Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010

Outline: Five Lectures on Shape Restrictions

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

Outline: Lecture 2

- A: Local asymptotic minimax lower bounds
- B: Lower bounds for estimation of a monotone density Several scenarios
- C: Global lower bounds and upper bounds (briefly)
- D: Lower bounds for estimation of a convex density
- E: Lower bounds for estimation of a log-concave density

A. Local asymptotic minimax lower bounds

Proposition. (Two-point lower bound) Let \mathcal{P} be a set of probability measures on a measurable space (\mathbb{X}, \mathcal{A}), and let ν be a real-valued function defined on \mathcal{P}. Moreover, let $l:[0, \infty) \rightarrow$ $[0, \infty)$ be an increasing convex loss function with $l(0)=0$. Then, for any $P_{1}, P_{2} \in \mathcal{P}$ such that $H\left(P_{1}, P_{2}\right)<1$ and with

$$
\begin{aligned}
& E_{n, i} f\left(X_{1}, \ldots, X_{n}\right)=E_{n, i} f(X)=\int f(x) d P_{i}^{n}(x) \\
& \quad \equiv \int f\left(x_{1}, \ldots, x_{n}\right) d P_{i}\left(x_{1}\right) \cdots d P_{i}\left(x_{n}\right)
\end{aligned}
$$

for $i=1,2$, it follows that

$$
\begin{align*}
& \inf _{T_{n}} \max \left\{E_{n, 1} l\left(\left|T_{n}-\nu\left(P_{1}\right)\right|\right), E_{n, 2} l\left(\left|T_{n}-\nu\left(P_{2}\right)\right|\right)\right\} \tag{1}\\
& \geq l\left(\frac{1}{4}\left|\nu\left(P_{1}\right)-\nu\left(P_{2}\right)\right|\left\{1-H^{2}\left(P_{1}, P_{2}\right)\right\}^{2 n}\right)
\end{align*}
$$

A. Local asymptotic minimax lower bounds

Proof. By Jensen's inequality

$$
E_{n, i} l\left(\left|T_{n}-\nu\left(P_{i}\right)\right|\right) \geq l\left(E_{n, i}\left|T_{n}-\nu\left(P_{i}\right)\right|\right), \quad i=1,2,
$$

and hence the left side of (??) is bounded below by

$$
l\left(\inf _{T_{n}} \max \left\{E_{n, 1}\left|T_{n}-\nu\left(P_{1}\right)\right|, E_{n, 2}\left|T_{n}-\nu\left(P_{2}\right)\right|\right)\right.
$$

Thus it suffices to prove the proposition for $l(x)=x$. Let $p_{1} \equiv$ $d P_{1} /\left(d\left(P_{1}+P_{2}\right), p_{2}=d P_{2} / d\left(P_{1}+P_{2}\right)\right.$, and $\mu=P_{1}+P_{2}$ (or let p_{i} be the density of P_{i} with respect to some other convenient dominating measure $\mu, i=1,2$).

A. Local asymptotic minimax lower bounds

Two Facts:

Fact 1: Suppose P, Q abs. cont. wrt μ,

$$
H^{2}(P, Q) \equiv 2^{-1} \int\{\sqrt{p}-\sqrt{q}\}^{2} d \mu=1-\int \sqrt{p q} d \mu \equiv 1-\rho(P, Q)
$$

Then

$$
\left(1-H^{2}(P, Q)\right)^{2} \leq 1-\left\{1-\int(p \wedge q) d \mu\right\}^{2} \leq 2 \int(p \wedge q) d \mu
$$

Fact 2: If P and Q are two probability measures on a measurable space $(\mathbb{X}, \mathcal{A})$ and P^{n} and Q^{n} denote the corresponding product measures on ($\mathbb{X}^{n}, \mathcal{A}_{n}$) (of X_{1}, \ldots, X_{n} i.i.d. as P or Q respectively), then $\rho(P, Q) \equiv \int \sqrt{p q} d \mu$ satisfies

$$
\begin{equation*}
\rho\left(P^{n}, Q^{n}\right)=\rho(P, Q)^{n} . \tag{2}
\end{equation*}
$$

Exercise. Prove Fact 1.
Exercise. Prove Fact 2.

