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Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

(and comparisons?)

• L3: Estimation of convex and

k−monotone density functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open problems
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Outline: Lecture 3

• A: Convex decreasing and k−monotone densities as mixtures

• B: Existence and uniqueness of MLE, k−monotone, k ≥ 2

• C: Consistency, k−monotone, 2 ≤ k ≤ ∞

• D: Global rates of convergence: 2 ≤ k <∞

• E: Local rate of convergence: k = 2

• F: Limiting distributions at a fixed point: k = 2
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A. Convex decreasing and k−monotone

densities as mixtures

Definition 1. Let k be an integer, k ≥ 2. A density f on R+

is said to be k−monotone if f(j) exists for j = 1, . . . , k − 2 with

(−1)jf(j)(x) ≥ 0 and f(k−2) is convex. Let Dk denote the class

of all k−monotone densities

Definition 2. A density f on R+ is said to be completely

monotone if f(j) exists for j = 1, . . . with (−1)jf(j)(x) ≥ 0 for all

j. Let D∞ denote the class of all completely monotone densities.

In part D of Lecture 2 it was noted that every monotone

decreasing density f on R+ is a scale mixture of uniform densities,

and every decreasing convex density f is a scale mixture of

triangular (or Beta(1,2)) densities. In fact this extends to the

class of k−monotone densities.
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A. Convex decreasing and k−monotone

densities as mixtures

f ∈ Dk if and only if

f(x) =
∫ ∞

0
ky−1(1− x/y)k−1

+ dG(y) for some distribution G.

while f ∈ D∞ if and only if

f(x) =
∫ ∞

0
y−1exp(−x/y)dG(y) for some distribution G.

It is convenient to recast this as follows:

Proposition 1. (Williamson, 1956; Lévy, 1962; Bernstein)

A density f is a k−monotone (completely monotone) density if

and only if it can be represented as a scale mixture of Beta(1, k)

(exponential) densities; i.e. with x+ ≡ x1{x ≥ 0},

f(x) =


∫∞
0 y−1

(
1− x

ky

)k−1

+
dG(y), k ∈ {1,2, . . .},∫∞

0 y−1exp(−x/y)dG(y), k =∞ ,
(1)

for some distribution function G on (0,∞).
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A. Convex decreasing and k−monotone

densities as mixtures

The inversion formulas corresponding to these mixture represen-

tations are given in the following proposition.

Proposition 2. Suppose that f is a k−monotone density

with distribution function F (so F (x) =
∫ x
0 f(t)dt). Then the

distribution function G = Gk of (??) is given at continuity points

of Gk by

Gk(t) =
k∑

j=0

(−1)j

j!
(kt)jF (j)(kt) , (2)

and the distribution function G = G∞ of the k =∞ part of (??)

is given at continuity points of G∞ by

G∞(t) = lim
k→∞

Gk(t) . (3)
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A. Convex decreasing and k−monotone

densities as mixtures

It will be convenient to have notation for the classes of functions

given by the mixing representations in (??) when the mixing

measure G is not require to have mass 1, and hence the resulting

functions f are not necessarily densities. We denote these classes

by Mk for 1 ≤ k ≤ ∞.
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B. Existence and uniqueness of MLE,

k−monotone, k ≥ 2

Now suppose that X1, . . . , Xn are i.i.d. f0 ∈ Dk for some k ∈
{2, . . . ,∞}. The MLE f̂n ≡ f̂n,k is defined by

f̂n = argmax{Pnlogf : f ∈ Dk}.

The LSE f̃n ≡ f̃n,k of f0 is defined by

f̃n ≡ argmin{ψn(f) : f ∈Mk ∩ L2(λ)}

where

ψn(f) ≡
1

2

∫ ∞
0

f2(x)dx−
∫ ∞

0
f(x)dFn(x).
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B. Existence and uniqueness of MLE,

k−monotone, k ≥ 2

Theorem. (k = 2: Groeneboom, Jongbloed, W (2001);

2 < k <∞: Balabdaoui (2004);

2 ≤ k <∞: Seregin (2010);

k =∞: Jewell (1982))

(a) For 2 ≤ k ≤ ∞ the MLE f̂n exists and is unique.

(b) For 2 ≤ k <∞ the LSE f̃n exists and is unique.

(c) f̃n,k 6= f̂n,k for all k ≥ 2.

