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Outline: Five Lectures on Shape Restrictions

e L1: Monotone functions: maximum likelihood and
least squares

e L2: Optimality of the MLE of a monotone density
(and comparisons?)

e L3: Estimation of convex and
k—monotone density functions

e L4: Estimation of log-concave densities: d =1 and beyond

e L5: More on higher dimensions and some open problems
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Outline: Lecture 3

Convex decreasing and k—monotone densities as mixtures

Existence and uniqueness of MLE, k—monotone, k > 2

Global rates of convergence: 2 < k < oo

A
B:
e C: Consistency, k—monotone, 2 < k < oo
D:
E: Local rate of convergence: kK =2
F:

Limiting distributions at a fixed point: £k =2
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A. Convex decreasing and k—monotone

densities as mixtures

Definition 1. Let k be an integer, k > 2. A density f on RT
is said to be k—monotone if () exists for j = 1,...,k — 2 with
(—=1) fU)(z) > 0 and f(k~2) js convex. Let D, denote the class
of all k—monotone densities

Definition 2. A density f on RT is said to be completely
monotone if f(4) exists for j = 1,... with (=1)7£()(x) > 0 for all
7. Let Do denote the class of all completely monotone densities.

In part D of Lecture 2 it was noted that every monotone
decreasing density f on RT is a scale mixture of uniform densities,
and every decreasing convex density f is a scale mixture of
triangular (or Beta(1,2)) densities. In fact this extends to the
class of k—monotone densities.
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A. Convex decreasing and k—monotone

densities as mixtures

f € Dy, if and only if

oo
f(x) :/o ky (1 — :c/y)’fl__ldG(y) for some distribution G.

while f € Dy if and only if

o0
f(x) :/o y_lexp(—a:/y)dG(y) for some distribution G.
It is convenient to recast this as follows:

Proposition 1. (Williamson, 1956; Lévy, 1962; Bernstein)
A density f is a k—monotone (completely monotone) density if
and only if it can be represented as a scale mixture of Beta(1,k)
(exponential) densities; i.e. with x4 = x1{z > 0},

k—1

oo, —1 T
JoTy rexp(—z/y)dG(y), k= oo,

for some distribution function G on (0, ).
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A. Convex decreasing and k—monotone

densities as mixtures

The inversion formulas corresponding to these mixture represen-
tations are given in the following proposition.

Proposition 2. Suppose that f is a k—monotone density
with distribution function F (so F(z) = J[§ f(t)dt). Then the
distribution function G = G, of (?7) is given at continuity points
of Gk by

. .
Gp(t) = > (_Jl,)J (kt) FO) (kt), (2)
7=0 '

and the distribution function G = G of the k = oo part of (77)
IS given at continuity points of G by

Goo(t) = lim G(2). (3)
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A. Convex decreasing and k—monotone

densities as mixtures

It will be convenient to have notation for the classes of functions
given by the mixing representations in (??) when the mixing
measure G is not require to have mass 1, and hence the resulting
functions f are not necessarily densities. We denote these classes
by M for 1 <k < oo.
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B. EXistence and uniqueness of MLE,

k—monotone, k£ > 2

Now suppose that Xl,.. , Xn are i.i.d. fo € D, for some k &
{2,...,00}. The MLE f, = fnk is defined by

fn = argmax{Pplogf : f € D;}.
The LSE fn = f, 1 Of fo is defined by

fo = argmin{yn(f) : f € My N La(M\)}

where

(D) =5 [ f2@de — [ f@)dEn).
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B. EXistence and uniqueness of MLE,

k—monotone, k£ > 2

Theorem. (k= 2: Groeneboom, Jongbloed, W (2001);
2 < k < co: Balabdaoui (2004);
2 <k < oo: Seregin (2010);
k= oco: Jewell (1982))

(a) For 2 <k < oo the MLE f, exists and is unique.

(b) For 2 < k < oo the LSE f, exists and is unique.

(c) fn,k 7 fn,k for all k > 2.

Proof. Methods:

e Nonparametric estimation in mixtures: Lindsay (1983a,b);
Lindsay (1995); Lindsay and Roeder (1993).

e Positivity / total positivity: Schoenberg and Whitney (1953);
Polya and Szégo (1925); Karlin (1968).
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B. EXistence and uniqueness of MLE,

k—monotone, k£ > 2

T heorem. fnk IS characterized by:
(a) 2< k< oo: The “Fenchel” conditions hold:

ook(y—a:)_l_
/O T dFp(z) <1 forall y> 0

with equality if and only if y € supp(@n,k).

