widehat{f}_{n}\left(x_{0}\right)<f_{0}\left(x_{0}\right)+n^{-1 / 2} t\right) \\
& \quad=P\left(\widehat{s}_{n}\left(f_{0}\left(x_{0}\right)+n^{-1 / 2} t\right)<x_{0}\right) \\
& \quad=P\left(\operatorname{argmax}_{h}\left\{\mathbb{F}_{n}\left(x_{0}+h\right)-\left(f_{0}\left(x_{0}\right)+n^{-1 / 2} t\right)\left(x_{0}+h\right)\right\}<0\right) \\
& \quad=P\left(\operatorname{argmax}_{h} \mathbb{Z}_{n}(h)<0\right) \tag{5}
\end{align*}
$$

where, since $f_{0}\left(x_{0}\right)=1$ implies that $x f_{0}\left(x_{0}\right)=x_{0}=F\left(x_{0}\right)$,

$$
\begin{aligned}
\mathbb{Z}_{n}(h) \equiv & n^{1 / 2}\left(\mathbb{F}_{n}\left(x_{0}+h\right)-F\left(x_{0}\right)-h f_{0}\left(x_{0}\right)-t\left(x_{0}+h\right) n^{-1 / 2}\right) \\
= & n^{1 / 2}\left(\mathbb{F}_{n}\left(x_{0}+h\right)-F\left(x_{0}+h\right)\right) \\
& \quad+n^{1 / 2}\left(F\left(x_{0}+h\right)-F\left(x_{0}\right)-h f_{0}\left(x_{0}\right)\right)-t\left(x_{0}+h\right) \\
= & \mathbb{U}_{n}\left(x_{0}+h\right)-t\left(x_{0}+h\right) \\
\rightsquigarrow & \mathbb{U}\left(x_{0}+h\right)-t\left(x_{0}+h\right)
\end{aligned}
$$

where $\mathbb{U}_{n} \equiv \sqrt{n}\left(\mathbb{F}_{n}-F\right)$ denotes the uniform empirical process and \mathbb{U} denotes a Brownian bridge process.

C. Limit theory via switching and argmax CM

Thus by the (argmax) continuous mapping theorem it follows that the right side of (5) converges to

$$
\begin{aligned}
& P\left(\operatorname{argmax}_{h}\left\{\mathbb{U}\left(x_{0}+h\right)-t\left(X_{0}+h\right)\right\}<0\right) \\
& \quad=P\left(\operatorname{argmax}_{s}\{\mathbb{U}(s)-t s\}<x_{0}\right) \\
& \quad=P\left(\mathbb{S}\left(x_{0}\right)<t\right)
\end{aligned}
$$

by the general version of the switching relation. Hence

$$
\sqrt{n}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d} \mathbb{S}\left(x_{0}\right) .
$$

This one-dimensional convergence extends straightforwardly to convergence of the finite-dimensional distributions, and (by monotonicity) to convergence in the Skorokhod topology on $D[a, 1-a]$ for each fixed $a \in(0,1 / 2)$.
Exercise 1. $\mathbb{S}_{n} \rightsquigarrow \mathbb{S}$ in $L_{1}([0,1], \lambda)$ with $\lambda=$ Lebesgue measure; this also holds in $L_{p}([0,1], \lambda)$ for $1 \leq p<2$, but not in $L_{2}([0,1], \lambda)$.

C. Limit theory via switching and argmax CM

C. Limit theory via switching and argmax CM

C. Limit theory via switching and argmax CM

Case 2: Prakasa Rao (1969), Groeneboom (1985). If $f_{0}\left(x_{0}\right)>$ $0, f_{0}^{\prime}\left(x_{0}\right)<0$, and f_{0}^{\prime} is continuous at x_{0}, then

$$
\begin{aligned}
\mathbb{S}_{n}\left(x_{0}, t\right) & \equiv n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}+n^{-1 / 3} c_{0} t\right)-f_{0}\left(x_{0}\right)\right) \\
& \rightarrow_{d}\left(2^{-1} f_{0}\left(x_{0}\right)\left|f_{0}^{\prime}\left(x_{0}\right)\right|\right)^{1 / 3} \mathbb{S}(t)
\end{aligned}
$$

where \mathbb{S} is the left-derivative of the least concave majorant \mathbb{C} of $W(t)-t^{2}, W$ is a standard two-sided Brownian motion process starting at 0 , and $\left.c_{0} \equiv 4 f_{0}\left(x_{0}\right) /\left(f_{0}^{\prime}\left(x_{0}\right)\right)^{2}\right)^{1 / 3}$. In particular:

$$
\mathbb{S}_{n}\left(x_{0}\right) \equiv n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d}\left(2^{-1} f_{0}\left(x_{0}\right)\left|f_{0}^{\prime}\left(x_{0}\right)\right|\right)^{1 / 3} \mathbb{S}(0) .
$$