A. Local asymptotic minimax lower bounds

$$
\begin{aligned}
\max \{ & \left\{E_{n, 1}\left|T_{n}-\nu\left(P_{1}\right)\right|, E_{n, 2}\left|T_{n}-\nu\left(P_{2}\right)\right|\right\} \\
\geq & \frac{1}{2}\left\{E_{n, 1}\left|T_{n}-\nu\left(P_{1}\right)\right|+E_{n, 2}\left|T_{n}-\nu\left(P_{2}\right)\right|\right\} \\
= & \frac{1}{2}\left\{\int\left|T_{n}(x)-\nu\left(P_{1}\right)\right| \prod_{i=1}^{n} p_{1}\left(x_{i}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{n}\right)\right. \\
& \left.\quad+\int\left|T_{n}(x)-\nu\left(P_{2}\right)\right| \prod_{i=1}^{n} p_{2}\left(x_{i}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{n}\right)\right\} \\
& \left.\quad \begin{array}{l}
1 \\
\\
\\
\\
\\
\geq
\end{array}\right] \int\left[\left|T_{n}(x)-\nu\left(P_{1}\right)\right|+\left|T_{n}(x)-\nu\left(P_{2}\right)\right|\right] \prod_{i=1}^{n} p_{1}\left(x_{i}\right) \wedge \prod_{i=1}^{n} p_{2}\left(x_{i}\right) d \mu\left(x_{1}\right) \\
\geq & \frac{1}{2}\left|\nu\left(P_{1}\right)-\nu\left(P_{2}\right)\right| \int \prod_{i=1}^{n} p_{1}\left(x_{i}\right) \wedge \prod_{i=1}^{n} p_{2}\left(x_{i}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{n}\right) \\
\geq & \frac{1}{4}\left|\nu\left(P_{1}\right)-\nu\left(P_{2}\right)\right|\left\{1-H^{2}\left(P_{1}^{n}, P_{2}^{n}\right)\right\}^{2} \quad \text { by Fact } 1 \\
= & \frac{1}{4}\left|\nu\left(P_{1}\right)-\nu\left(P_{2}\right)\right|\left\{1-H^{2}\left(P_{1}, P_{2}\right)\right\}^{2 n} \quad \text { by Fact } 2 .
\end{aligned}
$$

B. Lower bounds, monotone density

Several scenarios, estimation of $f\left(x_{0}\right)$:
S1 When $f\left(x_{0}\right)>0, f^{\prime}\left(x_{0}\right)<0$.
S2 When $x_{0} \in(a, b)$ with $f(x)$ constant on (a, b). In particular, $f(x)=1_{[0,1]}(x), x_{0} \in(0,1)$.

S3 When f is discontinuous at x_{0}.
S4 When $f^{(j)}\left(x_{0}\right)=0$ for $j=1, \ldots, k-1, f^{(k)}\left(x_{0}\right) \neq 0$.

B. Lower bounds, monotone density

B. Lower bounds, monotone density

S1: $f_{0}\left(x_{0}\right)>0, f_{0}^{\prime}\left(x_{0}\right)<0$. Suppose that we want to estimate $\nu(f)=f\left(x_{0}\right)$ for a fixed Let f_{0} be the density corresponding to P_{0}, and suppose that $f_{0}^{\prime}\left(x_{0}\right)<0$. To apply our two-point lower bound Proposition we need to construct a sequence of densities f_{n} that are "near" f_{0} in the sense that

$$
n H^{2}\left(f_{n}, f_{0}\right) \rightarrow A
$$

for some constant A, and

$$
\left|\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right|=b_{n}^{-1}
$$

where $b_{n} \rightarrow \infty$. Hence we will try the following choice of f_{n}. For $c>0$, define
$f_{n}(x)= \begin{cases}f_{0}(x) & \text { if } x \leq x_{0}-c n^{-1 / 3} \text { or } x>x_{0}+c n^{-1 / 3}, \\ f_{0}\left(x_{0}-c n^{-1 / 3}\right) & \text { if } x_{0}-c n^{-1 / 3}<x \leq x_{0}, \\ f_{0}\left(x_{0}+c n^{-1 / 3}\right) & \text { if } x_{0}<x \leq x_{0}+c n^{-1 / 3} .\end{cases}$

B. Lower bounds, monotone density

B. Lower bounds, monotone density

B. Lower bounds, monotone density

It is easy to see that

$$
\begin{align*}
n^{1 / 3}\left|\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right| & =\left|n^{1 / 3}\left(f_{0}\left(x_{0}-c n^{-1 / 3}\right)-f_{0}\left(x_{0}\right)\right)\right| \\
& \rightarrow\left|f_{0}^{\prime}\left(x_{0}\right)\right| c \tag{3}
\end{align*}
$$

On the other hand some calculation shows that

$$
\begin{aligned}
H^{2}\left(p_{n}, p_{0}\right) & =\frac{1}{2} \int_{0}^{\infty}\left[\sqrt{f_{n}(x)}-\sqrt{f_{0}(x)}\right]^{2} d x \\
& =\frac{1}{2} \int_{0}^{\infty} \frac{\left[\sqrt{f_{n}(x)}-\sqrt{f_{0}(x)}\right]^{2}\left[\sqrt{f_{n}(x)}+\sqrt{f_{0}(x)}\right]^{2}}{\left[\sqrt{f_{n}(x)}+\sqrt{f_{0}(x)}\right]^{2}} d x \\
& =\frac{1}{2} \int_{x_{0}-c n^{-1 / 3}}^{x_{0}+c n^{-1 / 3}} \frac{\left[f_{n}(x)-f_{0}(x)\right]^{2}}{\left[\sqrt{f_{n}(x)}+\sqrt{f_{0}(x)}\right]^{2}} d x \\
& \sim \frac{f_{0}^{\prime}\left(x_{0}\right)^{2} c^{3}}{4 f_{0}\left(x_{0}\right)} \frac{3 n}{3 n}
\end{aligned}
$$