(b) k= oco: The “Fenchel” conditions hold:
/OO exp(—z/y)
0 yfn,oo(x)

with equality if and only if y € Supp(@n,oo).

dFn,(x) <1 forally >0
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B. EXistence and uniqueness of MLE,

k—monotone, k£ > 2

To state the characterization of the LSE f, we define Y, . and
H,, . by:

Ll— 1 o
Yy, k() —/ / / Fr(z1)dxidxs - - - dxg_q,
~ Ll 1 Hilp) 1 ~
Hn,k(w)E/O/O : / / fnk(xo)dxodry - - - dx)_1q

for x > 0.
Theorem. (a) fnk iSs characterized by:
ﬁn,k(a:) > Y, k(x) forall z=>0. (4)

with equality holding if and only if = € supp(G,, x)-
(b) The equality conditions can be expressed as

| @k () = Yok )EG D) =o.
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B. EXistence and uniqueness of MLE,

k—monotone, k£ > 2

It is not hard to see that

_ k-1 0o (y — )kt
Yn’k(y):/oy (y(k_)l)! d]Fn(x):/O (y(k_);)rl dFn(x),
~ )kl 0o (y —
Boa) = [ @) = || (y(k_)g, dF,, (=)

Thus the inequality part of the second theorem can be rewritten
as

o (y — )
/O (k— 1)| d( nk(w) Fn(ai')) >0 for all y > 0.

Similarly, the equality part of the first theorem can be rewritten
as

/OO k(y — 33)

0 kfnk(af) d( nk(w) ]Fn(CU)> >0 for all y > 0.
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C: Consistency, k—monotone, 2 < k < oo

Suppose that Xq,...,Xp, are i.i.d. Py with density pg € P, a
convex class of densities with respect to a o—finite measure u
on a measurable space (X, A). Let

pn = argmax,cp Pnlog(p) .

ForO<a<1,let po(t) = (@*—1)/(t*+ 1) for t > 0, pa(t) = —1
for t < 0. Then ¢4 is bounded and continuous for each o € (0, 1].
For O < B < 1 define

hg(p,q) =1 — /pﬁql_ﬁdu-

Note that hl/Q(p, q) = H(p,q) is the Hellinger distance between
p and ¢, and by Holder's inequality, hﬁ(p, g) > 0 with equality if
and only if p=gq a.e. pu.
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C: Consistency, k—monotone, 2 < k < oo

Proposition: (Pfanzagl; van de Geer) Suppose that P is
convex. Then

h2_ o 1a(Bns p0) < (P — Po) (soa (1%)) |
PO

In particular, when a = 1 we have, with ¢ = ¢,

H?(Pn,po) < (Pp, — Pp) <<P (Z@)) = (P, — Py) ( 2D ) :

PO Pn + PO

Corollary: (Pfanzagl (1988); van de Geer, (1993, 1996))
Suppose that {pa(p/pg) : p € P} is a Py Glivenko-Cantelli class.
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C: Consistency, k—monotone, 2 < k < oo

Proof. Since P is convex and p, maximizes Pplogp over P, it
follows that

Pn >0
(1 —t)pn +1tp1 —
for all 0 <t < 1 and every p; € P; this holds in particular for
p1 = po. Note that equality holds if ¢t = 0. Differentiation of the

left side with respect to ¢t at ¢t = 0O vields
Png <1 for every p; € P.
Pn
If L : (0,00) — R is increasing and t — L(1/t) is convex, then

Jensen’s inequality yields

pn 1 _ p1
ol (m) =k <Pn(p1/ﬁn)> 2 L) =Pal (m) |

Choosing L = ¢ and p; = pg in this last inequality and noting
that L(1) = 0, it follows that

0 < Pna(pn/po) = (Prn — Po)wa(Pn/po) + Pova(Pn/ro):  (5)
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C: Consistency, k—monotone, 2 < k < oo

see van der Vaart and Wellner (1996) page 330, and Pfanzagl
(1988), pages 141 - 143. Now we show that

_ [P —Pp B 1-8
Popalp/po) = | (o odPo < —(1— /pop dp (6)
p ‘I'po

for 8 =1 — «a/2. Note that this holds if and only if

pe B 1-8
—1—|-2/ pduS—l-l-/pp dp ,
p8‘—|-po‘o 0

or

/pgpl_ﬁdu > 2/ apa Podis -
Po + p«
But his holds if
PYPo
pg + p*

pgpl_ﬁ > 2
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C: Consistency, k—monotone, 2 < k < oo