Proof. Methods:

• Nonparametric estimation in mixtures: Lindsay (1983a,b);

Lindsay (1995); Lindsay and Roeder (1993).

• Positivity / total positivity: Schoenberg and Whitney (1953);

Polya and Szëgo (1925); Karlin (1968).
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B. Existence and uniqueness of MLE,

k−monotone, k ≥ 2

Theorem. f̂n,k is characterized by:

(a) 2 ≤ k <∞: The “Fenchel” conditions hold:

∫ ∞
0

k(y − x)k−1
+

ykf̂n,k(x)
dFn(x) ≤ 1 for all y > 0

with equality if and only if y ∈ supp(Ĝn,k).

(b) k =∞: The “Fenchel” conditions hold:∫ ∞
0

exp(−x/y)

yf̂n,∞(x)
dFn(x) ≤ 1 for all y > 0

with equality if and only if y ∈ supp(Ĝn,∞).
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B. Existence and uniqueness of MLE,

k−monotone, k ≥ 2

To state the characterization of the LSE f̃n we define Yn,k and

H̃n,k by:

Yn,k(x) ≡
∫ x

0

∫ xk−1

0
· · ·

∫ x2

0
Fn(x1)dx1dx2 · · · dxk−1,

H̃n,k(x) ≡
∫ x

0

∫ xk−1

0
· · ·

∫ x2

0

∫ x1

0
f̃n,k(x0)dx0dx2 · · · dxk−1

for x ≥ 0.

Theorem. (a) f̃n,k is characterized by:

H̃n,k(x) ≥ Yn,k(x) for all x ≥ 0. (4)

with equality holding if and only if x ∈ supp(G̃n,k).

(b) The equality conditions can be expressed as∫ ∞
0

(H̃n,k(y)− Yn,k(y))dH̃(2k−1)
n,k (y) = 0.
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B. Existence and uniqueness of MLE,

k−monotone, k ≥ 2

It is not hard to see that

Yn,k(y) =
∫ y

0

(y − x)k−1

(k − 1)!
dFn(x) =

∫ ∞
0

(y − x)k−1
+

(k − 1)!
dFn(x),

H̃n,k(y) =
∫ y

0

(y − x)k−1

(k − 1)!
dF̃n,k(x) =

∫ ∞
0

(y − x)k−1
+

(k − 1)!
dF̃n,k(x)

Thus the inequality part of the second theorem can be rewritten

as ∫ ∞
0

(y − x)k−1
+

(k − 1)!
d
(
F̃n,k(x)− Fn(x)

)
≥ 0 for all y > 0.

Similarly, the equality part of the first theorem can be rewritten

as ∫ ∞
0

k(y − x)k−1
+

ykf̂n,k(x)
d
(
F̂n,k(x)− Fn(x)

)
≥ 0 for all y > 0.
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

Suppose that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P, a

convex class of densities with respect to a σ−finite measure µ

on a measurable space (X ,A). Let

p̂n ≡ argmaxp∈P Pnlog(p) .

For 0 < α ≤ 1, let ϕα(t) = (tα−1)/(tα+ 1) for t ≥ 0, ϕα(t) = −1

for t < 0. Then ϕα is bounded and continuous for each α ∈ (0,1].

For 0 < β < 1 define

h2
β(p, q) ≡ 1−

∫
pβq1−βdµ .

Note that h1/2(p, q) ≡ H(p, q) is the Hellinger distance between

p and q, and by Hölder’s inequality, hβ(p, q) ≥ 0 with equality if

and only if p = q a.e. µ.
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

Proposition: (Pfanzagl; van de Geer) Suppose that P is

convex. Then

h2
1−α/2(p̂n, p0) ≤ (Pn − P0)

(
ϕα

(
p̂n

p0

))
.

In particular, when α = 1 we have, with ϕ ≡ ϕ1,

H2(p̂n, p0) ≤ (Pn − P0)

(
ϕ

(
p̂n

p0

))
= (Pn − P0)

(
2p̂n

p̂n + p0

)
.

Corollary: (Pfanzagl (1988); van de Geer, (1993, 1996))

Suppose that {ϕα(p/p0) : p ∈ P} is a P0 Glivenko-Cantelli class.