B. Lower bounds, monotone density

Now we can combine these two pieces with our two-point lower bound Proposition to find that, for any estimator T_{n} of $\nu(f)=$ $f\left(x_{0}\right)$ and the loss function $l(x)=|x|$ we have

$$
\begin{aligned}
& \inf _{T_{n}} \max \left\{E_{n} n^{1 / 3}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0} n^{1 / 3}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
& \geq \frac{1}{4}\left|n^{1 / 3}\left(\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right)\right|\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& =\frac{1}{4}\left|n^{1 / 3}\left(f_{0}\left(x_{0}-c n^{-1 / 3}\right)-f_{0}\left(x_{0}\right)\right)\right|\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& \quad \rightarrow \frac{1}{4}\left|f_{0}^{\prime}\left(x_{0}\right)\right| c \exp \left(-2 \frac{f_{0}^{\prime}\left(x_{0}\right)^{2}}{12 f_{0}\left(x_{0}\right)} c^{3}\right)=\frac{1}{4}\left|f_{0}^{\prime}\left(x_{0}\right)\right| c \exp \left(-\frac{f_{0}^{\prime}\left(x_{0}\right)^{2}}{6 f_{0}\left(x_{0}\right)} c^{3}\right)
\end{aligned}
$$

B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when

$$
c=c_{0} \equiv\left(\frac{2 f_{0}\left(x_{0}\right)}{f_{0}^{\prime}\left(x_{0}\right)^{2}}\right)^{1 / 3}
$$

This yields

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} \inf _{T_{n}} \max \left\{E_{n} n^{1 / 3}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0} n^{1 / 3}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
\geq \frac{e^{-1 / 3}}{4}\left(2\left|f_{0}^{\prime}\left(x_{0}\right)\right| f_{0}\left(x_{0}\right)\right)^{1 / 3}
\end{gathered}
$$

This lower bound has the appropriate structure in the sense that the (nonparametric) MLE of $f, \widehat{f}_{n}\left(x_{0}\right)$ converges at rate $n^{1 / 3}$ and it has the same dependence on $f_{0}\left(x_{0}\right)$ and $f_{0}^{\prime}\left(x_{0}\right)$ as does the MLE.

B. Lower bounds, monotone density

Furthermore, note that for n sufficiently large

$$
\begin{aligned}
& \sup _{\left.f, f_{0}\right) \leq C n^{-1 / 2}} E_{f}\left|T_{n}-\nu(f)\right| \\
& \geq \max \left\{E_{n} n^{1 / 3}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0} n^{1 / 3}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\}
\end{aligned}
$$

if $C^{2}>2 A \equiv 2 f_{0}^{\prime}\left(x_{0}\right)^{2} c_{0}^{3} /\left(12 f_{0}\left(x_{0}\right)\right)$, and hence we conclude that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \inf _{T_{n}} \sup _{f: H\left(f, f_{0}\right) \leq C n^{-1 / 2}} E_{f}\left|T_{n}-\nu(f)\right| \\
& \quad \geq \frac{e^{-1 / 3}}{4}\left(2\left|f_{0}^{\prime}\left(x_{0}\right)\right| f_{0}\left(x_{0}\right)\right)^{1 / 3} \\
& \quad=\frac{e^{-1 / 3}}{4^{2 / 3}}\left(2^{-1}\left|f_{0}^{\prime}\left(x_{0}\right)\right| f_{0}\left(x_{0}\right)\right)^{1 / 3}
\end{aligned}
$$

for all C sufficiently large.
Comparison of $E|\mathbb{S}(0)|$ with $\frac{e^{-1 / 3}}{4^{2 / 3}}=0.284356 ?$ From Groeneboom and Wellner (2001), $E|\mathbb{S}(0)|=2 E|Z|=2(.41273655)=$ 0.825473 .

B. Lower bounds, monotone density

S2: $x_{0} \in(a, b)$ with $f_{0}(x)=f_{0}\left(x_{0}\right)>0$ for all $x \in(a, b)$. To apply our two-point lower bound Proposition we again need to construct a sequence of densities f_{n} that are "near" f_{0} in the sense that $n H^{2}\left(f_{n}, f_{0}\right) \rightarrow A$ for some constant A, and $\mid \nu\left(f_{n}\right)-$ $\nu\left(f_{0}\right) \mid=b_{n}^{-1}$ where $b_{n} \rightarrow \infty$. In this scenario we define a sequence of densities $\left\{f_{n}\right\}$ by

$$
f_{n}(x)= \begin{cases}f_{0}(x), & x \leq a_{n} \\ f_{0}(x)+\frac{c}{\sqrt{n}} \frac{b-a}{x_{0}-a}, & a_{n}<x \leq x_{0} \\ f_{0}(x)-\frac{c}{\sqrt{n}} \frac{b-a}{b-x_{0}} & x_{0}<x<\tilde{b}_{n} \\ f_{0}(x), & b \geq b_{n} .\end{cases}
$$

where

$$
\begin{aligned}
& a_{n} \equiv \sup \left\{x: f_{0}(x) \geq f_{0}\left(x_{0}\right)+c n^{-1 / 2}(b-a) /\left(x_{0}-a\right)\right\} \\
& b_{n} \equiv \inf \left\{x: f_{0}(x)<f_{0}\left(x_{0}\right)-c n^{-1 / 2}(b-a) /\left(b-x_{0}\right)\right\} .
\end{aligned}
$$

