Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010

Outline: Five Lectures on Shape Restrictions

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

Outline: Lecture 3

- A: Convex decreasing and k-monotone densities as mixtures
- B: Existence and uniqueness of MLE, k-monotone, $k \geq 2$
- C: Consistency, k-monotone, $2 \leq k \leq \infty$
- D: Global rates of convergence: $2 \leq k<\infty$
- E: Local rate of convergence: $k=2$
- F: Limiting distributions at a fixed point: $k=2$

A. Convex decreasing and k-monotone densities as mixtures

Definition 1. Let k be an integer, $k \geq 2$. A density f on \mathbb{R}^{+} is said to be k-monotone if $f^{(j)}$ exists for $j=1, \ldots, k-2$ with $(-1)^{j} f^{(j)}(x) \geq 0$ and $f^{(k-2)}$ is convex. Let \mathcal{D}_{k} denote the class of all k-monotone densities

Definition 2. A density f on \mathbb{R}^{+}is said to be completely monotone if $f^{(j)}$ exists for $j=1, \ldots$ with $(-1)^{j} f^{(j)}(x) \geq 0$ for all j. Let \mathcal{D}_{∞} denote the class of all completely monotone densities.

In part D of Lecture 2 it was noted that every monotone decreasing density f on R^{+}is a scale mixture of uniform densities, and every decreasing convex density f is a scale mixture of triangular (or Beta(1,2)) densities. In fact this extends to the class of k-monotone densities.

A. Convex decreasing and k-monotone densities as mixtures

$f \in \mathcal{D}_{k}$ if and only if

$$
f(x)=\int_{0}^{\infty} k y^{-1}(1-x / y)_{+}^{k-1} d G(y) \text { for some distribution } G .
$$

while $f \in \mathcal{D}_{\infty}$ if and only if

$$
f(x)=\int_{0}^{\infty} y^{-1} \exp (-x / y) d G(y) \text { for some distribution } G \text {. }
$$

It is convenient to recast this as follows:
Proposition 1. (Williamson, 1956; Lévy, 1962; Bernstein) A density f is a k-monotone (completely monotone) density if and only if it can be represented as a scale mixture of $\operatorname{Beta}(1, k)$ (exponential) densities; i.e. with $x_{+} \equiv x 1\{x \geq 0\}$,

$$
f(x)= \begin{cases}\int_{0}^{\infty} y^{-1}\left(1-\frac{x}{k y}\right)^{k-1} d G(y), & k \in\{1,2, \ldots\}, \tag{1}\\ \int_{0}^{\infty} y^{-1} \exp (-x / y) d G(y), & k=\infty,\end{cases}
$$

for some distribution function G on $(0, \infty)$.

A. Convex decreasing and k-monotone densities as mixtures

The inversion formulas corresponding to these mixture representations are given in the following proposition.

Proposition 2. Suppose that f is a k-monotone density with distribution function F (so $F(x)=\int_{0}^{x} f(t) d t$). Then the distribution function $G=G_{k}$ of (??) is given at continuity points of G_{k} by

$$
\begin{equation*}
G_{k}(t)=\sum_{j=0}^{k} \frac{(-1)^{j}}{j!}(k t)^{j} F^{(j)}(k t), \tag{2}
\end{equation*}
$$

and the distribution function $G=G_{\infty}$ of the $k=\infty$ part of (??) is given at continuity points of G_{∞} by

$$
\begin{equation*}
G_{\infty}(t)=\lim _{k \rightarrow \infty} G_{k}(t) . \tag{3}
\end{equation*}
$$

A. Convex decreasing and k-monotone densities as mixtures

It will be convenient to have notation for the classes of functions given by the mixing representations in (??) when the mixing measure G is not require to have mass 1 , and hence the resulting functions f are not necessarily densities. We denote these classes by \mathcal{M}_{k} for $1 \leq k \leq \infty$.

B. Existence and uniqueness of MLE, k-monotone, $k \geq 2$

Now suppose that X_{1}, \ldots, X_{n} are i.i.d. $f_{0} \in \mathcal{D}_{k}$ for some $k \in$ $\{2, \ldots, \infty\}$. The MLE $\widehat{f}_{n} \equiv \widehat{f}_{n, k}$ is defined by

$$
\widehat{f}_{n}=\operatorname{argmax}\left\{\mathbb{P}_{n} \log f: f \in \mathcal{D}_{k}\right\} .
$$

The LSE $\tilde{f}_{n} \equiv \tilde{f}_{n, k}$ of f_{0} is defined by

$$
\widetilde{f}_{n} \equiv \operatorname{argmin}\left\{\psi_{n}(f): f \in \mathcal{M}_{k} \cap L_{2}(\lambda)\right\}
$$

where

$$
\psi_{n}(f) \equiv \frac{1}{2} \int_{0}^{\infty} f^{2}(x) d x-\int_{0}^{\infty} f(x) d \mathbb{F}_{n}(x)
$$

B. Existence and uniqueness of MLE,

 $k-m o n o t o n e, ~ k \geq 2$Theorem. ($k=2$: Groeneboom, Jongbloed, W (2001);
$2<k<\infty$: Balabdaoui (2004);
$2 \leq k<\infty$: Seregin (2010);
$k=\infty$: Jewell (1982))
(a) For $2 \leq k \leq \infty$ the MLE \hat{f}_{n} exists and is unique.
(b) For $2 \leq k<\infty$ the LSE \tilde{f}_{n} exists and is unique.
(c) $\tilde{f}_{n, k} \neq \widehat{f}_{n, k}$ for all $k \geq 2$.

