Nonparametric estimation

under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France August 30 - September 3, 2010

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: d = 1 and beyond
- L5: More on higher dimensions and some open problems

- A: Local asymptotic minimax lower bounds
- B: Lower bounds for estimation of a monotone density Several scenarios
- C: Global lower bounds and upper bounds (briefly)
- D: Lower bounds for estimation of a convex density
- E: Lower bounds for estimation of a log-concave density

Proposition. (Two-point lower bound) Let \mathcal{P} be a set of probability measures on a measurable space $(\mathbb{X}, \mathcal{A})$, and let ν be a real-valued function defined on \mathcal{P} . Moreover, let $l : [0, \infty) \rightarrow [0, \infty)$ be an increasing convex loss function with l(0) = 0. Then, for any $P_1, P_2 \in \mathcal{P}$ such that $H(P_1, P_2) < 1$ and with

$$E_{n,i}f(X_1,\ldots,X_n) = E_{n,i}f(X) = \int f(x)dP_i^n(x)$$
$$\equiv \int f(x_1,\ldots,x_n)dP_i(x_1)\cdots dP_i(x_n),$$

for i = 1, 2, it follows that

$$\inf_{T_n} \max\left\{ E_{n,1}l(|T_n - \nu(P_1)|), E_{n,2}l(|T_n - \nu(P_2)|) \right\}$$
(1)

$$\geq l\left(\frac{1}{4}|\nu(P_1) - \nu(P_2)|\{1 - H^2(P_1, P_2)\}^{2n}\right).$$

Proof. By Jensen's inequality

$$E_{n,i}l(|T_n - \nu(P_i)|) \ge l(E_{n,i}|T_n - \nu(P_i)|), \quad i = 1, 2,$$

and hence the left side of (??) is bounded below by

$$l\left(\inf_{T_n} \max\{E_{n,1}|T_n-\nu(P_1)|, E_{n,2}|T_n-\nu(P_2)|\right).$$

Thus it suffices to prove the proposition for l(x) = x. Let $p_1 \equiv dP_1/(d(P_1 + P_2), p_2 = dP_2/d(P_1 + P_2))$, and $\mu = P_1 + P_2$ (or let p_i be the density of P_i with respect to some other convenient dominating measure μ , i = 1, 2).

A. Local asymptotic minimax lower bounds

Two Facts:

Fact 1: Suppose P, Q abs. cont. wrt μ ,

$$H^{2}(P,Q) \equiv 2^{-1} \int \{\sqrt{p} - \sqrt{q}\}^{2} d\mu = 1 - \int \sqrt{pq} d\mu \equiv 1 - \rho(P,Q).$$

Then

$$(1-H^2(P,Q))^2 \leq 1-\left\{1-\int (p\wedge q)\,d\mu\right\}^2 \leq 2\int (p\wedge q)\,d\mu\,.$$

Fact 2: If *P* and *Q* are two probability measures on a measurable space (X, A) and P^n and Q^n denote the corresponding product measures on (X^n, A_n) (of X_1, \ldots, X_n i.i.d. as *P* or *Q* respectively), then $\rho(P, Q) \equiv \int \sqrt{pq} d\mu$ satisfies

$$\rho(P^n, Q^n) = \rho(P, Q)^n \,. \tag{2}$$

Exercise. Prove Fact 1.Exercise. Prove Fact 2.