The intervals $\left(a_{n}, a\right)$ and (b, \tilde{b}_{n}) may be empty if $f(a-)>f(a+)$ and/or $f(b+)<f(b-)$ and n is large.

B. Lower bounds, monotone density

B. Lower bounds, monotone density

It is easy to see that

$$
\begin{equation*}
\sqrt{n}\left|\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right|=\sqrt{n}\left|f_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right|=c \frac{b-a}{x_{0}-a} \tag{4}
\end{equation*}
$$

On the other hand some calculation shows that

$$
\begin{aligned}
H^{2}\left(f_{n}, f_{0}\right) & \sim \frac{c^{2}(b-a)^{2}}{4 n f_{0}\left(x_{0}\right)}\left\{\frac{1}{x_{0}-a}+\frac{1}{b-x_{0}}\right\} \\
& =\frac{c^{2}(b-a)^{3}}{4 n f_{0}\left(x_{0}\right)\left(x_{0}-a\right)\left(b-x_{0}\right)}
\end{aligned}
$$

B. Lower bounds, monotone density

Combining these two pieces with the two-point lower bound Proposition we find that, in scenario 2, for any estimator T_{n} of $\nu(f)=f\left(x_{0}\right)$ and the loss function $l(x)=|x|$ we have

$$
\begin{aligned}
& \inf _{T_{n}} \max \left\{E_{n} \sqrt{n}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0} \sqrt{n}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
& \quad \geq \frac{1}{4}\left|\sqrt{n}\left(\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right)\right|\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& \quad=\frac{1}{4} c \frac{b-a}{x_{0}-a}\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& \rightarrow \frac{1}{4} c \frac{b-a}{x_{0}-a} \exp \left(-\frac{c^{2}(b-a)^{3}}{2 f_{0}\left(x_{0}\right)\left(x_{0}-a\right)\left(b-x_{0}\right)}\right) \\
& \equiv A c \exp \left(-B c^{2}\right)
\end{aligned}
$$

B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when $c=c_{0} \equiv 1 / \sqrt{2 B}$, with $A c_{0} \exp \left(-B c_{0}^{2}\right)=A c_{0} \exp (-1 / 2)$ and

$$
\begin{gathered}
c_{0}=\left(\frac{f_{0}\left(x_{0}\right)}{\left(x_{0}-a\right)\left(b-x_{0}\right)}(b-a)^{3}\right)^{1 / 2} . \\
\liminf _{n \rightarrow \infty} \inf _{T_{n}} \max \left\{E_{n} \sqrt{n}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0} \sqrt{n}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
\geq \frac{e^{-1 / 2}}{4} \sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}} \sqrt{\frac{b-x_{0}}{x_{0}-a}} .
\end{gathered}
$$

Repeating this argument with the right-continuous version of the sequence $\left\{f_{n}\right\}$ yields a similar bound, but with the factor $\sqrt{\left(b-x_{0}\right) /\left(x_{0}-a\right)}$ replaced by $\sqrt{\left(x_{0}-a\right) /\left(b-x_{0}\right)}$.

B. Lower bounds, monotone density

By taking the maximum of the two lower bounds yields the last display with the right side replaced by

$$
\begin{aligned}
& \frac{e^{-1 / 2}}{4} \sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}} \max \left\{\sqrt{\frac{b-x_{0}}{x_{0}-a}}, \sqrt{\frac{x_{0}-a}{b-x_{0}}}\right\} \\
& \quad \geq \frac{e^{-1 / 2}}{4} \sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}}\left\{\sqrt{\frac{b-x_{0}}{x_{0}-a}} \cdot \frac{b-x_{0}}{b-a}+\sqrt{\frac{x_{0}-a}{b-x_{0}}} \cdot \frac{x_{0}-a}{b-a}\right\} .
\end{aligned}
$$

This lower bound has the appropriate structure in the sense that the MLE of $f, \widehat{f}_{n}\left(x_{0}\right)$ converges at rate $n^{1 / 2}$ and the limiting behavior of the MLE has exactly the same dependence on $f_{0}\left(x_{0}\right)$, $b-a, x_{0}-a$, and $b-x_{0}$.