Proof. Methods:

- Nonparametric estimation in mixtures: Lindsay (1983a,b); Lindsay (1995); Lindsay and Roeder (1993).
- Positivity / total positivity: Schoenberg and Whitney (1953); Polya and Szëgo (1925); Karlin (1968).

B. Existence and uniqueness of MLE, k-monotone, $k \geq 2$

Theorem. $\hat{f}_{n, k}$ is characterized by:
(a) $2 \leq k<\infty$: The "Fenchel" conditions hold:

$$
\int_{0}^{\infty} \frac{k(y-x)_{+}^{k-1}}{y^{k} \widehat{f}_{n, k}(x)} d \mathbb{F}_{n}(x) \leq 1 \quad \text { for all } y>0
$$

with equality if and only if $y \in \operatorname{supp}\left(\widehat{G}_{n, k}\right)$.
(b) $k=\infty$: The "Fenchel" conditions hold:

$$
\int_{0}^{\infty} \frac{\exp (-x / y)}{y \hat{f}_{n, \infty}(x)} d \mathbb{F}_{n}(x) \leq 1 \quad \text { for all } y>0
$$

with equality if and only if $y \in \operatorname{supp}\left(\widehat{G}_{n, \infty}\right)$.

B. Existence and uniqueness of MLE, k-monotone, $k \geq 2$

To state the characterization of the LSE \tilde{f}_{n} we define $\mathbb{Y}_{n, k}$ and $\widetilde{\mathbb{H}}_{n, k}$ by:

$$
\begin{aligned}
& \mathbb{Y}_{n, k}(x) \equiv \int_{0}^{x} \int_{0}^{x_{k-1}} \cdots \int_{0}^{x_{2}} \mathbb{F}_{n}\left(x_{1}\right) d x_{1} d x_{2} \cdots d x_{k-1} \\
& \widetilde{\mathbb{H}}_{n, k}(x) \equiv \int_{0}^{x} \int_{0}^{x_{k-1}} \cdots \int_{0}^{x_{2}} \int_{0}^{x_{1}} \tilde{f}_{n, k}\left(x_{0}\right) d x_{0} d x_{2} \cdots d x_{k-1}
\end{aligned}
$$

for $x \geq 0$.
Theorem. (a) $\tilde{f}_{n, k}$ is characterized by:

$$
\begin{equation*}
\tilde{\mathbb{H}}_{n, k}(x) \geq \mathbb{Y}_{n, k}(x) \quad \text { for all } \quad x \geq 0 \tag{4}
\end{equation*}
$$

with equality holding if and only if $x \in \operatorname{supp}\left(\widetilde{G}_{n, k}\right)$.
(b) The equality conditions can be expressed as

$$
\int_{0}^{\infty}\left(\widetilde{\mathbb{H}}_{n, k}(y)-\mathbb{Y}_{n, k}(y)\right) d \widetilde{\mathbb{H}}_{n, k}^{(2 k-1)}(y)=0
$$

B. Existence and uniqueness of MLE,

 k-monotone, $k \geq 2$It is not hard to see that

$$
\begin{aligned}
& \mathbb{Y}_{n, k}(y)=\int_{0}^{y} \frac{(y-x)^{k-1}}{(k-1)!} d \mathbb{F}_{n}(x)=\int_{0}^{\infty} \frac{(y-x)_{+}^{k-1}}{(k-1)!} d \mathbb{F}_{n}(x) \\
& \widetilde{\mathbb{H}}_{n, k}(y)=\int_{0}^{y} \frac{(y-x)^{k-1}}{(k-1)!} d \widetilde{F}_{n, k}(x)=\int_{0}^{\infty} \frac{(y-x)_{+}^{k-1}}{(k-1)!} d \widetilde{F}_{n, k}(x)
\end{aligned}
$$

Thus the inequality part of the second theorem can be rewritten as

$$
\int_{0}^{\infty} \frac{(y-x)_{+}^{k-1}}{(k-1)!} d\left(\widetilde{F}_{n, k}(x)-\mathbb{F}_{n}(x)\right) \geq 0 \quad \text { for all } y>0
$$

Similarly, the equality part of the first theorem can be rewritten as

$$
\int_{0}^{\infty} \frac{k(y-x)_{+}^{k-1}}{y^{k} \widehat{f}_{n, k}(x)} d\left(\widehat{F}_{n, k}(x)-\mathbb{F}_{n}(x)\right) \geq 0 \quad \text { for all } y>0
$$

C: Consistency, k-monotone, $2 \leq k \leq \infty$

Suppose that X_{1}, \ldots, X_{n} are i.i.d. P_{0} with density $p_{0} \in \mathcal{P}$, a convex class of densities with respect to a σ-finite measure μ on a measurable space $(\mathcal{X}, \mathcal{A})$. Let

$$
\widehat{p}_{n} \equiv \operatorname{argmax}_{p \in \mathcal{P}} \mathbb{P}_{n} \log (p)
$$

For $0<\alpha \leq 1$, let $\varphi_{\alpha}(t)=\left(t^{\alpha}-1\right) /\left(t^{\alpha}+1\right)$ for $t \geq 0, \varphi_{\alpha}(t)=-1$ for $t<0$. Then φ_{α} is bounded and continuous for each $\alpha \in(0,1]$. For $0<\beta<1$ define

$$
h_{\beta}^{2}(p, q) \equiv 1-\int p^{\beta} q^{1-\beta} d \mu
$$

Note that $h_{1 / 2}(p, q) \equiv H(p, q)$ is the Hellinger distance between p and q, and by Hölder's inequality, $h_{\beta}(p, q) \geq 0$ with equality if and only if $p=q$ a.e. μ.