A. Local asymptotic minimax lower bounds

$$\begin{aligned} \max\left\{E_{n,1}|T_n - \nu(P_1)|, \ E_{n,2}|T_n - \nu(P_2)|\right\} \\ &\geq \frac{1}{2}\left\{E_{n,1}|T_n - \nu(P_1)| + E_{n,2}|T_n - \nu(P_2)|\right\} \\ &= \frac{1}{2}\left\{\int |T_n(x) - \nu(P_1)| \prod_{i=1}^n p_1(x_i)d\mu(x_1)\cdots d\mu(x_n) + \int |T_n(x) - \nu(P_2)| \prod_{i=1}^n p_2(x_i)d\mu(x_1)\cdots d\mu(x_n)\right\} \\ &\geq \frac{1}{2}\left\{\int [|T_n(x) - \nu(P_1)| + |T_n(x) - \nu(P_2)|] \prod_{i=1}^n p_1(x_i) \wedge \prod_{i=1}^n p_2(x_i)d\mu(x_1) \\ &\geq \frac{1}{2}|\nu(P_1) - \nu(P_2)| \int \prod_{i=1}^n p_1(x_i) \wedge \prod_{i=1}^n p_2(x_i)d\mu(x_1)\cdots d\mu(x_n) \\ &\geq \frac{1}{4}|\nu(P_1) - \nu(P_2)|\{1 - H^2(P_1^n, P_2^n)\}^2 \quad \text{by Fact 1} \\ &= \frac{1}{4}|\nu(P_1) - \nu(P_2)|\{1 - H^2(P_1, P_2)\}^{2n} \quad \text{by Fact 2}. \end{aligned}$$

Several scenarios, estimation of $f(x_0)$:

- **S1** When $f(x_0) > 0$, $f'(x_0) < 0$.
- **S2** When $x_0 \in (a, b)$ with f(x) constant on (a, b). In particular, $f(x) = 1_{[0,1]}(x)$, $x_0 \in (0,1)$.
- **S3** When f is discontinuous at x_0 .
- **S4** When $f^{(j)}(x_0) = 0$ for j = 1, ..., k 1, $f^{(k)}(x_0) \neq 0$.

B. Lower bounds, monotone density

B. Lower bounds, monotone density

S1: $f_0(x_0) > 0$, $f'_0(x_0) < 0$. Suppose that we want to estimate $\nu(f) = f(x_0)$ for a fixed Let f_0 be the density corresponding to P_0 , and suppose that $f'_0(x_0) < 0$. To apply our two-point lower bound Proposition we need to construct a sequence of densities f_n that are "near" f_0 in the sense that

$$nH^2(f_n, f_0) \rightarrow A$$

for some constant A, and

$$|\nu(f_n) - \nu(f_0)| = b_n^{-1}$$

where $b_n \to \infty$. Hence we will try the following choice of f_n . For c > 0, define

$$f_n(x) = \begin{cases} f_0(x) & \text{if } x \le x_0 - cn^{-1/3} \text{ or } x > x_0 + cn^{-1/3}, \\ f_0(x_0 - cn^{-1/3}) & \text{if } x_0 - cn^{-1/3} < x \le x_0, \\ f_0(x_0 + cn^{-1/3}) & \text{if } x_0 < x \le x_0 + cn^{-1/3}. \end{cases}$$

B. Lower bounds, monotone density

B. Lower bounds, monotone density

It is easy to see that

$$n^{1/3}|\nu(f_n) - \nu(f_0)| = |n^{1/3}(f_0(x_0 - cn^{-1/3}) - f_0(x_0))| \rightarrow |f'_0(x_0)|c$$
(3)

On the other hand some calculation shows that

$$H^{2}(p_{n},p_{0}) = \frac{1}{2} \int_{0}^{\infty} [\sqrt{f_{n}(x)} - \sqrt{f_{0}(x)}]^{2} dx$$

$$= \frac{1}{2} \int_{0}^{\infty} \frac{[\sqrt{f_{n}(x)} - \sqrt{f_{0}(x)}]^{2} [\sqrt{f_{n}(x)} + \sqrt{f_{0}(x)}]^{2}}{[\sqrt{f_{n}(x)} + \sqrt{f_{0}(x)}]^{2}} dx$$

$$= \frac{1}{2} \int_{x_{0}-cn^{-1/3}}^{x_{0}+cn^{-1/3}} \frac{[f_{n}(x) - f_{0}(x)]^{2}}{[\sqrt{f_{n}(x)} + \sqrt{f_{0}(x)}]^{2}} dx$$

$$\sim \frac{f_{0}'(x_{0})^{2} c^{3}}{4f_{0}(x_{0}) \frac{3n}{3n}}.$$

Now we can combine these two pieces with our two-point lower bound Proposition to find that, for any estimator T_n of $\nu(f) = f(x_0)$ and the loss function l(x) = |x| we have