B. Lower bounds, monotone density

Theorem. (Carolan and Dykstra, 1999) If f_{0} is decreasing with f_{0} constant on (a, b), the maximal open interval containing x_{0}, then, with $p \equiv f_{0}\left(x_{0}\right)(b-a)=P_{0}(a<X<b)$,

$$
\sqrt{n}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d} \sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}}\left\{\sqrt{1-p} Z+\mathbb{S}\left(\frac{x_{0}-a}{b-a}\right)\right\}
$$

where $Z \sim N(0,1)$ and \mathbb{S} is the process of left-derivatives of the least concave majorant $\widehat{\mathbb{U}}$ of a Brownian bridge process \mathbb{U} independent of Z.
Note that by using Groeneboom (1983)

$$
\begin{aligned}
& E\left|\sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}}\left\{\sqrt{1-p} Z+\mathbb{S}\left(\frac{x_{0}-a}{b-a}\right)\right\}\right| \\
& \geq \sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}} E\left|\mathbb{S}\left(\frac{x_{0}-a}{b-a}\right)\right| \\
& =\sqrt{\frac{f_{0}\left(x_{0}\right)}{b-a}} 2 \sqrt{\frac{2}{\pi(b-a)}}\left\{\frac{\left(b-x_{0}\right)^{3 / 2}}{\left(x_{0}-a\right)^{1 / 2}}+\frac{\left(x_{0}-a\right)^{3 / 2}}{\left(b-x_{0}\right)^{1 / 2}}\right\} .
\end{aligned}
$$

B. Lower bounds, monotone density

S3: $f_{0}\left(x_{0}-\right)>f_{0}\left(x_{0}+\right)$. In this case we consider estimation of the functional $\nu(f)=\left(f\left(x_{0}+\right)+f\left(x_{0}-\right)\right) / 2 \equiv \bar{f}\left(x_{0}\right)$. To apply our two-point lower bound Proposition, consider the following choice of f_{n} : for $c>0$, define

$$
\tilde{f}_{n}(x)= \begin{cases}f_{0}(x) & \text { if } x \leq x_{0} \text { or } x>b_{n} \\ f_{0}\left(x_{0}\right) & \\ +\left(x-x_{0}\right) \frac{f_{0}\left(b_{n}\right)-f_{0}\left(x_{0}\right)}{c / n} & \text { if } x_{0}<x \leq b_{n}\end{cases}
$$

where $b_{n} \equiv x_{0}+c / n$. Then define $f_{n}=\tilde{f}_{n} / \int_{0}^{\infty} \tilde{f}_{n}(y) d y$.
In this case

$$
\begin{aligned}
\nu\left(f_{n}\right)-\nu\left(f_{0}\right) & =f_{n}\left(x_{0}\right)-f_{0}\left(x_{0}-\right)=\frac{\tilde{f}_{n}\left(x_{0}\right)}{1+o(1)}-\frac{f_{0}\left(x_{0}+\right)+f_{0}\left(x_{0}-\right)}{2} \\
& =\frac{1}{2}\left(f_{0}\left(x_{0}-\right)-f_{0}\left(x_{0}+\right)\right)+o(1) \equiv d+o(1) .
\end{aligned}
$$

B. Lower bounds, monotone density

B. Lower bounds, monotone density

Some calculation shows that

$$
\begin{gathered}
H^{2}\left(f_{n}, f_{0}\right)=\frac{c r^{2}}{n}(1+o(1)) \text { where } \\
r^{2}=\frac{\left\{\sqrt{f_{0}\left(x_{0}-\right)}-\sqrt{f_{0}\left(x_{0}+\right)}\right\}^{2}\left\{3 \sqrt{f_{0}\left(x_{0}-\right)}+\sqrt{f_{0}\left(x_{0}+\right)}\right\}}{\sqrt{f_{0}\left(x_{0}-\right)}+\sqrt{f_{0}\left(x_{0}+\right)}}
\end{gathered}
$$

Combining these pieces with the two-point lower bound yields

$$
\begin{aligned}
& \inf _{T_{n}} \max \left\{E_{n}\left|T_{n}-\nu\left(f_{n}\right)\right|, E_{0}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
& \geq \frac{1}{4}\left|\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right|\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& =\frac{1}{8}\left(f_{0}\left(x_{0}-\right)-f_{0}\left(x_{0}+\right)\right)(1+o(1))\left\{1-\frac{c r^{2}(1+o(1))}{n}\right\}^{2 n} \\
& \quad \rightarrow \frac{d}{4} \exp \left(-c r^{2}\right)=\frac{d}{4 e} \quad \text { by choosing } \quad c=1 / r^{2} .
\end{aligned}
$$

