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Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

(and comparisons?)

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open problems
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Outline: Lecture 1

• A: Maximum likelihood and least squares estimators

(and more?)

• B: Switching: a simple key result

• C: Limit theory via switching and argmax

continuous mapping

• D: Complements: Pollard’s localization method ??

• E: Other nonparametric function estimation problems ??
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A. Maximum likelihood, monotone density

• Model: D ≡ all monotone decreasing densities (wrt Lebesgue

measure) on R+ = (0,∞).

• Observations: X1, . . . , Xn i.i.d. f0 ∈ D.

• MLE: f̂n ≡ argmaxf∈D
{∑n

i=1 logf(Xi)
}

• LSE: f̃n ≡ argminf∈Dψn(f)

where

ψn(f) ≡
1

2

∫ ∞
0

f2(x)dx−
∫ ∞

0
f(x)dFn(x)

=?
1

2

{∫ ∞
0

(f2(x)− fn(x))2dx−
∫ ∞

0
f2
n(x)dx

}
if Fn had density fn (which it doesn’t, of course!).
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A. Maximum likelihood, monotone density

Theorem. (a) f̂n = f̃n exists and is unique. It is a piecewise

constant function with jumps (down) only at the order statistics.

(b) The MLE f̂n is characterized by the “Fenchel” conditions

Fn(x) ≤ F̂n(x) ≡
∫ x

0
f̂n(t)dt for all x ≥ 0, and

Fn(x) = F̂n(x) if and only if f̂n(x−) > f̂n(x+).

The equality condition in the last display can be rewritten as∫ ∞
0

(F̂n(x)− Fn(x))df̂n(x) = 0.

(c) Geometrically, f̂n is the left-derivative at x of the least

concave majorant F̂n of Fn.
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A. Maximum likelihood, monotone density
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A. Maximum likelihood, monotone density
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A. Maximum likelihood, monotone density

Proof; Existence and Uniqueness: The log-likelihood function

(divided by n) is Ln(f) = Pnlogf = n−1∑n
i=1 logf(Xi). If we

define f̌ by f̌(x) = C
∑n
i=1 f(X(i))1(X(i−1),X(i)](x) where C is

a normalizing constant to make
∫∞
0 f̆(x)dx = 1, then

Ln(f̌) = logC + Ln(f) ≥ Ln(f) since

1 =
∫ ∞

0
f̌(x)dx = C

n∑
i=1

(X(i)−X(i−1))f(X(i)) ≤ C
∫ X(n)

0
f(x)dx ≤ C.

Thus the MLE f̂n can be taken to be a histogram type

estimator with breaks only at the order statistics.

Existence follows since we can restrict the maximization of

Ln to the compact set

DM ≡ {f ∈ D : f a histogram, f(0) ≤M, f(M) = 0}

for M = max{1/X(1),2X(n)}.
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A. Maximum likelihood, monotone density

Proof; Characterization: Let M = {f : f(x) ≥ 0 for all x ≥
0, f ↘}. Then D ⊂M and M is a convex cone. We replace
maximization of the log-likelihood

Pnlogf = n−1
n∑
i=1

logf(Xi) =
∫ ∞

0
logf(x)dFn(x)

over D by minimization of

`n(f) ≡ −Pnlogf +
∫ ∞

0
f(x)dx over M.

Suppose f̂n minimizes −Pnlogf over D. Then f̂n minimizes
`n(f) over M. To see this, let g ∈ M with

∫∞
0 g(x)dx = c ∈

(0,∞). Since g/c ∈ D

`n(g)− `n(f̂n) = −Pnlog(g/c)− logc+ c+ Pnlogf̂n − 1

= `n(g/c)− `n(f̂n)− logc− 1 + c

≥ 0 + 0 = 0

since g/c ∈ D and c−1 ≥ logc. Equality holds if g = f̂n. Thus
f̂n maximizes `n over M.
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A. Maximum likelihood, monotone density

Now for g ∈M and ε > 0 consider

`n(f̂n + εg) ≥ `n(f̂n).

Thus

0 ≤ lim
ε↓0

`n(f̂n + εg)− `n(f̂n)

ε

= −
∫ ∞

0

g

f̂n
dFn +

∫ ∞
0

g(x)dx

= −
∫ ∞

0

1[0,y](x)

f̂n(x)
dFn(x) + y for all y > 0

by taking g(x) = 1[0,y](x)

= y −
∫ y

0

1

f̂n(x)
dFn(x)

=
∫ y

0

1

f̂n
d(F̂n − Fn). (1)
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A. Maximum likelihood, monotone density

If y satisfies f̂n(y−) > f̂n(y+), then the function f̂n+ ε1[0,y] ∈M
for ε < 0 and |ε| sufficiently small.