$$\inf_{T_n} \max\left\{ E_n n^{1/3} | T_n - \nu(f_n) |, E_0 n^{1/3} | T_n - \nu(f_0) | \right\} \\
\geq \frac{1}{4} | n^{1/3} (\nu(f_n) - \nu(f_0)) | \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n} \\
= \frac{1}{4} | n^{1/3} (f_0(x_0 - cn^{-1/3}) - f_0(x_0)) | \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n} \\
\rightarrow \frac{1}{4} | f_0'(x_0) | c \exp\left(-2 \frac{f_0'(x_0)^2}{12 f_0(x_0)} c^3 \right) = \frac{1}{4} | f_0'(x_0) | c \exp\left(-\frac{f_0'(x_0)^2}{6 f_0(x_0)} c^3 \right)$$

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when

$$c = c_0 \equiv \left(\frac{2f_0(x_0)}{f'_0(x_0)^2}\right)^{1/3}$$

This yields

$$\lim_{n \to \infty} \inf_{T_n} \max \left\{ E_n n^{1/3} |T_n - \nu(f_n)|, E_0 n^{1/3} |T_n - \nu(f_0)| \right\}$$
$$\geq \frac{e^{-1/3}}{4} \left(2|f_0'(x_0)| f_0(x_0) \right)^{1/3}.$$

This lower bound has the appropriate structure in the sense that the (nonparametric) MLE of f, $\hat{f}_n(x_0)$ converges at rate $n^{1/3}$ and it has the same dependence on $f_0(x_0)$ and $f'_0(x_0)$ as does the MLE.

Furthermore, note that for \boldsymbol{n} sufficiently large

$$\sup_{\substack{f:H(f,f_0) \le Cn^{-1/2}}} E_f |T_n - \nu(f)|$$

$$\geq \max\left\{ E_n n^{1/3} |T_n - \nu(f_n)|, E_0 n^{1/3} |T_n - \nu(f_0)| \right\}$$

if $C^2 > 2A \equiv 2f'_0(x_0)^2 c_0^3 / (12f_0(x_0))$, and hence we conclude that

$$\begin{aligned} & \liminf_{n \to \infty} \inf_{T_n} \sup_{f: H(f, f_0) \le Cn^{-1/2}} E_f |T_n - \nu(f) \\ & \ge \frac{e^{-1/3}}{4} \left(2|f_0'(x_0)| f_0(x_0) \right)^{1/3} \\ & = \frac{e^{-1/3}}{4^{2/3}} \left(2^{-1} |f_0'(x_0)| f_0(x_0) \right)^{1/3} \end{aligned}$$

for all C sufficiently large.

Comparison of $E|\mathbb{S}(0)|$ with $\frac{e^{-1/3}}{4^{2/3}} = 0.284356$? From Groeneboom and Wellner (2001), $E|\mathbb{S}(0)| = 2E|Z| = 2(.41273655) = 0.825473$.

S2: $x_0 \in (a,b)$ with $f_0(x) = f_0(x_0) > 0$ for all $x \in (a,b)$. To apply our two-point lower bound Proposition we again need to construct a sequence of densities f_n that are "near" f_0 in the sense that $nH^2(f_n, f_0) \rightarrow A$ for some constant A, and $|\nu(f_n) - \nu(f_0)| = b_n^{-1}$ where $b_n \rightarrow \infty$. In this scenario we define a sequence of densities $\{f_n\}$ by

$$f_n(x) = \begin{cases} f_0(x), & x \le a_n \\ f_0(x) + \frac{c}{\sqrt{n}} \frac{b-a}{x_0 - a} , & a_n < x \le x_0 \\ f_0(x) - \frac{c}{\sqrt{n}} \frac{b-a}{b - x_0} & x_0 < x < \tilde{b}_n \\ f_0(x), & b \ge b_n. \end{cases}$$

where

$$a_n \equiv \sup\{x : f_0(x) \ge f_0(x_0) + cn^{-1/2}(b-a)/(x_0-a)\}$$

$$b_n \equiv \inf\{x : f_0(x) < f_0(x_0) - cn^{-1/2}(b-a)/(b-x_0)\}.$$

The intervals (a_n, a) and (b, \tilde{b}_n) may be empty if f(a-) > f(a+)and/or f(b+) < f(b-) and n is large.