C: Consistency, k-monotone, $2 \leq k \leq \infty$

Proposition: (Pfanzagl; van de Geer) Suppose that \mathcal{P} is convex. Then

$$
h_{1-\alpha / 2}^{2}\left(\widehat{p}_{n}, p_{0}\right) \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\varphi_{\alpha}\left(\frac{\hat{p}_{n}}{p_{0}}\right)\right) .
$$

In particular, when $\alpha=1$ we have, with $\varphi \equiv \varphi_{1}$,

$$
H^{2}\left(\widehat{p}_{n}, p_{0}\right) \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\varphi\left(\frac{\widehat{p}_{n}}{p_{0}}\right)\right)=\left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{2 \widehat{p}_{n}}{\widehat{p}_{n}+p_{0}}\right)
$$

Corollary: (Pfanzagl (1988); van de Geer, $(1993,1996)$) Suppose that $\left\{\varphi_{\alpha}\left(p / p_{0}\right): p \in \mathcal{P}\right\}$ is a P_{0} Glivenko-Cantelli class. Then for each $0<\alpha \leq 1, h_{1-\alpha / 2}\left(\widehat{p}_{n}, p_{0}\right) \rightarrow$ a.s. 0 .

C: Consistency, k-monotone, $2 \leq k \leq \infty$

Proof. Since \mathcal{P} is convex and \widehat{p}_{n} maximizes $\mathbb{P}_{n} \log p$ over \mathcal{P}, it follows that

$$
\mathbb{P}_{n} \log \frac{\widehat{p}_{n}}{(1-t) \widehat{p}_{n}+t p_{1}} \geq 0
$$

for all $0 \leq t \leq 1$ and every $p_{1} \in \mathcal{P}$; this holds in particular for $p_{1}=p_{0}$. Note that equality holds if $t=0$. Differentiation of the left side with respect to t at $t=0$ yields

$$
\mathbb{P}_{n} \frac{p_{1}}{\hat{p}_{n}} \leq 1 \quad \text { for every } \quad p_{1} \in \mathcal{P}
$$

If $L:(0, \infty) \mapsto R$ is increasing and $t \mapsto L(1 / t)$ is convex, then Jensen's inequality yields

$$
\mathbb{P}_{n} L\left(\frac{\widehat{p}_{n}}{p_{1}}\right) \geq L\left(\frac{1}{\mathbb{P}_{n}\left(p_{1} / \widehat{p}_{n}\right)}\right) \geq L(1)=\mathbb{P}_{n} L\left(\frac{p_{1}}{p_{1}}\right)
$$

Choosing $L=\varphi_{\alpha}$ and $p_{1}=p_{0}$ in this last inequality and noting that $L(1)=0$, it follows that

$$
\begin{equation*}
0 \leq \mathbb{P}_{n} \varphi_{\alpha}\left(\widehat{p}_{n} / p_{0}\right)=\left(\mathbb{P}_{n}-P_{0}\right) \varphi_{\alpha}\left(\widehat{p}_{n} / p_{0}\right)+P_{0} \varphi_{\alpha}\left(\widehat{p}_{n} / p_{0}\right) \tag{5}
\end{equation*}
$$

C: Consistency, k-monotone, $2 \leq k \leq \infty$

see van der Vaart and Wellner (1996) page 330, and Pfanzagl (1988), pages 141 - 143. Now we show that

$$
\begin{equation*}
P_{0} \varphi_{\alpha}\left(p / p_{0}\right)=\int \frac{p^{\alpha}-p_{0}^{\alpha}}{p^{\alpha}+p_{0}^{\alpha}} d P_{0} \leq-\left(1-\int p_{0}^{\beta} p^{1-\beta} d \mu\right) \tag{6}
\end{equation*}
$$

for $\beta=1-\alpha / 2$. Note that this holds if and only if

$$
-1+2 \int \frac{p^{\alpha}}{p_{0}^{\alpha}+p^{\alpha}} p_{0} d \mu \leq-1+\int p_{0}^{\beta} p^{1-\beta} d \mu
$$

or

$$
\int p_{0}^{\beta} p^{1-\beta} d \mu \geq 2 \int \frac{p^{\alpha}}{p_{0}^{\alpha}+p^{\alpha}} p_{0} d \mu
$$

But his holds if

$$
p_{0}^{\beta} p^{1-\beta} \geq 2 \frac{p^{\alpha} p_{0}}{p_{0}^{\alpha}+p^{\alpha}}
$$

C: Consistency, k-monotone, $2 \leq k \leq \infty$

With $\beta=1-\alpha / 2$, this becomes

$$
\frac{1}{2}\left(p_{0}^{\alpha}+p^{\alpha}\right) \geq p_{0}^{\alpha / 2} p^{\alpha / 2}=\sqrt{p_{0}^{\alpha} p^{\alpha}},
$$

and this holds by the arithmetic mean - geometric mean inequality. Thus (??) holds. Combining (??) with (??) yields the claim of the proposition. The corollary follows by noting that $\varphi(t)=(t-1) /(t+1)=2 t /(t+1)-1$.