With 8 =1 — «/2, this becomes

1 2

§(p8‘+po‘)2pg/ p®/? =\ /pgp?,
and this holds by the arithmetic mean - geometric mean
inequality. Thus (??7) holds. Combining (??7) with (?7?) yields

the claim of the proposition. The corollary follows by noting that
o) =0(—-1)/t+1)=2t/(t+1)—1.
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C: Consistency, k—monotone, 2 < k < oo

To apply this to the MLEs f,, ; € Di, we take P = Dy, which is
convex in view of the mixture representation.

We first show that the map G — fg(x) is continuous with respect
to the topology of vague convergence for distributions G. This
follows easily since for each fixed = > 0 the kernels

y e ky t (1 — 2/ = my(z,y)

for this mixing family are bounded, continuous, and satisfy
mp(x,y) — 0 as y — 0 or oo for every z > 0. Since vague
convergence of distribution functions implies that integrals of
bounded continuous functions vanishing at infinity converge, it
follows that G — fg(x) is continuous with respect to the vague
topology for every x > 0. This implies, that the family

]—"kz{ Ja . G ad.f. onR"‘}
fa + fo
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C: Consistency, k—monotone, 2 < k < oo

IS pointwise, for a.e. x, continuous in G wrt the vague topology.
Since the family of sub-distribution functions G on R is compact
for the vague topology (Bauer (1972), p. 241), and the family
of functions Fj. is uniformly bounded by 1, we conclude from the
argument of Wald (1949) that

N[](e,]-"k,Ll(Po)) < oo for every e > 0.

Thus Fy, is PO- Glivenko-Cantelli and we conclude that f,, ; = fz
satifies

H(fn,ka fo) —a.s. 0.

The same argument works for k = oo and yields a different proof
of a result of Jewell (1982).
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C: Consistency, k—monotone, 2 < k < oo

Based on the bound

1 1 k—1
f(:z:)g—(l—g) for all z > 0, f € Dy
T

and subsequence arguments, it follows that for each ¢ > 0

Sgp | fr(2) — fop(z)] = 0 as n — oo,
sup|f(])(a:) (])(x)|—>0 as n—>o00,1<j<k—1, and
%nk_l)(x) —a.s. fékk_l)(x) if the derivative f(gkk_l)(a:) exists.

What about rates of convergence?
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D: Global Rates, 2 <k < >

Based on:

e Empirical process fluctuation bound:
Birgé & Massart; van der Vaart & W

e Rate of convergence result:
Birgé & Massart; van der Vaart & W (1996)

e Entropy bound for bounded sub-classes of Dy.:
Gao & W (2009)

o If fp(0) < oo, then f, ,(0) = Op(1). Gao & W (2009)
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D: Global Rates, 2 <k < >

Empirical process result:
Suppose that P is a collection of densities, Py C P

Theorem. (Thm 3.2.5, vdV & W, simplified) Suppose
that Xq,..., Xy are i.i.d. Fp with density pg € Pg. Let H
be the Hellinger distance between densities, and let m, be
defined, for p € P, by

mp(z) = log ((p(z) + po(x))/(2po(x))) .
Then M(p) — M(pg) = Po(mp — mpy) S —H?(p,po) -

Y

Furthermore, with Mg = {mp — mp, : H(p,po) < 3J, p € Po},
we also have

j[](57 7:)07 H)
52 /n

Ep Gl ag; S Ji1(8, Po, H) (1 + ) = 6n(5,P0), (7)

where

- )
J11 (8, Po, H) =/O J1 + 109N (e, Po, H) de.
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D: Global Rates, 2 <k < >

Entropy bound for bounded sub-classes of D;.: Let
Po=D([0,A]) ={f €D : f(0)<B, f(£) =0 if x> A}
Gao & W (2009) show that for e > 0O
log N (e, DE([0, A]), H) < Ce 1/*
where C = C(A, B).