Proof, Case 2: By the switching relation

C. Limit theory via switching and argmax CM

$$
\begin{aligned}
& P\left(n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}+n^{-1 / 3} t\right)-f\left(x_{0}\right)\right)<y\right) \\
& \quad=P\left(\widehat{f}_{n}\left(x_{0}+n^{-1 / 3} t\right)<f\left(x_{0}\right)+y n^{-1 / 3}\right), \\
& \quad=P\left(\widehat{s}_{n}\left(f\left(x_{0}\right)+y n^{-1 / 3}\right)<x_{0}+n^{-1 / 3} t\right) \\
& \quad=P\left(\operatorname{argmax}_{v}\left\{\mathbb{F}_{n}(v)-\left(f\left(x_{0}\right)+n^{-1 / 3} y\right) v\right\}<x_{0}+n^{-1 / 3} t\right)
\end{aligned}
$$

Now we change variables $v=x_{0}+n^{-1 / 3} h$ in the argument of \mathbb{F}_{n} and center and scale to find that the right side in the last display equals

$$
\begin{align*}
& P\left(\operatorname{argmax}_{h}\left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\left(f\left(x_{0}\right)+n^{-1 / 3} y\right)\left(x_{0}+n^{-1 / 3} h\right)\right\}<t\right) \\
& =P\left(\operatorname { a r g m a x } _ { h } \left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\mathbb{F}_{n}\left(x_{0}\right)-\left(F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)\right)\right.\right. \\
& \left.\left.\quad+F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)-f\left(x_{0}\right) n^{-1 / 3} h-n^{-2 / 3} y h\right\}<t\right) . \tag{6}
\end{align*}
$$

Now the stochastic term in (6) satisfies

C. Limit theory via switching and argmax CM

$$
\begin{aligned}
& n^{2 / 3}\left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\mathbb{F}_{n}\left(x_{0}\right)-\left(F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)\right)\right\} \\
& \quad \stackrel{d}{=} n^{2 / 3-1 / 2}\left\{\mathbb{U}_{n}\left(F\left(x_{0}+n^{-1 / 3} h\right)\right)-\mathbb{U}_{n}\left(F\left(x_{0}\right)\right)\right\} \\
& =n^{1 /(2 \cdot 3}\left\{\mathbb{U}\left(F\left(x_{0}+n^{-1 / 3} h\right)\right)-\mathbb{U}\left(F\left(x_{0}\right)\right)\right\}+o_{p}(1) \quad \text { by KMT } \\
& \quad \text { or by Theorems } 2.11 .22 \text { or } 2.11 .23 \\
& \stackrel{d}{=} n^{1 / 6} W\left(f\left(x_{0}\right) n^{-1 / 3} h\right)+o_{p}(1) \\
& \stackrel{d}{=} \sqrt{f\left(x_{0}\right)} W(h)+o_{p}(1)
\end{aligned}
$$

where W is a standard two-sided Brownian motion process starting from 0 . On the other hand, with $\delta_{n} \equiv n^{-1 / 3}$,

$$
\begin{gathered}
n^{2 / 3}\left(F\left(x_{0}+n^{-1 / 3}\right)-F\left(x_{0}\right)-f\left(x_{0}\right) n^{-1 / 3} h\right) \\
=\delta_{n}^{-2}\left(F\left(x_{0}+\delta_{n} h\right)-F\left(x_{0}\right)-f\left(x_{0}\right) \delta_{n} h\right) \\
\rightarrow-b|h|^{2} \quad \text { with } \quad b=\left|f^{\prime}\left(x_{0}\right)\right| / 2
\end{gathered}
$$

by our hypotheses, while $n^{2 / 3} n^{-1 / 3} n^{-1 / 3} h=n^{0} h=h$.

C. Limit theory via switching and argmax CM

Thus it follows that the last probability above converges to

$$
\begin{aligned}
& P\left(\operatorname{argmax}_{h}\left\{\sqrt{f\left(x_{0}\right)} W(h)-b|h|^{2}-y h\right\}<t\right) \\
& \quad=P\left(\mathbb{S}_{a, b}(t)<y\right) \quad \text { by switching again }
\end{aligned}
$$

where
$\mathbb{S}_{a, b}(t)=$ slope at t of the least concave majorant of

$$
\begin{aligned}
& \quad a W(h)-b h^{2} \equiv \sqrt{f_{0}\left(x_{0}\right)} W(h)-\left|f_{0}^{\prime}\left(x_{0}\right)\right||h|^{2} / 2 \\
& \stackrel{d}{=}\left|2^{-1} f_{0}\left(x_{0}\right) f_{0}^{\prime}\left(x_{0}\right)\right| \mathbb{S}\left(t / c_{0}\right) .
\end{aligned}
$$

Exercise 2. Prove the equality in distribution in the last display.

