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Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

(and comparisons?)

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open problems
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Outline: Lecture 2

• A: Local asymptotic minimax lower bounds

• B: Lower bounds for estimation of a monotone density

Several scenarios

• C: Global lower bounds and upper bounds (briefly)

• D: Lower bounds for estimation of a convex density

• E: Lower bounds for estimation of a log-concave density
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A. Local asymptotic minimax lower bounds

Proposition. (Two-point lower bound) Let P be a set of

probability measures on a measurable space (X,A), and let ν be

a real-valued function defined on P. Moreover, let l : [0,∞) →
[0,∞) be an increasing convex loss function with l(0) = 0. Then,

for any P1, P2 ∈ P such that H(P1, P2) < 1 and with

En,if(X1, . . . , Xn) = En,if(X) =
∫
f(x)dPni (x)

≡
∫
f(x1, . . . , xn)dPi(x1) · · · dPi(xn) ,

for i = 1,2, it follows that

inf
Tn

max
{
En,1l(|Tn − ν(P1)|), En,2l(|Tn − ν(P2)|)

}
(1)

≥ l

(
1

4
|ν(P1)− ν(P2)|{1−H2(P1, P2)}2n

)
.
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A. Local asymptotic minimax lower bounds

Proof. By Jensen’s inequality

En,il(|Tn − ν(Pi)|) ≥ l(En,i|Tn − ν(Pi)|) , i = 1,2 ,

and hence the left side of (??) is bounded below by

l

(
inf
Tn

max{En,1|Tn − ν(P1)| , En,2|Tn − ν(P2)|
)
.

Thus it suffices to prove the proposition for l(x) = x. Let p1 ≡
dP1/(d(P1 + P2), p2 = dP2/d(P1 + P2), and µ = P1 + P2 (or let

pi be the density of Pi with respect to some other convenient

dominating measure µ, i = 1,2).
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A. Local asymptotic minimax lower bounds

Two Facts:

Fact 1: Suppose P,Q abs. cont. wrt µ,

H2(P,Q) ≡ 2−1
∫
{√p−√q}2dµ = 1−

∫ √
pqdµ ≡ 1− ρ(P,Q).

Then

(1−H2(P,Q))2 ≤ 1−
{

1−
∫

(p ∧ q) dµ
}2
≤ 2

∫
(p ∧ q) dµ .

Fact 2: If P and Q are two probability measures on a measurable

space (X,A) and Pn and Qn denote the corresponding

product measures on (Xn,An) (of X1, . . . , Xn i.i.d. as P or Q

respectively), then ρ(P,Q) ≡
∫ √

pqdµ satisfies

ρ(Pn, Qn) = ρ(P,Q)n . (2)

Exercise. Prove Fact 1.

Exercise. Prove Fact 2.
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A. Local asymptotic minimax lower bounds

max
{
En,1|Tn − ν(P1)|, En,2|Tn − ν(P2)|

}
≥

1

2

{
En,1|Tn − ν(P1)|+ En,2|Tn − ν(P2)|

}
=

1

2


∫
|Tn(x)− ν(P1)|

n∏
i=1

p1(xi)dµ(x1) · · · dµ(xn)

+
∫
|Tn(x)− ν(P2)|

n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)


≥

1

2


∫

[|Tn(x)− ν(P1)|+ |Tn(x)− ν(P2)|]
n∏
i=1

p1(xi) ∧
n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)


≥

1

2
|ν(P1)− ν(P2)|

∫ n∏
i=1

p1(xi) ∧
n∏
i=1

p2(xi)dµ(x1) · · · dµ(xn)

≥
1

4
|ν(P1)− ν(P2)|{1−H2(Pn1 , P

n
2 )}2 by Fact 1

=
1

4
|ν(P1)− ν(P2)|{1−H2(P1, P2)}2n by Fact 2 .
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B. Lower bounds, monotone density

Several scenarios, estimation of f(x0):

S1 When f(x0) > 0, f ′(x0) < 0.

S2 When x0 ∈ (a, b) with f(x) constant on (a, b).