Then for each 0 < α ≤ 1, h1−α/2(p̂n, p0)→a.s. 0.
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

Proof. Since P is convex and p̂n maximizes Pnlogp over P, it
follows that

Pnlog
p̂n

(1− t)p̂n + tp1
≥ 0

for all 0 ≤ t ≤ 1 and every p1 ∈ P; this holds in particular for
p1 = p0. Note that equality holds if t = 0. Differentiation of the
left side with respect to t at t = 0 yields

Pn
p1

p̂n
≤ 1 for every p1 ∈ P .

If L : (0,∞) 7→ R is increasing and t 7→ L(1/t) is convex, then
Jensen’s inequality yields

PnL
(
p̂n

p1

)
≥ L

(
1

Pn(p1/p̂n)

)
≥ L(1) = PnL

(
p1

p1

)
.

Choosing L = ϕα and p1 = p0 in this last inequality and noting
that L(1) = 0, it follows that

0 ≤ Pnϕα(p̂n/p0) = (Pn − P0)ϕα(p̂n/p0) + P0ϕα(p̂n/p0) ; (5)

Statistical Seminar, Fréjus 3.14



C: Consistency, k−monotone, 2 ≤ k ≤ ∞

see van der Vaart and Wellner (1996) page 330, and Pfanzagl

(1988), pages 141 - 143. Now we show that

P0ϕα(p/p0) =
∫
pα − pα0
pα + pα0

dP0 ≤ −
(

1−
∫
p
β
0p

1−βdµ
)

(6)

for β = 1− α/2. Note that this holds if and only if

−1 + 2
∫

pα

pα0 + pα
p0dµ ≤ −1 +

∫
p
β
0p

1−βdµ ,

or ∫
p
β
0p

1−βdµ ≥ 2
∫

pα

pα0 + pα
p0dµ .

But his holds if

p
β
0p

1−β ≥ 2
pαp0

pα0 + pα
.
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

With β = 1− α/2, this becomes

1

2
(pα0 + pα) ≥ pα/2

0 pα/2 =
√
pα0p

α ,

and this holds by the arithmetic mean - geometric mean

inequality. Thus (??) holds. Combining (??) with (??) yields

the claim of the proposition. The corollary follows by noting that

ϕ(t) = (t− 1)/(t+ 1) = 2t/(t+ 1)− 1.
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

To apply this to the MLEs f̂n,k ∈ Dk, we take P = Dk, which is

convex in view of the mixture representation.

We first show that the map G 7→ fG(x) is continuous with respect

to the topology of vague convergence for distributions G. This

follows easily since for each fixed x > 0 the kernels

y 7→ ky−1(1− x/y)k−1
+ ≡ mk(x, y)

for this mixing family are bounded, continuous, and satisfy

mk(x, y) → 0 as y → 0 or ∞ for every x > 0. Since vague

convergence of distribution functions implies that integrals of

bounded continuous functions vanishing at infinity converge, it

follows that G 7→ fG(x) is continuous with respect to the vague

topology for every x > 0. This implies, that the family

Fk =

{
fG

fG + f0
: G a d.f. on R+

}
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

is pointwise, for a.e. x, continuous in G wrt the vague topology.

Since the family of sub-distribution functions G on R is compact

for the vague topology (Bauer (1972), p. 241), and the family

of functions Fk is uniformly bounded by 1, we conclude from the

argument of Wald (1949) that

N[ ](ε,Fk, L1(P0)) <∞ for every ε > 0.

Thus Fk is P0- Glivenko-Cantelli and we conclude that f̂n,k = f
Ĝn

satifies

H(f̂n,k, f0)→a.s. 0 .

The same argument works for k =∞ and yields a different proof

of a result of Jewell (1982).
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C: Consistency, k−monotone, 2 ≤ k ≤ ∞

Based on the bound

f(x) ≤
1

x

(
1−

1

k

)k−1
for all x > 0, f ∈ Dk

and subsequence arguments, it follows that for each c > 0

sup
x≥c
|f̂n,k(x)− f0,k(x)| → 0 as n→∞,

sup
x≥c
|f̂(j)
n,k(x)− f(j)

0,k(x)| → 0 as n→∞,1 ≤ j ≤ k − 1, and

f̂
(k−1)
n (x)→a.s. f

(k−1)
0,k (x) if the derivative f

(k−1)
0,k (x) exists.