It is easy to see that

$$\sqrt{n}|\nu(f_n) - \nu(f_0)| = \sqrt{n}|f_n(x_0) - f_0(x_0)| = c\frac{b-a}{x_0 - a}$$
(4)

On the other hand some calculation shows that

$$H^{2}(f_{n}, f_{0}) \sim \frac{c^{2}(b-a)^{2}}{4nf_{0}(x_{0})} \left\{ \frac{1}{x_{0}-a} + \frac{1}{b-x_{0}} \right\}$$
$$= \frac{c^{2}(b-a)^{3}}{4nf_{0}(x_{0})(x_{0}-a)(b-x_{0})}.$$

Combining these two pieces with the two-point lower bound Proposition we find that, in scenario 2, for any estimator T_n of $\nu(f) = f(x_0)$ and the loss function l(x) = |x| we have

$$\inf_{T_n} \max\left\{ E_n \sqrt{n} |T_n - \nu(f_n)|, E_0 \sqrt{n} |T_n - \nu(f_0)| \right\}$$

$$\geq \frac{1}{4} |\sqrt{n} (\nu(f_n) - \nu(f_0))| \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n}$$

$$= \frac{1}{4} c \frac{b - a}{x_0 - a} \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n}$$

$$\rightarrow \frac{1}{4} c \frac{b - a}{x_0 - a} \exp\left(- \frac{c^2(b - a)^3}{2f_0(x_0)(x_0 - a)(b - x_0)} \right)$$

$$\equiv Ac \exp(-Bc^2)$$

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when $c = c_0 \equiv 1/\sqrt{2B}$, with $Ac_0 \exp(-Bc_0^2) = Ac_0 \exp(-1/2)$ and

$$c_0 = \left(\frac{f_0(x_0)}{(x_0 - a)(b - x_0)}(b - a)^3\right)^{1/2}$$

$$\liminf_{n \to \infty} \inf_{T_n} \max \left\{ E_n \sqrt{n} |T_n - \nu(f_n)|, \ E_0 \sqrt{n} |T_n - \nu(f_0)| \right\}$$
$$\geq \frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \sqrt{\frac{b-x_0}{x_0-a}}.$$

Repeating this argument with the right-continuous version of the sequence $\{f_n\}$ yields a similar bound, but with the factor $\sqrt{(b-x_0)/(x_0-a)}$ replaced by $\sqrt{(x_0-a)/(b-x_0)}$.

By taking the maximum of the two lower bounds yields the last display with the right side replaced by

$$\frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \max\left\{\sqrt{\frac{b-x_0}{x_0-a}}, \sqrt{\frac{x_0-a}{b-x_0}}\right\}$$
$$\geq \frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \left\{\sqrt{\frac{b-x_0}{x_0-a}} \cdot \frac{b-x_0}{b-a} + \sqrt{\frac{x_0-a}{b-x_0}} \cdot \frac{x_0-a}{b-a}\right\}.$$

This lower bound has the appropriate structure in the sense that the MLE of f, $\hat{f}_n(x_0)$ converges at rate $n^{1/2}$ and the limiting behavior of the MLE has exactly the same dependence on $f_0(x_0)$, b-a, $x_0 - a$, and $b - x_0$. **Theorem. (Carolan and Dykstra, 1999)** If f_0 is decreasing with f_0 constant on (a, b), the maximal open interval containing x_0 , then, with $p \equiv f_0(x_0)(b-a) = P_0(a < X < b)$,

$$\sqrt{n}(\widehat{f}_n(x_0) - f_0(x_0)) \to_d \sqrt{\frac{f_0(x_0)}{b-a}} \left\{ \sqrt{1-p}Z + \mathbb{S}\left(\frac{x_0-a}{b-a}\right) \right\}$$

where $Z \sim N(0,1)$ and \mathbb{S} is the process of left-derivatives of the least concave majorant $\widehat{\mathbb{U}}$ of a Brownian bridge process \mathbb{U} independent of Z.