B. Lower bounds, monotone density

This corresponds to the following theorem for the MLE \widehat{f}_{n} :
Theorem. (Anevski and Hössjer, 2002; W, 2007) If x_{0} is a discontinuity point of $f_{0}, d \equiv\left(f_{0}\left(x_{0}-\right)-f_{0}\left(x_{0}+\right)\right) / 2$ with $f_{0}\left(x_{0}+\right)>0$ and $\bar{f}\left(x_{0}\right) \equiv\left(f_{0}\left(x_{0}\right)+f_{0}\left(x_{0}-\right)\right) / 2$, then

$$
\widehat{f}_{n}\left(x_{0}\right)-\bar{f}_{0}\left(x_{0}\right) \rightarrow_{d} \mathbb{R}(0)
$$

where $h \mapsto \mathbb{R}(h)$ is the process of left-derivatives of the least concave majorant $\widehat{\mathbb{M}}$ of the process \mathbb{M} defined by
$\mathbb{M}(h)=\mathbb{N}_{0}(h)-d|h| \equiv \begin{cases}\mathbb{N}\left(f_{0}\left(x_{0}+\right) h\right)-f_{0}\left(x_{0}+\right) h-d h, & h \geq 0 \\ -\mathbb{N}\left(f_{0}\left(x_{0}-\right) h\right)-f_{0}\left(x_{0}-\right) h+d h, & h<0\end{cases}$
where \mathbb{N} is a standard (rate 1) two-sided Poisson process on \mathbb{R}.

B. Lower bounds, monotone density

B. Lower bounds, monotone density

S4: $f_{0}\left(x_{0}\right)>0, f_{0}^{(j)}\left(x_{0}\right)=0, j=1,2, \ldots, p-1$, and $f_{0}^{(p)}\left(x_{0}\right) \neq 0$. In this case, consider the perturbation f_{ϵ} of f_{0} given for $\epsilon>0$ by

$$
f_{\epsilon}(x)= \begin{cases}f_{0}(x) & \text { if } x \leq x_{0}-\epsilon \text { or } x>x_{0}+\epsilon \\ f_{0}\left(x_{0}-\epsilon\right) & \text { if } x_{0}-\epsilon<x \leq x_{0} \\ f_{0}\left(x_{0}+\epsilon\right) & \text { if } x_{0}<x \leq x_{0}+\epsilon\end{cases}
$$

Then for $\nu(f)=f\left(x_{0}\right)$

$$
\begin{aligned}
& \nu\left(f_{\epsilon}\right)-\nu\left(f_{0}\right) \sim \frac{\left|f_{0}^{(p)}\left(x_{0}\right)\right|}{p!} \epsilon^{p}, \\
& H^{2}\left(f_{\epsilon}, f_{0}\right) \sim A_{p} \frac{\left|f_{0}^{(p)}\left(x_{0}\right)\right|^{2}}{f_{0}\left(x_{0}\right)} \epsilon^{2 p+1} \equiv B_{p} \epsilon^{2 p+1}
\end{aligned}
$$

where

$$
A_{p} \equiv \frac{2 p^{2}}{(2 p!)^{2}\left(2 p^{2}+3 p+1\right)}
$$

B. Lower bounds, monotone density

B. Lower bounds, monotone density

Choosing $\epsilon=c n^{-1 /(2 p+1)}$, plugging into our two-point bound, and optimizing with respect to c yields

$$
\begin{aligned}
& \inf _{T_{n}} \max \left\{n^{p /(2 p+1)} E_{n}\left|T_{n}-\nu\left(f_{n}\right)\right|, n^{p /(2 p+1)} E_{0}\left|T_{n}-\nu\left(f_{0}\right)\right|\right\} \\
& \quad \geq \frac{1}{4}\left|\nu\left(f_{n}\right)-\nu\left(f_{0}\right)\right|\left\{1-\frac{n H^{2}\left(f_{n}, f_{0}\right)}{n}\right\}^{2 n} \\
& \quad \rightarrow \frac{1}{4} \frac{\left|f_{0}^{(p)}\left(x_{0}\right)\right|}{p!} c^{p} \exp \left(-2 B_{p} c^{2 p+1}\right) \\
& \quad=D_{p}\left(\left|f_{0}^{(p)}\left(x_{0}\right)\right| f_{0}\left(x_{0}\right)^{p}\right)^{1 /(2 p+1)} \text { taking } c=\left(\frac{p}{(2 p+1) B_{p}}\right)^{1 /(2 p+1)}
\end{aligned}
$$

with

$$
D_{p} \equiv \frac{1}{4 p!} \cdot\left(\frac{p^{p}}{(2 p+1) A_{p}^{p}}\right)^{1 /(2 p+1)} \exp (-p /(2 p+1))
$$

B. Lower bounds, monotone density

The resulting lower bound corresponds to the following theorem for \hat{f}_{n} :
Theorem. (Wright (1981); Leurgans (1982); Anevski and Hössjer (2002)) Suppose that $f_{0}^{(j)}\left(x_{0}\right)=0$ for $j=1, \ldots, p-1$, $f_{0}^{(p)}\left(x_{0}\right) \neq 0$, and $f_{0}^{(p)}$ is continuous at x_{0}. Then

$$
n^{p /(2 p+1)}\left(\widehat{f}_{n}\left(x_{0}+n^{-1 /(2 p+1)} t\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d} C_{p} \mathbb{S}_{p}(t)
$$

where \mathbb{S}_{p} is the process given by the left-derivatives of the least concave majorant $\widehat{\mathbb{Y}}_{p}$ of $\mathbb{Y}_{p}(t) \equiv W(t)-|t|^{p+1}$, and where

$$
C_{p}=\left(f_{0}\left(x_{0}\right)^{p}\left|f_{0}^{(p)}\left(x_{0}\right)\right| /(p+1)!\right)^{1 /(2 p+1)}
$$

In particular

$$
n^{p /(2 p+1)}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right) \rightarrow_{d} C_{p} \mathbb{S}_{p}(0)
$$

Proof. Switching + (argmax-)continuous mapping theorem.