C: Consistency, k-monotone, $2 \leq k \leq \infty$

To apply this to the MLEs $\widehat{f}_{n, k} \in \mathcal{D}_{k}$, we take $\mathcal{P}=\mathcal{D}_{k}$, which is convex in view of the mixture representation.

We first show that the map $G \mapsto f_{G}(x)$ is continuous with respect to the topology of vague convergence for distributions G. This follows easily since for each fixed $x>0$ the kernels

$$
y \mapsto k y^{-1}(1-x / y)_{+}^{k-1} \equiv m_{k}(x, y)
$$

for this mixing family are bounded, continuous, and satisfy $m_{k}(x, y) \rightarrow 0$ as $y \rightarrow 0$ or ∞ for every $x>0$. Since vague convergence of distribution functions implies that integrals of bounded continuous functions vanishing at infinity converge, it follows that $G \mapsto f_{G}(x)$ is continuous with respect to the vague topology for every $x>0$. This implies, that the family

$$
\mathcal{F}_{k}=\left\{\frac{f_{G}}{f_{G}+f_{0}}: G \text { a d.f. on } \mathbb{R}^{+}\right\}
$$

C: Consistency, k-monotone, $2 \leq k \leq \infty$

is pointwise, for a.e. x, continuous in G wrt the vague topology. Since the family of sub-distribution functions G on \mathbb{R} is compact for the vague topology (Bauer (1972), p. 241), and the family of functions \mathcal{F}_{k} is uniformly bounded by 1 , we conclude from the argument of Wald (1949) that

$$
N_{[]}\left(\epsilon, \mathcal{F}_{k}, L_{1}\left(P_{0}\right)\right)<\infty \quad \text { for every } \epsilon>0
$$

Thus \mathcal{F}_{k} is $P 0$ - Glivenko-Cantelli and we conclude that $\widehat{f}_{n, k}=f_{\widehat{G}_{n}}$ satifies

$$
H\left(\widehat{f}_{n, k}, f_{0}\right) \rightarrow a . s .0
$$

The same argument works for $k=\infty$ and yields a different proof of a result of Jewell (1982).

C: Consistency, k-monotone, $2 \leq k \leq \infty$

Based on the bound

$$
f(x) \leq \frac{1}{x}\left(1-\frac{1}{k}\right)^{k-1} \quad \text { for all } x>0, \quad f \in \mathcal{D}_{k}
$$

and subsequence arguments, it follows that for each $c>0$

$$
\begin{aligned}
& \sup _{x \geq c}\left|\widehat{f}_{n, k}(x)-f_{0, k}(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty, \\
& \sup _{x \geq c}\left|\widehat{f}_{n, k}^{(j)}(x)-f_{0, k}^{(j)}(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty, 1 \leq j \leq k-1, \text { and } \\
& \widehat{f}_{n}^{(k-1)}(x) \rightarrow \text { a.s. } f_{0, k}^{(k-1)}(x) \text { if the derivative } f_{0, k}^{(k-1)}(x) \text { exists. }
\end{aligned}
$$

What about rates of convergence?

D: Global Rates, $2 \leq k<\infty$

Based on:

- Empirical process fluctuation bound: Birgé \& Massart; van der Vaart \& W
- Rate of convergence result: Birgé \& Massart; van der Vaart \& W (1996)
- Entropy bound for bounded sub-classes of \mathcal{D}_{k} : Gao \& W (2009)
- If $f_{0}(0)<\infty$, then $\widehat{f}_{n, k}(0)=O_{p}(1)$. Gao \& W (2009)

D: Global Rates, $2 \leq k<\infty$

Empirical process result:

Suppose that \mathcal{P} is a collection of densities, $\mathcal{P}_{0} \subset \mathcal{P}$
Theorem. (Thm 3.2.5, vdV \& \mathbf{W}, simplified) Suppose that X_{1}, \ldots, X_{n} are i.i.d. P_{0} with density $p_{0} \in \mathcal{P}_{0}$. Let H be the Hellinger distance between densities, and let m_{p} be defined, for $p \in \mathcal{P}$, by

$$
m_{p}(x)=\log \left(\left(p(x)+p_{0}(x)\right) /\left(2 p_{0}(x)\right)\right)
$$

Then $\mathbb{M}(p)-\mathbb{M}\left(p_{0}\right) \equiv P_{0}\left(m_{p}-m_{p_{0}}\right) \lesssim-H^{2}\left(p, p_{0}\right)$. Furthermore, with $\mathcal{M}_{\delta}=\left\{m_{p}-m_{p_{0}}: H\left(p, p_{0}\right) \leq \delta, p \in \mathcal{P}_{0}\right\}$, we also have

$$
E_{P_{0}}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{M}_{\delta}} \lesssim \tilde{J}_{[]}\left(\delta, \mathcal{P}_{0}, H\right)\left(1+\frac{\tilde{J}_{[]}\left(\delta, \mathcal{P}_{0}, H\right)}{\delta^{2} \sqrt{n}}\right) \equiv \phi_{n}\left(\delta, \mathcal{P}_{0}\right),(7)
$$

where

$$
\tilde{J}_{[]}\left(\delta, \mathcal{P}_{0}, H\right)=\int_{0}^{\delta} \sqrt{1+\log N_{[]}\left(\epsilon, \mathcal{P}_{0}, H\right)} d \epsilon
$$