Note that by using Groeneboom (1983)

$$E\Big|\sqrt{\frac{f_0(x_0)}{b-a}}\Big\{\sqrt{1-p}Z + \mathbb{S}\left(\frac{x_0-a}{b-a}\right)\Big\}\Big|$$

$$\geq \sqrt{\frac{f_0(x_0)}{b-a}}E\Big|\mathbb{S}\left(\frac{x_0-a}{b-a}\right)\Big|$$

$$= \sqrt{\frac{f_0(x_0)}{b-a}}2\sqrt{\frac{2}{\pi(b-a)}}\Big\{\frac{(b-x_0)^{3/2}}{(x_0-a)^{1/2}} + \frac{(x_0-a)^{3/2}}{(b-x_0)^{1/2}}\Big\}.$$

S3: $f_0(x_0-) > f_0(x_0+)$. In this case we consider estimation of the functional $\nu(f) = (f(x_0+) + f(x_0-))/2 \equiv \overline{f}(x_0)$. To apply our two-point lower bound Proposition, consider the following choice of f_n : for c > 0, define

$$\tilde{f}_n(x) = \begin{cases} f_0(x) & \text{if } x \leq x_0 \text{ or } x > b_n, \\ f_0(x_0) & +(x-x_0)\frac{f_0(b_n) - f_0(x_0)}{c/n} & \text{if } x_0 < x \leq b_n. \end{cases}$$
where $b_n \equiv x_0 + c/n$. Then define $f_n = \tilde{f}_n / \int_0^\infty \tilde{f}_n(y) dy$.
In this case

$$\nu(f_n) - \nu(f_0) = f_n(x_0) - f_0(x_0 - 1) = \frac{\tilde{f}_n(x_0)}{1 + o(1)} - \frac{f_0(x_0 + 1) + f_0(x_0 - 1)}{2}$$
$$= \frac{1}{2}(f_0(x_0 - 1) - f_0(x_0 + 1)) + o(1) \equiv d + o(1).$$

Statistical Seminar, Fréjus

In

Some calculation shows that

$$H^{2}(f_{n}, f_{0}) = \frac{cr^{2}}{n}(1 + o(1))$$
 where

$$r^{2} = \frac{\{\sqrt{f_{0}(x_{0}-)} - \sqrt{f_{0}(x_{0}+)}\}^{2}\{3\sqrt{f_{0}(x_{0}-)} + \sqrt{f_{0}(x_{0}+)}\}}{\sqrt{f_{0}(x_{0}-)} + \sqrt{f_{0}(x_{0}+)}}.$$

Combining these pieces with the two-point lower bound yields

$$\begin{aligned} \inf_{T_n} \max \left\{ E_n | T_n - \nu(f_n) |, \ E_0 | T_n - \nu(f_0) | \right\} \\ & \geq \frac{1}{4} | \nu(f_n) - \nu(f_0) | \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n} \\ & = \frac{1}{8} \left(f_0(x_0 -) - f_0(x_0 +) \right) \left(1 + o(1) \right) \left\{ 1 - \frac{cr^2(1 + o(1))}{n} \right\}^{2n} \\ & \rightarrow \frac{d}{4} \exp\left(-cr^2 \right) = \frac{d}{4e} \quad \text{by choosing} \quad c = 1/r^2. \end{aligned}$$

This corresponds to the following theorem for the MLE \hat{f}_n :

Theorem. (Anevski and Hössjer, 2002; W, 2007) If x_0 is a discontinuity point of f_0 , $d \equiv (f_0(x_0-) - f_0(x_0+))/2$ with $f_0(x_0+) > 0$ and $\overline{f}(x_0) \equiv (f_0(x_0) + f_0(x_0-))/2$, then

$$\widehat{f}_n(x_0) - \overline{f}_0(x_0) \to_d \mathbb{R}(0)$$

where $h \mapsto \mathbb{R}(h)$ is the process of left-derivatives of the least concave majorant $\widehat{\mathbb{M}}$ of the process \mathbb{M} defined by

$$\mathbb{M}(h) = \mathbb{N}_{0}(h) - d|h| \equiv \begin{cases} \mathbb{N}(f_{0}(x_{0}+)h) - f_{0}(x_{0}+)h - dh, & h \ge 0\\ -\mathbb{N}(f_{0}(x_{0}-)h) - f_{0}(x_{0}-)h + dh, & h < 0 \end{cases}$$

where \mathbb{N} is a standard (rate 1) two-sided Poisson process on \mathbb{R} .