In particular, f(x) = 1[0,1](x), x0 ∈ (0,1).

S3 When f is discontinuous at x0.

S4 When f(j)(x0) = 0 for j = 1, . . . , k − 1, f(k)(x0) 6= 0.
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density

S1: f0(x0) > 0, f ′0(x0) < 0. Suppose that we want to estimate

ν(f) = f(x0) for a fixed Let f0 be the density corresponding to

P0, and suppose that f ′0(x0) < 0. To apply our two-point lower

bound Proposition we need to construct a sequence of densities

fn that are “near” f0 in the sense that

nH2(fn, f0)→ A

for some constant A, and

|ν(fn)− ν(f0)| = b−1
n

where bn →∞. Hence we will try the following choice of fn. For

c > 0, define

fn(x) =


f0(x) if x ≤ x0 − cn−1/3 or x > x0 + cn−1/3,

f0(x0 − cn−1/3) if x0 − cn−1/3 < x ≤ x0,

f0(x0 + cn−1/3) if x0 < x ≤ x0 + cn−1/3.
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density

It is easy to see that

n1/3|ν(fn)− ν(f0)| = |n1/3(f0(x0 − cn−1/3)− f0(x0))|
→ |f ′0(x0)|c (3)

On the other hand some calculation shows that

H2(pn, p0) =
1

2

∫ ∞
0

[
√
fn(x)−

√
f0(x)]2 dx

=
1

2

∫ ∞
0

[
√
fn(x)−

√
f0(x)]2[

√
fn(x) +

√
f0(x)]2

[
√
fn(x) +

√
f0(x)]2

dx

=
1

2

∫ x0+cn−1/3

x0−cn−1/3

[fn(x)− f0(x)]2

[
√
fn(x) +

√
f0(x)]2

dx

∼
f ′0(x0)2

4f0(x0)

c3

3n
.
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B. Lower bounds, monotone density

Now we can combine these two pieces with our two-point lower

bound Proposition to find that, for any estimator Tn of ν(f) =

f(x0) and the loss function l(x) = |x| we have

inf
Tn

max
{
Enn

1/3|Tn − ν(fn)|, E0n
1/3|Tn − ν(f0)|

}
≥

1

4
|n1/3(ν(fn)− ν(f0))|

{
1−

nH2(fn, f0)

n

}2n

=
1

4
|n1/3(f0(x0 − cn−1/3)− f0(x0))|

{
1−

nH2(fn, f0)

n

}2n

→
1

4
|f ′0(x0)|cexp

(
−2

f ′0(x0)2

12f0(x0)
c3
)

=
1

4
|f ′0(x0)|cexp

(
−
f ′0(x0)2

6f0(x0)
c3
)
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B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It

is easily seen that the maximum is achieved when

c = c0 ≡
(

2f0(x0)

f ′0(x0)2

)1/3

.

This yields

lim inf
n→∞ inf

Tn
max

{
Enn

1/3|Tn − ν(fn)|, E0n
1/3|Tn − ν(f0)|

}
≥
e−1/3

4

(
2|f ′0(x0)|f0(x0)

)1/3
.

This lower bound has the appropriate structure in the sense that

the (nonparametric) MLE of f , f̂n(x0) converges at rate n1/3

and it has the same dependence on f0(x0) and f ′0(x0) as does

the MLE.
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B. Lower bounds, monotone density

Furthermore, note that for n sufficiently large

sup
f :H(f,f0)≤Cn−1/2

Ef |Tn − ν(f)|

≥ max
{
Enn

1/3|Tn − ν(fn)|, E0n
1/3|Tn − ν(f0)|

}
if C2 > 2A ≡ 2f ′0(x0)2c30/(12f0(x0)), and hence we conclude that

lim inf
n→∞ inf

Tn
sup

f :H(f,f0)≤Cn−1/2
Ef |Tn − ν(f)|

≥
e−1/3

4

(
2|f ′0(x0)|f0(x0)

)1/3

=
e−1/3

42/3

(
2−1|f ′0(x0)|f0(x0)

)1/3

for all C sufficiently large.