Repeating the argument for ε < 0 and these values of y yields

0 =
∫ y

0

1

f̂n
d(F̂n − Fn) if f̂n(y−) > f̂n(y+). (2)

Since f̂n is piecewise constant, the inequalities and equalities in

(1) and (2) can be rewritten as claimed:

Fn(x) ≤ F̂n(x) ≡
∫ x

0
f̂n(t)dt for all x ≥ 0, and

Fn(x) = F̂n(x) if and only if f̂n(x−) > f̂n(x+).

Now consider the LSE f̃n. Suppose that f̃n minimizes

ψn(f) =
1

2

∫ ∞
0

f2(x)dx−
∫ ∞

0
fdFn

over M.
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A. Maximum likelihood, monotone density

Then for g ∈ M and ε > 0 we have ψn(f̃n + εg) ≥ ψn(f̃n) and

hence

0 ≤ lim
ε↓0

ψn(f̃n + εg)− ψn(f̃n)

ε

=
∫ ∞

0
g(x)f̃n(x)dx−

∫ ∞
0

gdFn =
∫ ∞

0
gd(F̃n − Fn)

=
∫ y

0
d(F̃n − Fn) = F̃n(y)− Fn(y) for all y > 0 (3)

by choosing g(x) = 1[0,y](x) for x ≥ 0, y > 0. If f̃n(y−) > f̃n(y+),

then f̃n + ε1[0,y] ∈ M for ε < 0 with |ε| small, so repeating the

argument for ε < 0 and these y’s yields

F̃n(y)− Fn(y) = 0 if f̃n(y−) > f̃n(y+). (4)

But (3) and (4) give exactly the same characterization of f̃n

derived above for f̂n. Thus f̃n = f̂n in this case.
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B. Switching: a simple key result

• Groeneboom (1985), Prakasa Rao (1969)?

• Introduce first in the context of f̂n

• More general version.

Switching for f̂n: Define

ŝn(a) ≡ argmaxs≥0{Fn(s)− as}, a > 0

≡ sup{s ≥ 0 : Fn(s)− as = sup
z≥0

(Fn(z)− az)}.

Then for each fixed t ∈ (0,∞) and a > 0{
f̂n(t) < a

}
= {ŝn(a) < t} .
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B. Switching: a simple key result
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B. Switching: a simple key result

More general result: Suppose Φ : D ⊂ R → R where D is

closed. Let

Φ̂(x) ≡ least concave majorant of Φ

= inf{g(x)
∣∣∣g : D → R, g closed, g concave, g ≥ Φ}.

Let φ̂L and φ̂R denote the left and right derivatives of Φ̂.

Define

κL(y) ≡ argmaxLx{Φ(x)− yx}
= inf{x ∈ D : Φ(x)− yx = sup

z∈D
(Φ(z)− yz)},

κR(y) ≡ argmaxRx {Φ(x)− yx}
= sup{x ∈ D : Φ(x)− yx = sup

z∈D
(Φ(z)− yz)}.
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B. Switching: a simple key result

Theorem. Suppose that Φ is a proper upper-semicontinuous
real-valued function defined on a closed subset D ⊂ R. Then
Φ̂ is proper if and only if Φ ≤ l for some linear function l on
D. Furthermore, if conv(hypo(Φ)) is closed, then the functions
κL and κR are well defined and the following switching relations
hold:

φ̂L(x) < y if and only if κR(y) < x;

φ̂R(x) ≤ y if and only if κL(y) ≤ x.

Proof. See Balabdaoui, Jankowski, Pavlides, Seregin, and W
(2010) – which is based on Rockafellar (1970).

We will apply this theorem with Φ taken to be various random
processes, including:

• Φ = U, a Brownian bridge process on [0,1].

• Φ = aW (h) − bh2 for a, b > 0 and W two-sided Brownian
motion.
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B. Switching: a simple key result

Reminder:

hypo(f) = {(x, α) ∈ Rd ×R : α ≤ f(x)},

conv(C) = {
k∑
i=1

λixi : xi ∈ C, λi ≥ 0,
k∑
1

λi = 1, k ≥ 0}.

f is upper semicontinuous at all x ∈ Rd if and only if hypo(f) is

closed.
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C. Limit theory via switching and argmax CM

Two illustrative cases:

• Case 1: f0(x) = 1[0,1](x) (degenerate mixing, G = δ1).

• Case 2: f0 with f0(x0) > 0, f ′0(x0) < 0. (Strictly decreasing

at x0).