B. Lower bounds, monotone density

Summary: The MLE \widehat{f}_{n} is locally adaptive to f_{0}, at least in scenarios 1-4.

S1: rate $n^{1 / 3}$; localization $n^{-1 / 3}$; constants agree with minimax lower bound.

S2: rate $n^{1 / 2}$; localization $n^{0}=1$, none; constants agree with minimax bound.

S3: rate $n^{0}=1$; localization n^{-1}; constants agree(?).
S4: rate $n^{p /(2 p+1) ; ~ l o c a l i z a t i o n ~} n^{-1 /(2 p+1)}$; constants agree.

C: Global lower and upper bounds (briefly)

Birgé $(1986,1989)$ expresses the global optimality of \widehat{f}_{n} in terms of its L_{1}-risks as follows:
Lower bound: Birge (1987). Let \mathcal{F} denote the class of all decreasing densities f on $[0,1]$ satisfying $f \leq M$ with $M>1$. Then the minimax risk for \mathcal{F} with respect to the L_{1} metric $d_{1}(f, g) \equiv \int|f(x)-g(x)| d x$ based on n observations is

$$
R_{M}\left(d_{1}, n\right) \equiv \inf _{f_{n}} \sup _{f \in \mathcal{F}} E_{f} d_{1}\left(\widehat{f}_{n}, f\right) .
$$

Then there is an absolute constant C such that

$$
R_{M}\left(d_{1}, n\right) \geq C\left(\frac{\log M}{n}\right)^{1 / 3}
$$

Upper bound, Grenander: Birgé (1989). Let \widehat{f}_{n} denote the Grenander estimator of $f \in \mathcal{F}$. Then

$$
\sup _{f \in \mathcal{F}_{M}} E_{f} d_{1}\left(\widehat{f}_{n}, f\right) \leq 4.75\left(\frac{\log M}{n}\right)^{1 / 3} .
$$

C: Global lower and upper bounds (briefly)

Birgé's bounds are complemented by the remarkable results of Groeneboom (1985), Groeneboom, Hooghiemstra, and Lopuhaa (1999). Set

$$
V(t) \equiv \sup \left\{s: W(s)-(s-t)^{2} \text { is maximal }\right\}
$$

where W is a standard two-sided Brownian motion process starting from 0 .

Theorem. (Groeneboom (1985), GHL (1999)) Suppose that f is a decreasing density on $[0,1]$ satisfying:

- A1. $0<f(1) \leq f(y) \leq f(x) \leq f(0)<\infty$ for $0 \leq x \leq y \leq 1$.
- A2. $0<\inf _{0<x<\lambda /}\left|f^{\prime}(x)\right| \leq \sup _{0<x<1}\left|f^{\prime}(x)\right|<\infty$.
- A3. $\sup _{0<x<1}\left|f^{\prime}(x)\right|<\infty$.

Then, with $\mu=2 E|V(0)| \int_{0}^{1}\left|\frac{1}{2} f^{\prime}(x) f(x)\right|^{1 / 3} d x$,

$$
n^{1 / 6}\left\{n^{1 / 3} \int_{0}^{1}\left|\widehat{f}_{n}(x)-f(x)\right| d x-\mu\right\} \rightarrow_{d} \sigma Z \sim N\left(0, \sigma^{2}\right)
$$

where $\sigma^{2}=8 \int_{0}^{\infty} \operatorname{Cov}(|V(0)|,|V(t)-t|) d t$.

D: Lower bounds: convex decreasing density

Now consider estimation of a convex decreasing density f on $[0, \infty)$. (Original motivation: Hampel's (1987) bird-migration problem.) Since f^{\prime} exists almost everywhere, we are now interested in in estimation of $\nu_{1}(f)=f\left(x_{0}\right)$ and $\nu_{2}(f)=f^{\prime}\left(x_{0}\right)$.

We let \mathcal{D}_{2} denote the class of all convex decreasing densities on \mathbb{R}^{+}. Note that every $f \in \mathcal{D}_{2}$ can be written as a scale mixture of the triangular (or $\operatorname{Beta}(1,2)$) density: if $f \in \mathcal{D}_{2}$, then

$$
f(x)=\int_{0}^{\infty} 2 y^{-1}(1-x / y)_{+} d G(y)
$$

for some (mixing) distribution G on $[0, \infty)$. This corresponds to the fact that monotone decreasing density $f \in \mathcal{D} \equiv \mathcal{D}_{1}$ can be written as a scale mixture of the Uniform(0,1) (or Beta(1,1)) density: if $f \in \mathcal{D}_{1}$, then

$$
f(x)=\int_{0}^{\infty} y^{-1} 1_{[0, y]}(x) d G(y)
$$

for some distribution G on $[0, \infty)$.