Comparison of E|S(0)| with e−1/3

42/3 = 0.284356? From Groene-

boom and Wellner (2001), E|S(0)| = 2E|Z| = 2(.41273655) =

0.825473.
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B. Lower bounds, monotone density

S2: x0 ∈ (a, b) with f0(x) = f0(x0) > 0 for all x ∈ (a, b). To
apply our two-point lower bound Proposition we again need to
construct a sequence of densities fn that are “near” f0 in the
sense that nH2(fn, f0) → A for some constant A, and |ν(fn) −
ν(f0)| = b−1

n where bn →∞. In this scenario we define a sequence
of densities {fn} by

fn(x) =



f0(x), x ≤ an
f0(x) + c√

n
b−a
x0−a , an < x ≤ x0

f0(x)− c√
n
b−a
b−x0

x0 < x < b̃n

f0(x), b ≥ bn.
where

an ≡ sup{x : f0(x) ≥ f0(x0) + cn−1/2(b− a)/(x0 − a)}
bn ≡ inf{x : f0(x) < f0(x0)− cn−1/2(b− a)/(b− x0)}.

The intervals (an, a) and (b, b̃n) may be empty if f(a−) > f(a+)
and/or f(b+) < f(b−) and n is large.
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density

It is easy to see that

√
n|ν(fn)− ν(f0)| =

√
n|fn(x0)− f0(x0)| = c

b− a
x0 − a

(4)

On the other hand some calculation shows that

H2(fn, f0) ∼
c2(b− a)2

4nf0(x0)

{
1

x0 − a
+

1

b− x0

}

=
c2(b− a)3

4nf0(x0)(x0 − a)(b− x0)
.
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B. Lower bounds, monotone density

Combining these two pieces with the two-point lower bound

Proposition we find that, in scenario 2, for any estimator Tn

of ν(f) = f(x0) and the loss function l(x) = |x| we have

inf
Tn

max
{
En
√
n|Tn − ν(fn)|, E0

√
n|Tn − ν(f0)|

}
≥

1

4
|
√
n(ν(fn)− ν(f0))|

{
1−

nH2(fn, f0)

n

}2n

=
1

4
c
b− a
x0 − a

{
1−

nH2(fn, f0)

n

}2n

→
1

4
c
b− a
x0 − a

exp

(
−

c2(b− a)3

2f0(x0)(x0 − a)(b− x0)

)
≡ Ac exp(−Bc2)
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B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It is

easily seen that the maximum is achieved when c = c0 ≡ 1/
√

2B,

with Ac0exp(−Bc20) = Ac0exp(−1/2) and

c0 =

(
f0(x0)

(x0 − a)(b− x0)
(b− a)3

)1/2

.

lim inf
n→∞ inf

Tn
max

{
En
√
n|Tn − ν(fn)|, E0

√
n|Tn − ν(f0)|

}
≥
e−1/2

4

√
f0(x0)

b− a

√
b− x0

x0 − a
.

Repeating this argument with the right-continuous version of

the sequence {fn} yields a similar bound, but with the factor√
(b− x0)/(x0 − a) replaced by

√
(x0 − a)/(b− x0).
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B. Lower bounds, monotone density

By taking the maximum of the two lower bounds yields the last

display with the right side replaced by

e−1/2

4

√
f0(x0)

b− a
max

{√
b− x0

x0 − a
,

√
x0 − a
b− x0

}

≥
e−1/2

4

√
f0(x0)

b− a

{√
b− x0

x0 − a
·
b− x0

b− a
+

√
x0 − a
b− x0

·
x0 − a
b− a

}
.

This lower bound has the appropriate structure in the sense that

the MLE of f , f̂n(x0) converges at rate n1/2 and the limiting

behavior of the MLE has exactly the same dependence on f0(x0),

b− a, x0 − a, and b− x0.
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B. Lower bounds, monotone density

Theorem. (Carolan and Dykstra, 1999) If f0 is decreasing
with f0 constant on (a, b), the maximal open interval containing
x0, then, with p ≡ f0(x0)(b− a) = P0(a < X < b),

√
n(f̂n(x0)− f0(x0))→d

√
f0(x0)

b− a

{√
1− pZ + S

(
x0 − a
b− a

)}
where Z ∼ N(0,1) and S is the process of left-derivatives of
the least concave majorant Û of a Brownian bridge process U
independent of Z.