What about rates of convergence?
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D: Global Rates, 2 ≤ k <∞

Based on:

• Empirical process fluctuation bound:

Birgé & Massart; van der Vaart & W

• Rate of convergence result:

Birgé & Massart; van der Vaart & W (1996)

• Entropy bound for bounded sub-classes of Dk:

Gao & W (2009)

• If f0(0) <∞, then f̂n,k(0) = Op(1). Gao & W (2009)
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D: Global Rates, 2 ≤ k <∞

Empirical process result:
Suppose that P is a collection of densities, P0 ⊂ P
Theorem. (Thm 3.2.5, vdV & W, simplified) Suppose
that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P0. Let H

be the Hellinger distance between densities, and let mp be
defined, for p ∈ P, by

mp(x) = log ((p(x) + p0(x))/(2p0(x))) .

Then M(p) − M(p0) ≡ P0(mp − mp0) . −H2(p, p0) .
Furthermore, with Mδ = {mp −mp0 : H(p, p0) ≤ δ, p ∈ P0},
we also have

E∗P0
‖Gn‖Mδ

. J̃[ ](δ,P0, H)

1 +
J̃[ ](δ,P0, H)

δ2√n

 ≡ φn(δ,P0),(7)

where

J̃[ ](δ,P0, H) =
∫ δ

0

√
1 + logN[ ](ε,P0, H) dε.
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D: Global Rates, 2 ≤ k <∞

Entropy bound for bounded sub-classes of Dk: Let

P0 ≡ DBk ([0, A]) ≡ {f ∈ Dk : f(0) ≤ B, f(x) = 0 if x > A}.

Gao & W (2009) show that for ε > 0

logN[·](ε,D
B
k ([0, A]), H) ≤ Cε−1/k

where C = Ck(A,B).

If f0(0) <∞, then f̂n,k(0) = Op(1). By the characterization of
f̂n,k,

1 ≥
∫ y

0

k

yk
(y − x)k−1

f̂n,k(x)
dFn(x) for all y > 0

with equality if y ∈ {τ1, . . . , τm} ≡ supp(Ĝn,k) where 0 < τ1 <

· · · < τm <∞. Thus for y = τ1 and 0 ≤ x ≤ τ1,

1 =
k

τ1

∫ τ1

0

(1− x/τ1)k−1

f̂n,k(x)
dFn(x)
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D: Global Rates, 2 ≤ k <∞

where

f̂n,k(x) =
∫ ∞

0

k

y

(
1−

x

y

)k−1

+
dĜn,k(y)

≥
(

1−
x

τ1

)k−1

+

∫ ∞
0

k

y
dĜn,k(y) = (1− x/τ1)k−1

+ f̂n,k(0).

Hence

1 ≤
k

τ1

∫ τ1

0

(1− x/τ1)k−1

f̂n,k(0)(1− x/τ1)k−1
dFn(x) =

k

τ1f̂n,k(0)
Fn(τ1),

which yields

f̂n,k(0) ≤ k
Fn(τ1)

τ1
≤ k sup

t>0

Fn(t)

t

≤ k sup
t>0

Fn(t)

F0(t)
f0(0) = Op(1).
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D: Global Rates, 2 ≤ k <∞

Combining these facts proves:

Theorem. (Gao & W, 2009) Suppose that f0 ∈ DBk ([0, A]) for

some 0 < A,B <∞. Then {f̂n,k} satisfies

H(f̂n,k, f0) = Op(n
− k

2k+1).

Questions:

• What is the rate for f̂n,∞ ∈ D∞?

• Can we go beyond DBk ([0, A])?

• Is n−1/(2k+1) the rate of convergence of dBL(Ĝn,k, G0)?
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E: Rates of convergence: local results, k = 2

• Difficulty: no switching relation! Study LSE as first step.

• Proceed by localizing the Fenchel conditions

B Step 1: localization rate or tightness result

Empirical process theory: Kim-Pollard type lemmas

B Step 2: Weak convergence of the localized driving process

to a limit Gaussian driving process

Empirical process theory: bracketing CLT with functions

dependent on n.

B Step 3: Preservation of (localized) characterizing relations

in the limit.

B Step 4: Establishing uniqueness of the limiting (Gaussian

world) estimator resulting from the Fenchel relations.

• Cross check limit distributions with lower bound theory.
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E: Rates of convergence: local results, k = 2

Step 1: Localization:

• Fenchel characterization implies midpoint properties.