D: Global Rates, $2 \leq k<\infty$

Entropy bound for bounded sub-classes of \mathcal{D}_{k} :

$$
\mathcal{P}_{0} \equiv \mathcal{D}_{k}^{B}([0, A]) \equiv\left\{f \in \mathcal{D}_{k}: f(0) \leq B, f(x)=0 \quad \text { if } x>A\right\}
$$

Gao \& W (2009) show that for $\epsilon>0$

$$
\log N_{[\cdot]}\left(\epsilon, \mathcal{D}_{k}^{B}([0, A]), H\right) \leq C \epsilon^{-1 / k}
$$

where $C=C_{k}(A, B)$.
If $f_{0}(0)<\infty$, then $\widehat{f}_{n, k}(0)=O_{p}(1)$. By the characterization of $\widehat{f}_{n, k}$,

$$
1 \geq \int_{0}^{y} \frac{k}{y^{k}} \frac{(y-x)^{k-1}}{\widehat{f}_{n, k}(x)} d \mathbb{F}_{n}(x) \text { for all } y>0
$$

with equality if $y \in\left\{\tau_{1}, \ldots, \tau_{m}\right\} \equiv \operatorname{supp}\left(\widehat{G}_{n, k}\right)$ where $0<\tau_{1}<$
$\cdots<\tau_{m}<\infty$. Thus for $y=\tau_{1}$ and $0 \leq x \leq \tau_{1}$,

$$
1=\frac{k}{\tau_{1}} \int_{0}^{\tau_{1}} \frac{\left(1-x / \tau_{1}\right)^{k-1}}{\widehat{f}_{n, k}(x)} d \mathbb{F}_{n}(x)
$$

D: Global Rates, $2 \leq k<\infty$

where

$$
\begin{aligned}
\widehat{f}_{n, k}(x) & =\int_{0}^{\infty} \frac{k}{y}\left(1-\frac{x}{y}\right)_{+}^{k-1} d \widehat{G}_{n, k}(y) \\
& \geq\left(1-\frac{x}{\tau_{1}}\right)_{+}^{k-1} \int_{0}^{\infty} \frac{k}{y} d \widehat{G}_{n, k}(y)=\left(1-x / \tau_{1}\right)_{+}^{k-1} \widehat{f}_{n, k}(0)
\end{aligned}
$$

Hence

$$
1 \leq \frac{k}{\tau_{1}} \int_{0}^{\tau_{1}} \frac{\left(1-x / \tau_{1}\right)^{k-1}}{\hat{f}_{n, k}(0)\left(1-x / \tau_{1}\right)^{k-1}} d \mathbb{F}_{n}(x)=\frac{k}{\tau_{1} \hat{f}_{n, k}(0)} \mathbb{F}_{n}\left(\tau_{1}\right)
$$

which yields

$$
\begin{aligned}
\widehat{f}_{n, k}(0) & \leq k \frac{\mathbb{F}_{n}\left(\tau_{1}\right)}{\tau_{1}} \leq k \sup _{t>0} \frac{\mathbb{F}_{n}(t)}{t} \\
& \leq k \sup _{t>0} \frac{\mathbb{F}_{n}(t)}{F_{0}(t)} f_{0}(0)=O_{p}(1)
\end{aligned}
$$

Combining these facts proves:
Theorem. (Gao \& W, 2009) Suppose that $f_{0} \in \mathcal{D}_{k}^{B}([0, A])$ for some $0<A, B<\infty$. Then $\left\{\widehat{f}_{n, k}\right\}$ satisfies

$$
H\left(\widehat{f}_{n, k}, f_{0}\right)=O_{p}\left(n^{-\frac{k}{2 k+1}}\right)
$$

Questions:

- What is the rate for $\widehat{f}_{n, \infty} \in \mathcal{D}_{\infty}$?
- Can we go beyond $\mathcal{D}_{k}^{B}([0, A])$?
- Is $n^{-1 /(2 k+1)}$ the rate of convergence of $d_{B L}\left(\widehat{G}_{n, k}, G_{0}\right)$?

E: Rates of convergence: local results, $k=2$

- Difficulty: no switching relation! Study LSE as first step.
- Proceed by localizing the Fenchel conditions
\triangleright Step 1: localization rate or tightness result Empirical process theory: Kim-Pollard type lemmas
\triangleright Step 2: Weak convergence of the localized driving process to a limit Gaussian driving process Empirical process theory: bracketing CLT with functions dependent on n.
\triangleright Step 3: Preservation of (localized) characterizing relations in the limit.
\triangleright Step 4: Establishing uniqueness of the limiting (Gaussian world) estimator resulting from the Fenchel relations.
- Cross check limit distributions with lower bound theory.

E: Rates of convergence: local results, $k=2$

Step 1: Localization:

- Fenchel characterization implies midpoint properties.
- Midpoint properties + Kim-Pollard type lemma implies gap rate.
- Gap rate $\tau_{n}^{+}-\tau_{n}^{-}=O_{p}\left(n^{-1 / 5}\right)$ yields tightness.