If fo(0) < oo, then f, 1(0) = Op(1). By the characterization of
fn,kr

k—1
y —
1> / kk(yA T)
0y fn,k(w)
with equality if y € {T1,...,7m} = supp(G, ) where 0 < 71 <
oo < Tm < 00. Thus fory=m and 0 <z < 1q,

1= F mQa- ‘”/Tl)k_ldwn(a:)

71 /0 fn,k(x)
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D: Global Rates, 2 <k < >

where

k—1
Frk (@) x) dGy 1 (v)

_|_

1\ |
- 0\8
RS
8
|_l

|

@ |

Hence
k[T 1— k-1 k
]_S—/l/\ ( x/’rl) - 1an(x): _
m1J0  fp p(0)(1 —x/71)%~ 71 fn,k(0)
which vyields
. IF Fn(t
Fuk(0) < KT o gy Fn()
’ T1 t>0
Fn(t)
< ksup 0) = Op(1).
S ksup Fo(t)fO( ) p(1)
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D: Global Rates, 2 <k < >

Combining these facts proves:
Theorem. (Gao & W, 2009) Suppose that fo € DP([0, A]) for

some 0 < A, B < co. Then {f, } satisfies
- ok
H(fn,ka fO) — Op(n 2k+1)'

Questions:
e What is the rate for fn,oo € Doo”?
e Can we go beyond DZ([0, A])?

o Is n~1/(2k+1) the rate of convergence of dgr (G, 1, Go)?
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E: Rates of convergence: local results, k£ =2

e Difficulty: no switching relation! Study LSE as first step.

e Proceed by localizing the Fenchel conditions

Step 1: localization rate or tightness result
Empirical process theory: Kim-Pollard type lemmas

Step 2: Weak convergence of the localized driving process
to a limit Gaussian driving process

Empirical process theory: bracketing CLT with functions
dependent on n.

Step 3: Preservation of (localized) characterizing relations
in the limit.

Step 4: Establishing uniqueness of the limiting (Gaussian
world) estimator resulting from the Fenchel relations.

e Cross check limit distributions with lower bound theory.
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E: Rates of convergence: local results, k£ =2

Step 1: Localization:
e Fenchel characterization implies midpoint properties.

e Midpoint properties + Kim-Pollard type lemma implies gap
rate.

e Gap rate 7 — 7 = Op(n—1/5) yields tightness.
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E: Rates of convergence: local results, k£ =2

Mid-point properties: Recall the Fenchel characterization of
the LSE, k = 2:

Hy(z) > Yn(z) for all z > 0. (8)

with equality holding if and only if z € supp(Gn).
(b) The equality conditions can be expressed as

| () = () diiP () = 0

It follows that H,, is piecewise cubic: for 71 < 7o, wWith 71,7 €
supp(éng) two successive touch points,

Hp(xz) = ag 4+ a1z + OQQZQ + a3:1:3 on [r1,m]
where ag, a1, ao,a3 are determined by

Fn(7j) =Fn(7j), j=1,2.
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E: Rates of convergence: local results, k£ =2

Upshot: for = € [rq, ]

Hy(z) = {Yn(m)(z—711) + Yn(r1)(m —x)}/ AT
1 (AF, 4(F,A17— AYR)(z—7)
{ }(w—ﬁ)(w—Tz),

2] Ar (AT)3

SO, wWith 7 = (TQ—I—Tl)/Q and A1 =1 — 11,

~ — 1
where

AYn — Yn(TQ) — Yn(Tl), AFn = Fn(Tz) — Fn(Tl),
Yn = (Yn(m) + Yn(11))/2, Frn = (Fn(m) + Frn(11))/2.
Now we can rewrite H,(7) > Y,(7) as

— 1
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E: Rates of convergence: local results, k£ =2

Now let zg with fc()Q)(:co) > 0 be fixed, let &, — zg, and take

1 =1, = max{t € supp(Gp) : t < &n},
o =77 = min{t € supp(Gn) : t > &n}.

Then Hy,(7rn) > Yn(7n) can be rewritten as

~ (YD) 4 Yu()) = £ {Falrih) = Fulri)} (i = 7) > Va(70)-(9)

Replacing Y, and [, by their deterministic counterparts and then
expanding the integrands at 7, vields

_|_

n n 1 7_+
[ @t ooz + [ @ = mdfot@ds - 3t =) [ fota)da
— /[F _+ { (Tn +71) — x}fo(a:)dw + {x — _(7- + 7)Y fo(z)dx

TTL )TTL

4 4
:—@fO(Tn)(T — n) +0p(7' — n)
by using consistency of f, to ensure that 7, belongs to a

sufficiently small neighborhood of zg.
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E: Rates of convergence: local results, k£ =2

~|
v\]
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E: Rates of convergence: local results, k£ =2

The difference between (?7?7) and the deterministic version is
Jo o (G 70 2)d (Fa (=) — Fo(2)
+ [ +]<<Tn+ +7n)/2 — 2)d (Fn(z) — Fo(2))

[TTL yTn

Un(z,y) = [ (2= (@+1)/2)dFa(2) — Fo(2)).