• Midpoint properties + Kim-Pollard type lemma implies gap

rate.

• Gap rate τ+
n − τ−n = Op(n−1/5) yields tightness.
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E: Rates of convergence: local results, k = 2

Mid-point properties: Recall the Fenchel characterization of

the LSE, k = 2:

H̃n(x) ≥ Yn(x) for all x ≥ 0. (8)

with equality holding if and only if x ∈ supp(G̃n).

(b) The equality conditions can be expressed as∫ ∞
0

(
H̃n(y)− Yn(y)

)
dH̃(3)

n (y) = 0.

It follows that H̃n is piecewise cubic: for τ1 < τ2, with τ1, τ2 ∈
supp(G̃n,2) two successive touch points,

H̃n(x) = a0 + a1x+ a2x
2 + a3x

3 on [τ1, τ2]

where a0, a1, a2, a3 are determined by

H̃n(τj) = Yn(τj), j = 1,2, and

F̃n(τj) = Fn(τj), j = 1,2.
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E: Rates of convergence: local results, k = 2

Upshot: for x ∈ [τ1, τ2]

H̃n(x) = {Yn(τ2)(x− τ1) + Yn(τ1)(τ2 − x)}/∆τ

−
1

2

{
∆Fn
∆τ

+
4(Fn∆τ −∆Yn)(x− τ)

(∆τ)3

}
(x− τ1)(x− τ2),

so, with τ ≡ (τ2 + τ1)/2 and ∆τ ≡ τ2 − τ1,

H̃n(τ) = Yn −
1

8
∆Fn∆τ

where

∆Yn ≡ Yn(τ2)− Yn(τ1), ∆Fn ≡ Fn(τ2)− Fn(τ1),

Yn ≡ (Yn(τ2) + Yn(τ1))/2, Fn ≡ (Fn(τ2) + Fn(τ1))/2.

Now we can rewrite H̃n(τ) ≥ Yn(τ) as

Yn −
1

8
∆Fn∆τ ≥ Yn(τ),
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E: Rates of convergence: local results, k = 2

Now let x0 with f
(2)
0 (x0) > 0 be fixed, let ξn → x0, and take

τ1 ≡ τ−n ≡ max{t ∈ supp(G̃n) : t ≤ ξn},
τ2 ≡ τ+

n ≡ min{t ∈ supp(G̃n) : t > ξn}.
Then H̃n(τn) ≥ Yn(τn) can be rewritten as

1

2

(
Yn(τ+

n ) + Yn(τ−n )
)
−

1

8

{
Fn(τ+

n )− Fn(τ−n )
}

(τ+
n − τ−n ) ≥ Yn(τn).(9)

Replacing Yn and Fn by their deterministic counterparts and then
expanding the integrands at τn yields∫ τ+

n

τn
(τ+
n − x)f0(x)dx+

∫ τn
τ−n

(x− τ−n )f0(x)dx−
1

4
(τ+
n − τ−n )

∫ τ+
n

τ−n
f0(x)dx

=
∫

[τn,τ
+
n ]
{

1

2
(τn + τ+

n )− x}f0(x)dx+
∫

[τ−n ,τn]
{x−

1

2
(τ−n + τn)}f0(x)dx

= −
1

192
f0(τn)(τ+

n − τ−n )4 + op(τ
+
n − τ−n )4,

by using consistency of f̃n to ensure that τn belongs to a
sufficiently small neighborhood of x0.
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E: Rates of convergence: local results, k = 2

Τ
-

Τ Τ
+
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E: Rates of convergence: local results, k = 2

The difference between (??) and the deterministic version is∫
[τ−n ,τn]

(z − (τ−n + τn)/2)d (Fn(z)− F0(z))

+
∫

[τn,τ
+
n ]

((τ+
n + τn)/2− z)d (Fn(z)− F0(z))

≡ Un(τ−n , τn)− Un(τn, τ
+
n ) where

Un(x, y) ≡
∫

[x,y]
(z − (x+ y)/2)d(Fn(z)− F0(z)).

By an empirical process argument – as in Kim and Pollard (1991),
there exist constants δ > 0 and c0 > 0 such that, for each ε > 0
and each x satisfying |x− x0| < δ,

|Un(x, y)| ≤ ε|y − x|4 +Op(n
−4/5), for all 0 ≤ y − x ≤ c0.