B. Lower bounds, monotone density

S4: $f_0(x_0) > 0$, $f_0^{(j)}(x_0) = 0$, j = 1, 2, ..., p-1, and $f_0^{(p)}(x_0) \neq 0$. In this case, consider the perturbation f_{ϵ} of f_0 given for $\epsilon > 0$ by

$$f_{\epsilon}(x) = \begin{cases} f_0(x) & \text{if } x \leq x_0 - \epsilon \text{ or } x > x_0 + \epsilon, \\ f_0(x_0 - \epsilon) & \text{if } x_0 - \epsilon < x \leq x_0 \\ f_0(x_0 + \epsilon) & \text{if } x_0 < x \leq x_0 + \epsilon. \end{cases}$$

Then for $\nu(f) = f(x_0)$

$$\nu(f_{\epsilon}) - \nu(f_{0}) \sim \frac{|f_{0}^{(p)}(x_{0})|}{p!} \epsilon^{p},$$

$$H^{2}(f_{\epsilon}, f_{0}) \sim A_{p} \frac{|f_{0}^{(p)}(x_{0})|^{2}}{f_{0}(x_{0})} \epsilon^{2p+1} \equiv B_{p} \epsilon^{2p+1}$$

where

$$A_p \equiv \frac{2p^2}{(2p!)^2(2p^2 + 3p + 1)}.$$

B. Lower bounds, monotone density

Choosing $\epsilon = cn^{-1/(2p+1)}$, plugging into our two-point bound, and optimizing with respect to c yields

$$\begin{aligned} \inf_{T_n} \max\left\{ n^{p/(2p+1)} E_n | T_n - \nu(f_n)|, \ n^{p/(2p+1)} E_0 | T_n - \nu(f_0)| \right\} \\ &\geq \frac{1}{4} |\nu(f_n) - \nu(f_0)| \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n} \\ &\rightarrow \frac{1}{4} \frac{|f_0^{(p)}(x_0)|}{p!} c^p \exp\left(-2B_p c^{2p+1}\right) \\ &= D_p \left(|f_0^{(p)}(x_0)| f_0(x_0)^p \right)^{1/(2p+1)} \text{ taking } c = \left(\frac{p}{(2p+1)B_p} \right)^{1/(2p+1)} \end{aligned}$$

with

$$D_p \equiv \frac{1}{4p!} \cdot \left(\frac{p^p}{(2p+1)A_p^p}\right)^{1/(2p+1)} \exp(-p/(2p+1)).$$

The resulting lower bound corresponds to the following theorem for \hat{f}_n :

Theorem. (Wright (1981); Leurgans (1982); Anevski and Hössjer (2002)) Suppose that $f_0^{(j)}(x_0) = 0$ for j = 1, ..., p - 1, $f_0^{(p)}(x_0) \neq 0$, and $f_0^{(p)}$ is continuous at x_0 . Then

$$m^{p/(2p+1)}(\widehat{f}_n(x_0+n^{-1/(2p+1)}t)-f_0(x_0)) \to_d C_p \mathbb{S}_p(t)$$

where \mathbb{S}_p is the process given by the left-derivatives of the least concave majorant $\widehat{\mathbb{Y}}_p$ of $\mathbb{Y}_p(t) \equiv W(t) - |t|^{p+1}$, and where

$$C_p = \left(f_0(x_0)^p |f_0^{(p)}(x_0)| / (p+1)! \right)^{1/(2p+1)}$$

In particular

$$n^{p/(2p+1)}(\widehat{f}_n(x_0) - f_0(x_0)) \to_d C_p \mathbb{S}_p(0)$$

Proof. Switching + (argmax-)continuous mapping theorem.