Case 1: Groeneboom (1983), Groeneboom and Pyke (1983). If

f0(x) = 1[0,1](x), then for 0 < x0 < 1,

Sn(x0) ≡
√
n(f̂n(x0)− f0(x0))→d S(x0)

where S is the left-derivative of the least concave majorant

C of a standard Brownian bridge process U on [0,1].
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C. Limit theory via switching and argmax CM

Proof, Case 1: By the switching relation

P (
√
n(f̂n(x0)− f0(x0)) < t)

= P (f̂n(x0) < f0(x0) + n−1/2t)

= P (ŝn(f0(x0) + n−1/2t) < x0)

= P (argmaxh{Fn(x0 + h)− (f0(x0) + n−1/2t)(x0 + h)} < 0)

= P (argmaxhZn(h) < 0) (5)

where, since f0(x0) = 1 implies that xf0(x0) = x0 = F (x0),

Zn(h) ≡ n1/2(Fn(x0 + h)− F (x0)− hf0(x0)− t(x0 + h)n−1/2)

= n1/2(Fn(x0 + h)− F (x0 + h))

+ n1/2(F (x0 + h)− F (x0)− hf0(x0))− t(x0 + h)

= Un(x0 + h)− t(x0 + h)

 U(x0 + h)− t(x0 + h)

where Un ≡
√
n(Fn − F ) denotes the uniform empirical process

and U denotes a Brownian bridge process.
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C. Limit theory via switching and argmax CM

Thus by the (argmax) continuous mapping theorem it follows

that the right side of (5) converges to

P (argmaxh{U(x0 + h)− t(X0 + h)} < 0)

= P (argmaxs{U(s)− ts} < x0)

= P (S(x0) < t)

by the general version of the switching relation. Hence
√
n(f̂n(x0)− f0(x0))→d S(x0). �

This one-dimensional convergence extends straightforwardly to

convergence of the finite-dimensional distributions, and (by

monotonicity) to convergence in the Skorokhod topology on

D[a,1− a] for each fixed a ∈ (0,1/2).

Exercise 1. Sn  S in L1([0,1], λ) with λ =Lebesgue measure;

this also holds in Lp([0,1], λ) for 1 ≤ p < 2, but not in L2([0,1], λ).
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C. Limit theory via switching and argmax CM
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C. Limit theory via switching and argmax CM
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C. Limit theory via switching and argmax CM

Case 2: Prakasa Rao (1969), Groeneboom (1985). If f0(x0) >

0, f ′0(x0) < 0, and f ′0 is continuous at x0, then

Sn(x0, t) ≡ n1/3(f̂n(x0 + n−1/3c0t)− f0(x0))

→d (2−1f0(x0)|f ′0(x0)|)1/3S(t)

where S is the left-derivative of the least concave majorant

C of W (t)− t2, W is a standard two-sided Brownian motion

process starting at 0, and c0 ≡ 4f0(x0)/(f ′0(x0))2)1/3. In

particular:

Sn(x0) ≡ n1/3(f̂n(x0)−f0(x0))→d (2−1f0(x0)|f ′0(x0)|)1/3S(0).

Proof, Case 2: By the switching relation
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C. Limit theory via switching and argmax CM

P (n1/3(f̂n(x0 + n−1/3t)− f(x0)) < y)

= P (f̂n(x0 + n−1/3t) < f(x0) + yn−1/3),

= P (ŝn(f(x0) + yn−1/3) < x0 + n−1/3t)

= P (argmaxv{Fn(v)− (f(x0) + n−1/3y)v} < x0 + n−1/3t)

Now we change variables v = x0 + n−1/3h in the argument of Fn
and center and scale to find that the right side in the last display

equals

P (argmaxh{Fn(x0 + n−1/3h)− (f(x0) + n−1/3y)(x0 + n−1/3h)} < t)

= P
(
argmaxh{Fn(x0 + n−1/3h)− Fn(x0)− (F (x0 + n−1/3h)− F (x0))

+ F (x0 + n−1/3h)− F (x0)− f(x0)n−1/3h− n−2/3yh} < t
)
.