Note that by using Groeneboom (1983)

E
∣∣∣
√
f0(x0)

b− a

{√
1− pZ + S

(
x0 − a
b− a

)} ∣∣∣
≥
√
f0(x0)

b− a
E
∣∣∣S(x0 − a

b− a

) ∣∣∣
=

√
f0(x0)

b− a
2

√
2

π(b− a)

{
(b− x0)3/2

(x0 − a)1/2
+

(x0 − a)3/2

(b− x0)1/2

}
.
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B. Lower bounds, monotone density

S3: f0(x0−) > f0(x0+). In this case we consider estimation of

the functional ν(f) = (f(x0+) + f(x0−))/2 ≡ f(x0). To apply

our two-point lower bound Proposition, consider the following

choice of fn: for c > 0, define

f̃n(x) =


f0(x) if x ≤ x0 or x > bn,
f0(x0)

+(x− x0)f0(bn)−f0(x0)
c/n

if x0 < x ≤ bn.

where bn ≡ x0 + c/n. Then define fn = f̃n/
∫∞
0 f̃n(y)dy.

In this case

ν(fn)− ν(f0) = fn(x0)− f0(x0−) =
f̃n(x0)

1 + o(1)
−
f0(x0+) + f0(x0−)

2

=
1

2
(f0(x0−)− f0(x0+)) + o(1) ≡ d+ o(1).
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B. Lower bounds, monotone density

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Statistical Seminar, Fréjus 2.27



B. Lower bounds, monotone density

Some calculation shows that

H2(fn, f0) =
cr2

n
(1 + o(1)) where

r2 =
{
√
f0(x0−)−

√
f0(x0+)}2{3

√
f0(x0−) +

√
f0(x0+)}√

f0(x0−) +
√
f0(x0+)

.

Combining these pieces with the two-point lower bound yields

inf
Tn

max {En|Tn − ν(fn)|, E0|Tn − ν(f0)|}

≥
1

4
|ν(fn)− ν(f0)|

{
1−

nH2(fn, f0)

n

}2n

=
1

8
(f0(x0−)− f0(x0+)) (1 + o(1))

{
1−

cr2(1 + o(1))

n

}2n

→
d

4
exp

(
−cr2

)
=

d

4e
by choosing c = 1/r2.
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B. Lower bounds, monotone density

This corresponds to the following theorem for the MLE f̂n:

Theorem. (Anevski and Hössjer, 2002; W, 2007) If x0

is a discontinuity point of f0, d ≡ (f0(x0−) − f0(x0+))/2 with

f0(x0+) > 0 and f(x0) ≡ (f0(x0) + f0(x0−))/2, then

f̂n(x0)− f0(x0)→d R(0)

where h 7→ R(h) is the process of left-derivatives of the least

concave majorant M̂ of the process M defined by

M(h) = N0(h)− d|h| ≡
{

N(f0(x0+)h)− f0(x0+)h− dh, h ≥ 0
−N(f0(x0−)h)− f0(x0−)h+ dh, h < 0

where N is a standard (rate 1) two-sided Poisson process on R.
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density

S4: f0(x0) > 0, f(j)
0 (x0) = 0, j = 1,2, . . . , p−1, and f(p)

0 (x0) 6= 0.

In this case, consider the perturbation fε of f0 given for ε > 0 by

fε(x) =


f0(x) if x ≤ x0 − ε or x > x0 + ε,
f0(x0 − ε) if x0 − ε < x ≤ x0
f0(x0 + ε) if x0 < x ≤ x0 + ε.

Then for ν(f) = f(x0)

ν(fε)− ν(f0) ∼
|f(p)

0 (x0)|
p!