D: Lower bounds: convex decreasing density

Scenario 1: Suppose that $f_{0} \in \mathcal{D}_{2}$ and $x_{0} \in(0, \infty)$ satisfy $f_{0}\left(x_{0}\right)>0, f_{0}^{\prime \prime}\left(x_{0}\right)>0$, and $f_{0}^{\prime \prime}$ is continuous at x_{0}.

To establish lower bounds, consider the perturbations \tilde{f}_{ϵ} of f_{0} given by

$$
\quad= \begin{cases}\tilde{f}_{\epsilon}(x) \\ f_{0}\left(x_{0}-\epsilon c_{\epsilon}\right)+\left(x-x_{0}+\epsilon C_{\epsilon}\right) f_{0}^{\prime}\left(x_{0}-\epsilon C_{\epsilon}\right), & x \in\left(x_{0}-\epsilon c_{\epsilon}, x_{0}-\epsilon\right), \\ f_{0}\left(x_{0}+\epsilon\right)+\left(x-x_{0}-\epsilon\right) f_{0}^{\prime}\left(x_{0}+\epsilon\right), & x \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right), \\ f_{0}(x), & \text { elsewhere; }\end{cases}
$$

here c_{ϵ} is chosen so that \tilde{f}_{ϵ} is continuous at $x_{0}-\epsilon$. Now define f_{ϵ} by

$$
f_{\epsilon}(x)=\widetilde{f}_{\epsilon}(x)+\tau_{\epsilon}\left(x_{0}-\epsilon-x\right) 1_{\left[0, x_{0}-\epsilon\right]}(x)
$$

with τ_{ϵ} chosen so that f_{ϵ} integrates to 1 .

D: Lower bounds: convex decreasing density

D: Lower bounds: convex decreasing density

D: Lower bounds: convex decreasing density

Now

$$
\begin{aligned}
& \left|\nu_{1}\left(f_{\epsilon}\right)-\nu_{1}\left(f_{0}\right)\right|=\left|f_{\epsilon}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right| \sim \frac{1}{2} f_{0}^{(2)}\left(x_{0}\right) \epsilon^{2}(1+o(1)) \\
& \left|\nu_{2}\left(f_{\epsilon}\right)-\nu_{2}\left(f_{0}\right)\right|=\left|f_{\epsilon}^{\prime}\left(x_{0}\right)-f_{0}^{\prime}\left(x_{0}\right)\right| \sim f_{0}^{(2)}\left(x_{0}\right) \epsilon(1+o(1))
\end{aligned}
$$

and some further computation (Jongbloed (1995), (2000)) shows that

$$
H^{2}\left(f_{\epsilon}, f_{0}\right)=\frac{2 f_{0}^{(2)}\left(x_{0}\right)^{2}}{5 f_{0}\left(x_{0}\right)} \epsilon^{5}(1+o(1))
$$

Thus taking $\epsilon \equiv \epsilon_{n}=c n^{-1 / 5}$, writing f_{n} for $f_{\epsilon_{n}}$, and using our two-point lower bound proposition yields

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} \inf _{T_{n}} \max \left\{E_{n} n^{2 / 5}\left|T_{n}-\nu_{1}\left(f_{n}\right)\right|, E_{0} n^{2 / 5}\left|T_{n}-\nu_{1}\left(f_{0}\right)\right|\right\} \\
\quad \geq \frac{1}{4}\left(\frac{f_{0}^{2}\left(x_{0}\right) f_{0}^{(2)}\left(x_{0}\right)}{2 \cdot 8^{2} e^{2}}\right)^{1 / 5}
\end{gathered}
$$

and ...

D: Lower bounds: convex decreasing density

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \inf _{T_{n}} \max \left\{E_{n} n^{1 / 5}\left|T_{n}-\nu_{2}\left(f_{n}\right)\right|, E_{0} n^{1 / 5}\left|T_{n}-\nu_{2}\left(f_{0}\right)\right|\right\} \\
& \quad \geq \frac{1}{4}\left(\frac{f_{0}\left(x_{0}\right) f_{0}^{(2)}\left(x_{0}\right)^{3}}{4 e}\right)^{1 / 5} .
\end{aligned}
$$

We will see that the MLE achieves these rates and that the limiting distributions involve exactly these constants tomorrow.

Other Scenarios?

S2: f_{0} triangular on $[0,1]$?
(Degenerate mixing distribution at 1.)
S3: $x_{0} \in(a, b)$ where f_{0} is linear on (a, b) ?
S4: x_{0} a "bend" or "kink" point for $x_{0}: f_{0}^{\prime}\left(x_{0}-\right)<f_{0}^{\prime}\left(x_{0}+\right)$?
S5: ...?

Outline: Tomorrow

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