C. Limit theory via switching and argmax CM

Exercise 3. Let

$$
\mathbb{S}_{n}\left(x_{0}, t\right) \equiv n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}+n^{-1 / 3} t\right)-f\left(x_{0}\right)\right) .
$$

Show that with $y_{0} \neq x_{0}$ and the hypotheses of Case 2 satisfied at both x_{0} and y_{0}, we have

$$
\binom{\mathbb{S}_{n}\left(x_{0}, \cdot\right)}{\mathbb{S}_{n}\left(y_{0}, \cdot\right)} \rightsquigarrow\binom{\mathbb{S}_{a, b}}{\mathbb{S}_{\tilde{a}, \tilde{b}}} \quad \text { in } \quad D[-M, M]^{2}
$$

for every $M>0$ where $a=\sqrt{f\left(x_{0}\right)}, \tilde{a}=\sqrt{f\left(y_{0}\right)}, b=\left|f^{\prime}\left(x_{0}\right)\right| / 2$, $\tilde{b}=\left|f^{\prime}\left(y_{0}\right)\right| / 2$, and $\mathbb{S}_{a, b}, \widetilde{\mathbb{S}}_{\tilde{a}, \tilde{b}}$ are the left-derivatives of the least concave majorant of $a W(h)-b h^{2}$ and $\tilde{a} \widetilde{W}-\tilde{b} h^{2}$ and where W and \widetilde{W} are independent two-sided Brownian motion processes.

C. Limit theory via switching and argmax CM

E. Other monotone function problems

- Monotone hazard (rate) function
- Regression function
- Distribution function for interval censoring model
- Cumulative mean function, panel count data
- Sub-distribution functions, competing risks with interval censored data

Monotone hazard function:

- Model: $\mathcal{H} \equiv$ all monotone increasing (or decreasing) hazard rates (wrt Lebesgue measure) on $\mathbb{R}^{+}=(0, \infty)$.

$$
h(t)=\frac{f(t)}{1-F(t)} ; \quad f(t)=h(t) \exp \left(-\int_{0}^{t} h(s) d s\right) \equiv h(t) \exp (-H(t))
$$

- Observations: X_{1}, \ldots, X_{n} i.i.d. f_{0} with $h_{0} \in \mathcal{H}$.
- MLE: $\widehat{f}_{n} \equiv \operatorname{argmax}_{h \in \mathcal{H}}\left\{\sum_{i=1}^{n}\left\{\log h\left(X_{i}\right)-H\left(X_{i}\right)\right\}\right\}$

E. Other monotone function problems

Monotone regression:

- Model: $Y=r(x)+\epsilon$ where
$r \in \mathcal{M} \equiv\{$ all monotone (increasing) functions from D to $\mathbb{R}\}$
$E(\epsilon)=0, \operatorname{Var}(\epsilon)<\infty$.
- Observations: $\left\{\left(x_{n, i}, Y_{n, i}\right): i=1, \ldots, n\right\}$ where $Y_{n, i}=$ $r_{0}\left(x_{n, i}\right)+\epsilon_{n, i}$ for some $r_{0} \in \mathcal{M}$ and $x_{n, 1} \leq \ldots \leq x_{n, n}$.
- LSE (=MLE for Gaussian ϵ 's):

$$
\widehat{r}_{n} \equiv \operatorname{argmin}_{r \in \mathcal{M}_{n}} \frac{1}{2} \sum_{i=1}^{n}\left(Y_{n, i}-r\left(x_{n, i}\right)^{2}\right.
$$

where $\mathcal{M}_{n} \subset \mathcal{M}$ is the subclass of monotone functions which are linear between successive $x_{n, i}$'s and the left and right of the range of the $x_{n, i}$'s.

E. Other monotone function problems

Interval censoring case $1=$ Current status data:

- Model: $X \sim F$ on $\mathbb{R}^{+}, Y \sim G$ on \mathbb{R}^{+}independent, $F \in$ $\mathcal{F} \equiv\left\{\right.$ all distribution functions on $\left.\mathbb{R}^{+}\right\}$.
Observe $(Y, \Delta) \equiv\left(Y, 1_{[X \leq Y]}\right)$, so that

$$
(\Delta \mid Y) \sim \operatorname{Bernoulli}(F(Y)) .
$$

Thus the density of (Y, Δ) with respect to $G \times$ counting measure on $\{0,1\}$ is

$$
p(y, \delta ; F)=F(y)^{\delta}(1-F(y))^{1-\delta} .
$$

- Observations: $\left\{\left(Y_{i}, \Delta_{i}\right): i=1, \ldots, n\right\}$ i.i.d. as (Y, Δ).
- MLE:

$$
\widehat{F}_{n}=\operatorname{argmax}_{F \in \mathcal{F}}\left\{\mathbb{P}_{n}(\Delta \log F+(1-\Delta) \log (1-F)\} .\right.
$$

E. Other monotone function problems

Panel count data:
See Zhang and W (2000), (2007)
Competing risks data with current status observations: See Groeneboom, Maathuis and W (2008a, 2008b)

F. Other properties of \hat{f}_{n}

- (a) \hat{f}_{n} is not consistent at zero; general limit behavior at zero.
- (b) connections to unimodal density estimators
- (c) L_{1} metric behavior: Groeneboom (1985), GHL (1999)
- (d) global upper bounds,
L_{1} \& Hellinger: Birgé/Groeneboom/van de Geer
- (e) linear functionals
- (f) Marshall's lemma and Kiefer - Wolfowitz theory

Outline: (tomorrow)

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