E: Rates of convergence: local results, $k=2$

Mid-point properties: Recall the Fenchel characterization of the LSE, $k=2$:

$$
\begin{equation*}
\widetilde{\mathbb{H}}_{n}(x) \geq \mathbb{Y}_{n}(x) \text { for all } x \geq 0 \tag{8}
\end{equation*}
$$

with equality holding if and only if $x \in \operatorname{supp}\left(\widetilde{G}_{n}\right)$.
(b) The equality conditions can be expressed as

$$
\int_{0}^{\infty}\left(\widetilde{\mathbb{H}}_{n}(y)-\mathbb{Y}_{n}(y)\right) d \widetilde{\mathbb{H}}_{n}^{(3)}(y)=0 .
$$

It follows that $\tilde{\mathbb{H}}_{n}$ is piecewise cubic: for $\tau_{1}<\tau_{2}$, with $\tau_{1}, \tau_{2} \in$ $\operatorname{supp}\left(\widetilde{G}_{n, 2}\right)$ two successive touch points,

$$
\widetilde{\mathbb{H}}_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \text { on }\left[\tau_{1}, \tau_{2}\right]
$$

where $a_{0}, a_{1}, a_{2}, a_{3}$ are determined by

$$
\begin{aligned}
& \widetilde{\mathbb{H}}_{n}\left(\tau_{j}\right)=\mathbb{Y}_{n}\left(\tau_{j}\right), \quad j=1,2, \quad \text { and } \\
& \widetilde{F}_{n}\left(\tau_{j}\right)=\mathbb{F}_{n}\left(\tau_{j}\right), \quad j=1,2 .
\end{aligned}
$$

E: Rates of convergence: local results, $k=2$

Upshot: for $x \in\left[\tau_{1}, \tau_{2}\right]$

$$
\begin{aligned}
\widetilde{\mathbb{H}}_{n}(x)= & \left\{\mathbb{Y}_{n}\left(\tau_{2}\right)\left(x-\tau_{1}\right)+\mathbb{Y}_{n}\left(\tau_{1}\right)\left(\tau_{2}-x\right)\right\} / \Delta \tau \\
& -\frac{1}{2}\left\{\frac{\Delta \mathbb{F}_{n}}{\Delta \tau}+\frac{4\left(\overline{\mathbb{F}}_{n} \Delta \tau-\Delta \mathbb{Y}_{n}\right)(x-\bar{\tau})}{(\Delta \tau)^{3}}\right\}\left(x-\tau_{1}\right)\left(x-\tau_{2}\right),
\end{aligned}
$$

so, with $\bar{\tau} \equiv\left(\tau_{2}+\tau_{1}\right) / 2$ and $\Delta \tau \equiv \tau_{2}-\tau_{1}$,

$$
\widetilde{\mathbb{H}}_{n}(\bar{\tau})=\overline{\mathbb{Y}}_{n}-\frac{1}{8} \Delta \mathbb{F}_{n} \Delta \tau
$$

where

$$
\begin{aligned}
& \Delta \mathbb{Y}_{n} \equiv \mathbb{Y}_{n}\left(\tau_{2}\right)-\mathbb{Y}_{n}\left(\tau_{1}\right), \quad \Delta \mathbb{F}_{n} \equiv \mathbb{F}_{n}\left(\tau_{2}\right)-\mathbb{F}_{n}\left(\tau_{1}\right), \\
& \mathbb{\mathbb { Y }}_{n} \equiv\left(\mathbb{Y}_{n}\left(\tau_{2}\right)+\mathbb{Y}_{n}\left(\tau_{1}\right)\right) / 2, \quad \mathbb{F}_{n} \equiv\left(\mathbb{F}_{n}\left(\tau_{2}\right)+\mathbb{F}_{n}\left(\tau_{1}\right)\right) / 2 .
\end{aligned}
$$

Now we can rewrite $\widetilde{\mathbb{H}}_{n}(\bar{\tau}) \geq \mathbb{Y}_{n}(\bar{\tau})$ as

$$
\overline{\mathbb{Y}}_{n}-\frac{1}{8} \Delta \mathbb{F}_{n} \Delta \tau \geq \mathbb{Y}_{n}(\bar{\tau})
$$

E: Rates of convergence: local results, $k=2$

Now let x_{0} with $f_{0}^{(2)}\left(x_{0}\right)>0$ be fixed, let $\xi_{n} \rightarrow x_{0}$, and take

$$
\begin{aligned}
& \tau_{1} \equiv \tau_{n}^{-} \equiv \max \left\{t \in \operatorname{supp}\left(\widetilde{G}_{n}\right): t \leq \xi_{n}\right\}, \\
& \tau_{2} \equiv \tau_{n}^{+} \equiv \min \left\{t \in \operatorname{supp}\left(\widetilde{G}_{n}\right): t>\xi_{n}\right\} .
\end{aligned}
$$

Then $\widetilde{\mathbb{H}}_{n}\left(\bar{\tau}_{n}\right) \geq \mathbb{Y}_{n}\left(\bar{\tau}_{n}\right)$ can be rewritten as
$\frac{1}{2}\left(\mathbb{Y}_{n}\left(\tau_{n}^{+}\right)+\mathbb{Y}_{n}\left(\tau_{n}^{-}\right)\right)-\frac{1}{8}\left\{\mathbb{F}_{n}\left(\tau_{n}^{+}\right)-\mathbb{F}_{n}\left(\tau_{n}^{-}\right)\right\}\left(\tau_{n}^{+}-\tau_{n}^{-}\right) \geq \mathbb{Y}_{n}\left(\bar{\tau}_{n}\right) .(9)$
Replacing \mathbb{Y}_{n} and \mathbb{F}_{n} by their deterministic counterparts and then expanding the integrands at $\bar{\tau}_{n}$ yields