[x,y]
By an empirical process argument — as in Kim and Pollard (1991),
there exist constants 6 > O and cg > 0 such that, for each ¢ > 0O
and each z satisfying |z — xg| < 6,

Un(z,y)| < ely — z|* + Op(n_4/5), for all 0 <y —z <cp.
This implies that
Un (77, 70) — Un(Fn, D) < e(rif = 7.)% + Op(n=4/5).
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E: Rates of convergence: local results, k£ =2

Putting the pieces together by choosing € = fc()2)(:co)/384 it
follows that

1 _ _
~1o500" @) =)+ op(rf = 7)?
e +__—\4 —4/5
+ 5570 @o) (i — 1) 4+ 0p(n /%) > 0,
and hence
T — 1y = Op(n~1/5).
T his leads to:

Proposition: Suppose that fj(zg) < O, féQ)(a;O) >~ 0 and f(§2)
continuous in a neighborhood of zg. Then

sup |fn(zg +n"15%) — fo(zg) — n Y5l (x0)] = Op(n=2/5),
[t| <M

sup |f7(zg +n"15t) — fi(xo)| = Op(n=2/%).
[t| <M

. and a corresponding result for the MLE fn
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F: Limiting distributions at a fixed point: k=2

Step 2: Localize the Fenchel conditions

Define
vioe(t) = n?/° LZO+"1/5t{Fn<v>—Fn<xo>
- xZ(fo(wo) + (u - xo>f6<wo>>du} dv
4 3/10 /x ZO+n_1/5{[Un(FO(v)) — Un(F(20))}dv
n f(gi(lfﬂo)tzt_l_o(l)

2)
w1/ folzo) / W(s)ds +/ ( %0) 4 by KMT
or by theorem 2.11.22 or 2.11.23, vdV & W (1996)

a/o W (s)ds + bt* = Yq p()-

Statistical Seminar, Fréjus 3.33



F: Limiting distributions at a fixed point: k=2

Similarly, define

- x —I—n_l/St v
() = o5 [ | {Fn(w) = fo(w0) — (u —0) fo (o) Yaude

+ Bnt + An
where
Ay = 0P (Hn(z) — Yn(z0)) = Op(1)
By, = 03/ (Fy(20) — Fn(z0)) = Op(1).
Furthermore

HIP“(8) — Yi0°(t) = n/®{Hn (2o + n /%) = Yn(zo +n1/%6)} > 0
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F: Limiting distributions at a fixed point: k=2

Step 3: Preservation of (localized) characterizing relations
in the limit

o {(Hloc, filow (D) flec(2) gloe(Pyy s tight.

¢ lenoc ~ Ya,b .

e Fenchel relations satisfied:
Hioc(¢) > Yloe(t) for all t
23 (ELiEe(8) — Yieo(6))dEL > (1) = 0
e Any limit process H for a subsequence {]ﬁlgf,c} must satisfy

H(t) > Y, ,(t) for all t.
fSOOO(H(t) — Ya,b(t))dH(?)) (t) = 0.

e Show the process H characterized by these two conditions is
unique!
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F: Limiting distributions at a fixed point: k=2

Upshot after rescaling to Y; 1 = Y:

Theorem. (Groeneboom, Jongbloed & W (2001)) If
f € Do, folzg) > O, féQ)(a;o) > 0, and fo(z) continuous in a
neighborhood of xg, then

( n2/3(fn(z0) — f(z0)) ) g ( c1(HHP)(0) >

nl/5(f1(x0) — f'(x0)) co(f)H3)(0)
where
200 £ (1 1/5 o) £ ()3 1/5
() = (f ( oi{ ( o)) | oo () = (f( 0)1{!3( 0) ) |
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F: Limiting distributions at a fixed point: £ =2

1.5

0.5 —

—0.5
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F: Limiting distributions at a fixed point: k=2
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F: Limiting distributions at a fixed point: £ =2

14 —

12 —
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F: Limiting distributions at a fixed point: £ =2
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