- **Summary:** The MLE \hat{f}_n is *locally adaptive* to f_0 , at least in scenarios 1-4.
- **S1:** rate $n^{1/3}$; localization $n^{-1/3}$; constants agree with minimax lower bound.
- **S2:** rate $n^{1/2}$; localization $n^0 = 1$, *none*; constants agree with minimax bound.
- **S3:** rate $n^0 = 1$; localization n^{-1} ; constants agree(?).
- **S4:** rate $n^{p/(2p+1)}$; localization $n^{-1/(2p+1)}$; constants agree.

Birgé (1986, 1989) expresses the global optimality of \hat{f}_n in terms of its L_1 -risks as follows:

Lower bound: Birgé (1987). Let \mathcal{F} denote the class of all decreasing densities f on [0,1] satisfying $f \leq M$ with M > 1. Then the minimax risk for \mathcal{F} with respect to the L_1 metric $d_1(f,g) \equiv \int |f(x) - g(x)| dx$ based on n observations is

$$R_M(d_1, n) \equiv \inf_{\widehat{f}_n} \sup_{f \in \mathcal{F}} E_f d_1(\widehat{f}_n, f).$$

Then there is an absolute constant C such that

$$R_M(d_1, n) \ge C \left(\frac{\log M}{n}\right)^{1/3}$$

Upper bound, Grenander: Birgé (1989). Let \hat{f}_n denote the Grenander estimator of $f \in \mathcal{F}$. Then

$$\sup_{f \in \mathcal{F}_M} E_f d_1(\widehat{f}_n, f) \le 4.75 \left(\frac{\log M}{n}\right)^{1/3}.$$

C: Global lower and upper bounds (briefly)

Birgé's bounds are complemented by the remarkable results of Groeneboom (1985), Groeneboom, Hooghiemstra, and Lopuhaa (1999). Set

$$V(t) \equiv \sup\{s: W(s) - (s - t)^2 \text{ is maximal}\}$$

where W is a standard two-sided Brownian motion process starting from 0.

Theorem. (Groeneboom (1985), GHL (1999)) Suppose that f is a decreasing density on [0, 1] satisfying:

- A1. $0 < f(1) \le f(y) \le f(x) \le f(0) < \infty$ for $0 \le x \le y \le 1$.
- A2. $0 < \inf_{0 < x < 1} |f'(x)| \le \sup_{0 < x < 1} |f'(x)| < \infty$.
- A3. $\sup_{0 < x < 1} |f''(x)| < \infty$.

Then, with $\mu = 2E|V(0)|\int_0^1 |\frac{1}{2}f'(x)f(x)|^{1/3}dx$,

$$n^{1/6}\left\{n^{1/3}\int_0^1|\widehat{f}_n(x)-f(x)|dx-\mu\right\}\to_d \sigma Z\sim N(0,\sigma^2)$$

where $\sigma^2 = 8 \int_0^\infty Cov(|V(0)|, |V(t) - t|) dt$.

Now consider estimation of a *convex decreasing density* f on $[0,\infty)$. (Original motivation: Hampel's (1987) bird-migration problem.) Since f' exists almost everywhere, we are now interested in in estimation of $\nu_1(f) = f(x_0)$ and $\nu_2(f) = f'(x_0)$.

We let \mathcal{D}_2 denote the class of all convex decreasing densities on \mathbb{R}^+ . Note that every $f \in \mathcal{D}_2$ can be written as a scale mixture of the triangular (or Beta(1,2)) density: if $f \in \mathcal{D}_2$, then

$$f(x) = \int_0^\infty 2y^{-1} (1 - x/y)_+ dG(y)$$

for some (mixing) distribution G on $[0, \infty)$. This corresponds to the fact that monotone decreasing density $f \in \mathcal{D} \equiv \mathcal{D}_1$ can be written as a scale mixture of the Uniform(0, 1) (or Beta(1, 1)) density: if $f \in \mathcal{D}_1$, then

$$f(x) = \int_0^\infty y^{-1} \mathbf{1}_{[0,y]}(x) dG(y)$$

for some distribution G on $[0,\infty)$.