$$
\begin{aligned}
& \int_{\bar{\tau}_{n}}^{\tau_{n}^{+}}\left(\tau_{n}^{+}-x\right) f_{0}(x) d x+\int_{\tau_{n}^{-}}^{\bar{\tau}_{n}}\left(x-\tau_{n}^{-}\right) f_{0}(x) d x-\frac{1}{4}\left(\tau_{n}^{+}-\tau_{n}^{-}\right) \int_{\tau_{n}^{-}}^{\tau_{n}^{+}} f_{0}(x) d x \\
& =\int_{\left[\bar{\tau}_{n}, \tau_{n}^{+}\right]}\left\{\frac{1}{2}\left(\bar{\tau}_{n}+\tau_{n}^{+}\right)-x\right\} f_{0}(x) d x+\int_{\left[\tau_{n}^{-}, \bar{\tau}_{n}\right]}\left\{x-\frac{1}{2}\left(\tau_{n}^{-}+\bar{\tau}_{n}\right)\right\} f_{0}(x) d x \\
& =-\frac{1}{192} f_{0}\left(\bar{\tau}_{n}\right)\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4}+o_{p}\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4},
\end{aligned}
$$

by using consistency of \tilde{f}_{n} to ensure that $\bar{\tau}_{n}$ belongs to a sufficiently small neighborhood of x_{0}.

E: Rates of convergence: local results, $k=2$

E: Rates of convergence: local results, $k=2$

The difference between (??) and the deterministic version is

$$
\begin{aligned}
& \int_{\left[\tau_{n}^{-}, \bar{\tau}_{n}\right]}\left(z-\left(\tau_{n}^{-}+\bar{\tau}_{n}\right) / 2\right) d\left(\mathbb{F}_{n}(z)-F_{0}(z)\right) \\
& \quad+\int_{\left[\bar{\tau}_{n}, \tau_{n}^{+}\right]}\left(\left(\tau_{n}^{+}+\bar{\tau}_{n}\right) / 2-z\right) d\left(\mathbb{F}_{n}(z)-F_{0}(z)\right) \\
& \equiv U_{n}\left(\tau_{n}^{-}, \bar{\tau}_{n}\right)-U_{n}\left(\bar{\tau}_{n}, \tau_{n}^{+}\right) \text {where } \\
& U_{n}(x, y) \equiv \int_{[x, y]}(z-(x+y) / 2) d\left(\mathbb{F}_{n}(z)-F_{0}(z)\right) .
\end{aligned}
$$

By an empirical process argument - as in Kim and Pollard (1991), there exist constants $\delta>0$ and $c_{0}>0$ such that, for each $\epsilon>0$ and each x satisfying $\left|x-x_{0}\right|<\delta$,

$$
\left|U_{n}(x, y)\right| \leq \epsilon|y-x|^{4}+O_{p}\left(n^{-4 / 5}\right), \text { for all } 0 \leq y-x \leq c_{0} .
$$

This implies that

$$
\left|U_{n}\left(\tau_{n}^{-}, \bar{\tau}_{n}\right)-U_{n}\left(\bar{\tau}_{n}, \tau_{n}^{+}\right)\right| \leq \epsilon\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4}+O_{p}\left(n^{-4 / 5}\right)
$$

E: Rates of convergence: local results, $k=2$

Putting the pieces together by choosing $\epsilon=f_{0}^{(2)}\left(x_{0}\right) / 384$ it follows that

$$
\begin{aligned}
& -\frac{1}{192} f_{0}^{(2)}\left(x_{0}\right)\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4}+o_{p}\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4} \\
& +\frac{1}{384} f_{0}^{(2)}\left(x_{0}\right)\left(\tau_{n}^{+}-\tau_{n}^{-}\right)^{4}+O_{p}\left(n^{-4 / 5}\right) \geq 0
\end{aligned}
$$

and hence

$$
\tau_{n}^{+}-\tau_{n}^{-}=O_{p}\left(n^{-1 / 5}\right)
$$

This leads to:
Proposition: Suppose that $f_{0}^{\prime}\left(x_{0}\right)<0, f_{0}^{(2)}\left(x_{0}\right)>0$ and $f_{0}^{(2)}$ continuous in a neighborhood of x_{0}. Then

$$
\begin{aligned}
& \sup _{|t| \leq M}\left|\tilde{f}_{n}\left(x_{0}+n^{-1 / 5} t\right)-f_{0}\left(x_{0}\right)-n^{-1 / 5} t f_{0}^{\prime}\left(x_{0}\right)\right|=O_{p}\left(n^{-2 / 5}\right) \\
& \sup _{|t| \leq M}\left|\tilde{f}_{n}^{\prime}\left(x_{0}+n^{-1 / 5} t\right)-f_{0}^{\prime}\left(x_{0}\right)\right|=O_{p}\left(n^{-2 / 5}\right)
\end{aligned}
$$

\ldots and a corresponding result for the MLE \widehat{f}_{n}.