εp,

H2(fε, f0) ∼ Ap
|f(p)

0 (x0)|2

f0(x0)
ε2p+1 ≡ Bpε2p+1

where

Ap ≡
2p2

(2p!)2(2p2 + 3p+ 1)
.
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B. Lower bounds, monotone density
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B. Lower bounds, monotone density

Choosing ε = cn−1/(2p+1), plugging into our two-point bound,

and optimizing with respect to c yields

inf
Tn

max
{
np/(2p+1)En|Tn − ν(fn)|, np/(2p+1)E0|Tn − ν(f0)|

}
≥

1

4
|ν(fn)− ν(f0)|

{
1−

nH2(fn, f0)

n

}2n

→
1

4

|f(p)
0 (x0)|
p!

cp exp
(
−2Bpc

2p+1
)

= Dp

(
|f(p)

0 (x0)|f0(x0)p
)1/(2p+1)

taking c =

(
p

(2p+ 1)Bp

)1/(2p+1)

with

Dp ≡
1

4p!
·
(

pp

(2p+ 1)App

)1/(2p+1)

exp(−p/(2p+ 1)).
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B. Lower bounds, monotone density

The resulting lower bound corresponds to the following theorem

for f̂n:

Theorem. (Wright (1981); Leurgans (1982); Anevski and

Hössjer (2002)) Suppose that f(j)
0 (x0) = 0 for j = 1, . . . , p− 1,

f
(p)
0 (x0) 6= 0, and f

(p)
0 is continuous at x0. Then

np/(2p+1)(f̂n(x0 + n−1/(2p+1)t)− f0(x0))→d CpSp(t)

where Sp is the process given by the left-derivatives of the least

concave majorant Ŷp of Yp(t) ≡W (t)− |t|p+1, and where

Cp =
(
f0(x0)p|f(p)

0 (x0)|/(p+ 1)!
)1/(2p+1)

.

In particular

np/(2p+1)(f̂n(x0)− f0(x0))→d CpSp(0)

Proof. Switching + (argmax-)continuous mapping theorem.
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B. Lower bounds, monotone density

Summary: The MLE f̂n is locally adaptive to f0, at least in

scenarios 1-4.

S1: rate n1/3; localization n−1/3; constants agree with minimax

lower bound.

S2: rate n1/2; localization n0 = 1, none; constants agree with

minimax bound.

S3: rate n0 = 1; localization n−1; constants agree(?).

S4: rate np/(2p+1); localization n−1/(2p+1); constants agree.
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C: Global lower and upper bounds (briefly)

Birgé (1986, 1989) expresses the global optimality of f̂n in terms
of its L1−risks as follows:

Lower bound: Birgé (1987). Let F denote the class of all
decreasing densities f on [0,1] satisfying f ≤ M with M > 1.
Then the minimax risk for F with respect to the L1 metric
d1(f, g) ≡

∫
|f(x)− g(x)|dx based on n observations is

RM(d1, n) ≡ inf
f̂n

sup
f∈F

Efd1(f̂n, f).

Then there is an absolute constant C such that

RM(d1, n) ≥ C
(

logM

n

)1/3
.

Upper bound, Grenander: Birgé (1989). Let f̂n denote the
Grenander estimator of f ∈ F. Then

sup
f∈FM

Efd1(f̂n, f) ≤ 4.75
(

logM

n

)1/3
.

Statistical Seminar, Fréjus 2.36



C: Global lower and upper bounds (briefly)

Birgé’s bounds are complemented by the remarkable results of
Groeneboom (1985), Groeneboom, Hooghiemstra, and Lopuhaa
(1999). Set

V (t) ≡ sup{s : W (s)− (s− t)2 is maximal}
where W is a standard two-sided Brownian motion process
starting from 0.

Theorem. (Groeneboom (1985), GHL (1999)) Suppose
that f is a decreasing density on [0,1] satisfying:

• A1. 0 < f(1) ≤ f(y) ≤ f(x) ≤ f(0) <∞ for 0 ≤ x ≤ y ≤ 1.
• A2. 0 < inf0<x<1 |f ′(x)| ≤ sup0<x<1 |f ′(x)| <∞.
• A3. sup0<x<1 |f

′′
(x)| <∞.