This implies that

|Un(τ−n , τn)− Un(τn, τ
+
n )| ≤ ε(τ+

n − τ−n )4 +Op(n
−4/5).
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E: Rates of convergence: local results, k = 2

Putting the pieces together by choosing ε = f
(2)
0 (x0)/384 it

follows that

−
1

192
f

(2)
0 (x0)(τ+

n − τ−n )4 + op(τ
+
n − τ−n )4

+
1

384
f

(2)
0 (x0)(τ+

n − τ−n )4 +Op(n
−4/5) ≥ 0,

and hence

τ+
n − τ−n = Op(n

−1/5).

This leads to:

Proposition: Suppose that f ′0(x0) < 0, f(2)
0 (x0) > 0 and f

(2)
0

continuous in a neighborhood of x0. Then

sup
|t|≤M

|f̃n(x0 + n−1/5t)− f0(x0)− n−1/5tf ′0(x0)| = Op(n
−2/5),

sup
|t|≤M

|f̃ ′n(x0 + n−1/5t)− f ′0(x0)| = Op(n
−2/5).

... and a corresponding result for the MLE f̂n.
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F: Limiting distributions at a fixed point: k = 2

Step 2: Localize the Fenchel conditions

Define

Ylocn (t) ≡ n4/5
∫ x0+n−1/5t

x0

{Fn(v)− Fn(x0)

−
∫ v
x0

(f0(x0) + (u− x0)f ′0(x0))du

}
dv

d
= n3/10

∫ x0+n−1/5

x0

{Un(F0(v))− Un(F (x0))}dv

+
f

(2)
0 (x0)

4!
t4 + o(1)

 
√
f0(x0)

∫ t
0
W (s)ds+

f
(2)
0 (x0)

4!
t4 by KMT

or by theorem 2.11.22 or 2.11.23, vdV & W (1996)

≡ a
∫ t

0
W (s)ds+ bt4 ≡ Ya,b(t).
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F: Limiting distributions at a fixed point: k = 2

Similarly, define

H̃locn (t) ≡ n4/5
∫ x0+n−1/5t

x0

∫ v
x0

{f̃n(u)− f0(x0)− (u− x0)f ′0(x0)}dudv

+ B̃nt+ Ãn

where

Ãn ≡ n4/5(H̃n(x0)− Yn(x0)) = Op(1)

B̃n ≡ n3/5(F̃n(x0)− Fn(x0)) = Op(1).

Furthermore

H̃locn (t)− Ylocn (t) = n4/5{H̃n(x0 + n−1/5t)− Yn(x0 + n−1/5t)} ≥ 0
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F: Limiting distributions at a fixed point: k = 2

Step 3: Preservation of (localized) characterizing relations
in the limit

• {(H̃locn , H̃loc,(1)
n , H̃loc,(2)

n , H̃loc,(3)
n )}n≥1 is tight.

• Ylocn  Ya,b .

• Fenchel relations satisfied:

B H̃locn (t) ≥ Ylocn (t) for all t

B
∫∞
−∞(H̃locn (t)− Ylocn (t))dH̃loc,3n (t) = 0

• Any limit process H for a subsequence {H̃locn′ } must satisfy

B H(t) ≥ Ya,b(t) for all t.

B
∫∞
−∞(H(t)− Ya,b(t))dH(3)(t) = 0.

• Show the process H characterized by these two conditions is
unique!
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F: Limiting distributions at a fixed point: k = 2

Upshot after rescaling to Y1,1 ≡ Y:

Theorem. (Groeneboom, Jongbloed & W (2001)) If

f ∈ D2, f0(x0) > 0, f
(2)
0 (x0) > 0, and f

(2)
0 continuous in a

neighborhood of x0, then(
n2/5(f̃n(x0)− f(x0))
n1/5(f̃ ′n(x0)− f ′(x0))

)
→d

(
c1(f)H(2)(0)

c2(f)H(3)(0)

)
where

c1(f) ≡
(
f2(x0)f ′′(x0)

4!

)1/5

, c2(f) ≡
(
f(x0)f ′′(x0)3

4!3

)1/5

.
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F: Limiting distributions at a fixed point: k = 2
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F: Limiting distributions at a fixed point: k = 2
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F: Limiting distributions at a fixed point: k = 2
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F: Limiting distributions at a fixed point: k = 2

f ′
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