F: Limiting distributions at a fixed point: $k=2$

Step 2: Localize the Fenchel conditions
Define

$$
\begin{aligned}
& \mathbb{Y}_{n}^{l o c}(t) \equiv n^{4 / 5} \int_{x_{0}}^{x_{0}+n^{-1 / 5} t}\left\{\mathbb{F}_{n}(v)-\mathbb{F}_{n}\left(x_{0}\right)\right. \\
&\left.\quad-\int_{x_{0}}^{v}\left(f_{0}\left(x_{0}\right)+\left(u-x_{0}\right) f_{0}^{\prime}\left(x_{0}\right)\right) d u\right\} d v \\
& \stackrel{d}{=} n^{3 / 10} \int_{x_{0}}^{x_{0}+n^{-1 / 5}}\left\{\mathbb{U}_{n}\left(F_{0}(v)\right)-\mathbb{U}_{n}\left(F\left(x_{0}\right)\right)\right\} d v \\
& \quad+\frac{f_{0}^{(2)}\left(x_{0}\right)}{4!} t^{4}+o(1) \\
& \\
& \rightsquigarrow \sqrt{f_{0}\left(x_{0}\right)} \int_{0}^{t} W(s) d s+\frac{f_{0}^{(2)}\left(x_{0}\right)}{4!} t^{4} \text { by KMT } \\
& \quad \text { or by theorem } 2.11 .22 \text { or } 2.11 .23, \mathrm{vdV} \& \mathrm{~W}(1996) \\
& \equiv a \int_{0}^{t} W(s) d s+b t^{4} \equiv \mathbb{Y}_{a, b}(t) .
\end{aligned}
$$

F: Limiting distributions at a fixed point: $k=2$

Similarly, define

$$
\begin{aligned}
\widetilde{\mathbb{H}}_{n}^{l o c}(t) \equiv & n^{4 / 5} \int_{x_{0}}^{x_{0}+n^{-1 / 5} t} \int_{x_{0}}^{v}\left\{\tilde{f}_{n}(u)-f_{0}\left(x_{0}\right)-\left(u-x_{0}\right) f_{0}^{\prime}\left(x_{0}\right)\right\} d u d v \\
& +\widetilde{B}_{n} t+\widetilde{A}_{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& \widetilde{A}_{n} \equiv n^{4 / 5}\left(\widetilde{\mathbb{H}}_{n}\left(x_{0}\right)-\mathbb{Y}_{n}\left(x_{0}\right)\right)=O_{p}(1) \\
& \widetilde{B}_{n} \equiv n^{3 / 5}\left(\widetilde{F}_{n}\left(x_{0}\right)-\mathbb{F}_{n}\left(x_{0}\right)\right)=O_{p}(1) .
\end{aligned}
$$

Furthermore
$\widetilde{\mathbb{H}}_{n}^{l o c}(t)-\mathbb{Y}_{n}^{l o c}(t)=n^{4 / 5}\left\{\widetilde{\mathbb{H}}_{n}\left(x_{0}+n^{-1 / 5} t\right)-\mathbb{Y}_{n}\left(x_{0}+n^{-1 / 5} t\right)\right\} \geq 0$

F: Limiting distributions at a fixed point: $k=2$

Step 3: Preservation of (localized) characterizing relations in the limit

- $\left\{\left(\widetilde{\mathbb{H}}_{n}^{l o c}, \widetilde{\mathbb{H}}_{n}^{l o c,(1)}, \tilde{\mathbb{H}}_{n}^{l o c,(2)}, \tilde{\mathbb{H}}_{n}^{l o c,(3)}\right)\right\}_{n \geq 1} \quad$ is tight.
- $\mathbb{Y}_{n}^{l o c} \rightsquigarrow \mathbb{Y}_{a, b}$.
- Fenchel relations satisfied:
$\triangleright \widetilde{\mathbb{H}}_{n}^{l o c}(t) \geq \mathbb{Y}_{n}^{l o c}(t)$ for all t
$\triangleright \int_{-\infty}^{\infty}\left(\widetilde{\mathbb{H}}_{n}^{l o c}(t)-\mathbb{Y}_{n}^{l o c}(t)\right) d \widetilde{\mathbb{H}}_{n}^{l o c, 3}(t)=0$
- Any limit process H for a subsequence $\left\{\tilde{H}_{n^{\prime}}^{l o c}\right\}$ must satisfy

$$
\triangleright H(t) \geq \mathbb{Y}_{a, b}(t) \quad \text { for all } t
$$

$\triangleright \int_{-\infty}^{\infty}\left(H(t)-\mathbb{Y}_{a, b}(t)\right) d H^{(3)}(t)=0$.

- Show the process H characterized by these two conditions is unique!

F: Limiting distributions at a fixed point: $k=2$

Upshot after rescaling to $\mathbb{Y}_{1,1} \equiv \mathbb{Y}$:
Theorem. (Groeneboom, Jongbloed \& W (2001)) If $f \in \mathcal{D}_{2}, f_{0}\left(x_{0}\right)>0, f_{0}^{(2)}\left(x_{0}\right)>0$, and $f_{0}^{(2)}$ continuous in a neighborhood of x_{0}, then

$$
\binom{n^{2 / 5}\left(\tilde{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right)}{n^{1 / 5}\left(\tilde{f}_{n}^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\right)} \rightarrow_{d}\binom{c_{1}(f) H^{(2)}(0)}{c_{2}(f) H^{(3)}(0)}
$$

where

$$
c_{1}(f) \equiv\left(\frac{f^{2}\left(x_{0}\right) f^{\prime \prime}\left(x_{0}\right)}{4!}\right)^{1 / 5}, \quad c_{2}(f) \equiv\left(\frac{f\left(x_{0}\right) f^{\prime \prime}\left(x_{0}\right)^{3}}{4!^{3}}\right)^{1 / 5}
$$

F: Limiting distributions at a fixed point: $k=2$

F: Limiting distributions at a fixed point: $k=2$

F: Limiting distributions at a fixed point: $k=2$

F: Limiting distributions at a fixed point: $k=2$