Scenario 1: Suppose that $f_0 \in \mathcal{D}_2$ and $x_0 \in (0,\infty)$ satisfy $f_0(x_0) > 0$, $f_0''(x_0) > 0$, and f_0'' is continuous at x_0 .

To establish lower bounds, consider the perturbations \tilde{f}_ϵ of f_0 given by

$$\tilde{f}_{\epsilon}(x) = \begin{cases} f_0(x_0 - \epsilon c_{\epsilon}) + (x - x_0 + \epsilon c_{\epsilon})f'_0(x_0 - \epsilon c_{\epsilon}), & x \in (x_0 - \epsilon c_{\epsilon}, x_0 - \epsilon), \\ f_0(x_0 + \epsilon) + (x - x_0 - \epsilon)f'_0(x_0 + \epsilon), & x \in (x_0 - \epsilon, x_0 + \epsilon), \\ f_0(x), & \text{elsewhere;} \end{cases}$$

here c_{ϵ} is chosen so that \tilde{f}_{ϵ} is continuous at $x_0 - \epsilon$. Now define f_{ϵ} by

$$f_{\epsilon}(x) = \tilde{f}_{\epsilon}(x) + \tau_{\epsilon}(x_0 - \epsilon - x)\mathbf{1}_{[0, x_0 - \epsilon]}(x)$$

with τ_{ϵ} chosen so that f_{ϵ} integrates to 1.

Now

$$\begin{aligned} |\nu_1(f_{\epsilon}) - \nu_1(f_0)| &= |f_{\epsilon}(x_0) - f_0(x_0)| \sim \frac{1}{2} f_0^{(2)}(x_0) \epsilon^2 (1 + o(1)), \\ |\nu_2(f_{\epsilon}) - \nu_2(f_0)| &= |f_{\epsilon}'(x_0) - f_0'(x_0)| \sim f_0^{(2)}(x_0) \epsilon (1 + o(1)), \end{aligned}$$

and some further computation (Jongbloed (1995), (2000)) shows that

$$H^{2}(f_{\epsilon}, f_{0}) = \frac{2f_{0}^{(2)}(x_{0})^{2}}{5f_{0}(x_{0})}\epsilon^{5}(1+o(1)).$$

Thus taking $\epsilon \equiv \epsilon_n = cn^{-1/5}$, writing f_n for f_{ϵ_n} , and using our two-point lower bound proposition yields

$$\begin{aligned} \liminf_{n \to \infty} \inf_{T_n} \max \left\{ E_n n^{2/5} |T_n - \nu_1(f_n)|, \ E_0 n^{2/5} |T_n - \nu_1(f_0)| \right\} \\ \ge \frac{1}{4} \left(\frac{f_0^2(x_0) f_0^{(2)}(x_0)}{2 \cdot 8^2 e^2} \right)^{1/5}, \end{aligned}$$

and ...

$$\liminf_{n \to \infty} \inf_{T_n} \max \left\{ E_n n^{1/5} |T_n - \nu_2(f_n)|, \ E_0 n^{1/5} |T_n - \nu_2(f_0)| \right\}$$
$$\geq \frac{1}{4} \left(\frac{f_0(x_0) f_0^{(2)}(x_0)^3}{4e} \right)^{1/5}.$$

We will see that the MLE achieves these rates and that the limiting distributions involve exactly these constants tomorrow.

Other Scenarios?

- **S2:** f_0 triangular on [0, 1]? (Degenerate mixing distribution at 1.)
- **S3:** $x_0 \in (a, b)$ where f_0 is linear on (a, b)?
- **S4:** x_0 a "bend" or "kink" point for x_0 : $f'_0(x_0-) < f'_0(x_0+)$?
- **S5:** · · · ?

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density
- L3: Estimation of convex and *k*-monotone density functions
- L4: Estimation of log-concave densities: d = 1 and beyond
- L5: More on higher dimensions and some open problems