Then, with µ = 2E|V (0)|
∫ 1
0 |

1
2f
′(x)f(x)|1/3dx,

n1/6
{
n1/3

∫ 1

0
|f̂n(x)− f(x)|dx− µ

}
→d σZ ∼ N(0, σ2)

where σ2 = 8
∫∞
0 Cov(|V (0)|, |V (t)− t|)dt.
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D: Lower bounds: convex decreasing density

Now consider estimation of a convex decreasing density f on
[0,∞). (Original motivation: Hampel’s (1987) bird-migration
problem.) Since f ′ exists almost everywhere, we are now
interested in in estimation of ν1(f) = f(x0) and ν2(f) = f ′(x0).

We let D2 denote the class of all convex decreasing densities on
R+. Note that every f ∈ D2 can be written as a scale mixture of
the triangular (or Beta(1,2)) density: if f ∈ D2, then

f(x) =
∫ ∞

0
2y−1(1− x/y)+dG(y)

for some (mixing) distribution G on [0,∞). This corresponds to
the fact that monotone decreasing density f ∈ D ≡ D1 can be
written as a scale mixture of the Uniform(0,1) (or Beta(1,1))
density: if f ∈ D1, then

f(x) =
∫ ∞

0
y−11[0,y](x)dG(y)

for some distribution G on [0,∞).
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D: Lower bounds: convex decreasing density

Scenario 1: Suppose that f0 ∈ D2 and x0 ∈ (0,∞) satisfy

f0(x0) > 0, f ′′0(x0) > 0, and f ′′0 is continuous at x0.

To establish lower bounds, consider the perturbations f̃ε of f0

given by

f̃ε(x)

=


f0(x0 − εcε) + (x− x0 + εcε)f ′0(x0 − εcε), x ∈ (x0 − εcε, x0 − ε),
f0(x0 + ε) + (x− x0 − ε)f ′0(x0 + ε), x ∈ (x0 − ε, x0 + ε),
f0(x), elsewhere;

here cε is chosen so that f̃ε is continuous at x0 − ε. Now define

fε by

fε(x) = f̃ε(x) + τε(x0 − ε− x)1[0,x0−ε](x)

with τε chosen so that fε integrates to 1.
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D: Lower bounds: convex decreasing density
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D: Lower bounds: convex decreasing density
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D: Lower bounds: convex decreasing density

Now

|ν1(fε)− ν1(f0)| = |fε(x0)− f0(x0)| ∼
1

2
f

(2)
0 (x0)ε2(1 + o(1)),

|ν2(fε)− ν2(f0)| = |f ′ε(x0)− f ′0(x0)| ∼ f(2)
0 (x0)ε(1 + o(1)),

and some further computation (Jongbloed (1995), (2000))
shows that

H2(fε, f0) =
2f(2)

0 (x0)2

5f0(x0)
ε5(1 + o(1)).

Thus taking ε ≡ εn = cn−1/5, writing fn for fεn, and using our
two-point lower bound proposition yields

lim inf
n→∞ inf

Tn
max

{
Enn

2/5|Tn − ν1(fn)|, E0n
2/5|Tn − ν1(f0)|

}

≥
1

4

f2
0 (x0)f(2)

0 (x0)

2 · 82e2

1/5

,

and ...
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D: Lower bounds: convex decreasing density

lim inf
n→∞ inf

Tn
max

{
Enn

1/5|Tn − ν2(fn)|, E0n
1/5|Tn − ν2(f0)|

}

≥
1

4

f0(x0)f(2)
0 (x0)3

4e

1/5

.

We will see that the MLE achieves these rates and that the
limiting distributions involve exactly these constants tomorrow.

Other Scenarios?

S2: f0 triangular on [0,1]?
(Degenerate mixing distribution at 1.)

S3: x0 ∈ (a, b) where f0 is linear on (a, b)?

S4: x0 a “bend” or “kink” point for x0: f ′0(x0−) < f ′0(x0+)?

S5: · · · ?
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Outline: Tomorrow

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

• L3: Estimation of convex and k−monotone density

functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open problems
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