(6)

Now the stochastic term in (6) satisfies
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C. Limit theory via switching and argmax CM

n2/3
{
Fn(x0 + n−1/3h)− Fn(x0)− (F (x0 + n−1/3h)− F (x0))

}
d
= n2/3−1/2

{
Un(F (x0 + n−1/3h))− Un(F (x0))

}
= n1/(2·3

{
U(F (x0 + n−1/3h))− U(F (x0))

}
+ op(1) by KMT

or by Theorems 2.11.22 or 2.11.23
d
= n1/6W (f(x0)n−1/3h) + op(1)
d
=

√
f(x0)W (h) + op(1)

where W is a standard two-sided Brownian motion process

starting from 0. On the other hand, with δn ≡ n−1/3,

n2/3
(
F (x0 + n−1/3)− F (x0)− f(x0)n−1/3h

)
= δ−2

n (F (x0 + δnh)− F (x0)− f(x0)δnh)

→ −b|h|2 with b = |f ′(x0)|/2

by our hypotheses, while n2/3n−1/3n−1/3h = n0h = h.
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C. Limit theory via switching and argmax CM

Thus it follows that the last probability above converges to

P

(
argmaxh

{√
f(x0)W (h)− b|h|2 − yh

}
< t

)
= P (Sa,b(t) < y) by switching again

where

Sa,b(t) = slope at t of the least concave majorant of

aW (h)− bh2 ≡
√
f0(x0)W (h)− |f ′0(x0)||h|2/2

d
= |2−1f0(x0)f ′0(x0)|S(t/c0).

Exercise 2. Prove the equality in distribution in the last display.
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C. Limit theory via switching and argmax CM

Exercise 3. Let

Sn(x0, t) ≡ n1/3(f̂n(x0 + n−1/3t)− f(x0)).

Show that with y0 6= x0 and the hypotheses of Case 2 satisfied

at both x0 and y0, we have(
Sn(x0, ·)
Sn(y0, ·)

)
 

(
Sa,b
S̃ã,̃b

)
in D[−M,M ]2

for every M > 0 where a =
√
f(x0), ã =

√
f(y0), b = |f ′(x0)|/2,

b̃ = |f ′(y0)|/2, and Sa,b, S̃ã,̃b are the left-derivatives of the least

concave majorant of aW (h) − bh2 and ãW̃ − b̃h2 and where W

and W̃ are independent two-sided Brownian motion processes.
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C. Limit theory via switching and argmax CM
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E. Other monotone function problems

• Monotone hazard (rate) function

• Regression function

• Distribution function for interval censoring model

• Cumulative mean function, panel count data

• Sub-distribution functions, competing risks with interval
censored data

Monotone hazard function:

• Model: H ≡ all monotone increasing (or decreasing)
hazard rates (wrt Lebesgue measure) on R+ = (0,∞).

h(t) =
f(t)

1− F (t)
; f(t) = h(t)exp

(
−
∫ t

0
h(s)ds

)
≡ h(t)exp (−H(t)) .

• Observations: X1, . . . , Xn i.i.d. f0 with h0 ∈ H.

• MLE: f̂n ≡ argmaxh∈H
{∑n

i=1{logh(Xi)−H(Xi)}
}
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E. Other monotone function problems

Monotone regression:

• Model: Y = r(x) + ε where

r ∈M ≡ {all monotone (increasing) functions from D to R}

E(ε) = 0, V ar(ε) <∞.

• Observations: {(xn,i, Yn,i) : i = 1, . . . , n} where Yn,i =

r0(xn,i) + εn,i for some r0 ∈M and xn,1 ≤ . . . ≤ xn,n.

• LSE (=MLE for Gaussian ε’s):

r̂n ≡ argminr∈Mn

1

2

n∑
i=1

(Yn,i − r(xn,i)2

where Mn ⊂ M is the subclass of monotone functions

which are linear between successive xn,i’s and the left and

right of the range of the xn,i’s.
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E. Other monotone function problems

Interval censoring case 1 = Current status data:

• Model: X ∼ F on R+, Y ∼ G on R+ independent, F ∈
F ≡ {all distribution functions on R+}.
Observe (Y,∆) ≡ (Y,1[X≤Y ]), so that

(∆|Y ) ∼ Bernoulli(F (Y )).

Thus the density of (Y,∆) with respect to

G× counting measure on{0,1} is

p(y, δ;F ) = F (y)δ(1− F (y))1−δ.

• Observations: {(Yi,∆i) : i = 1, . . . , n} i.i.d. as (Y,∆).

• MLE:

F̂n = argmaxF∈F {Pn(∆logF + (1−∆)log(1− F )} .
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E. Other monotone function problems

Panel count data:

See Zhang and W (2000), (2007)

Competing risks data with current status observations:

See Groeneboom, Maathuis and W (2008a, 2008b)
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F. Other properties of f̂n

• (a) f̂n is not consistent at zero; general limit behavior at

zero.

• (b) connections to unimodal density estimators

• (c) L1 metric behavior: Groeneboom (1985), GHL (1999)

• (d) global upper bounds,

L1 & Hellinger: Birgé/Groeneboom/van de Geer

• (e) linear functionals

• (f) Marshall’s lemma and Kiefer - Wolfowitz theory
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Outline: (tomorrow)

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open problems
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