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Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

(and comparisons?)

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities:

d = 1 and beyond

• L5: More on higher dimensions and some open problems
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Outline: Lecture 4

• A: Log-concave densities on R1

• B: Nonparametric estimation, log-concave on R

• C: Limit theory at a fixed point in R

• D: Estimation of the mode, log-concave density on R

• E: Generalizations: s−concave densities on R and Rd

• F: Summary; problems and open questions
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A. Log-concave densities on R1

Suppose that

f(x) ≡ fϕ(x) = exp(ϕ(x)) = exp (−(−ϕ(x)))

where ϕ is concave (and −ϕ is convex). The class of all densities

f on R of this form is called the class of log-concave densities,

Plog−concave ≡ P0.

Properties of log-concave densities:

• A density f on R is log-concave if and only if its convolution

with any unimodal density is again unimodal (Ibragimov,

1956).

• Every log-concave density f is unimodal (but need not be

symmetric).

• P0 is closed under convolution.
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A. Log-concave densities on R1

• Many parametric families are log-concave, for example:

B Normal (µ, σ2)

B Uniform(a, b)

B Gamma(r, λ) for r ≥ 1

B Beta(a, b) for a, b ≥ 1

• tr densities with r > 0 are not log-concave

• Tails of log-concave densities are necessarily sub-exponential

• Plog−concave = the class of “Polyá frequency functions of

order 2”, PFF2, in the terminology of Schoenberg (1951)

and Karlin (1968). See Marshall and Olkin (1979), chapter

18, and Dharmadhikari and Joag-Dev (1988), page 150. for

nice introductions.
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B. Nonparametric estimation, log-concave on R

• The (nonparametric) MLE f̂n exists (Rufibach, Dümbgen

and Rufibach).

• f̂n can be computed: R-package “logcondens” (Dümbgen

and Rufibach)

• In contrast, the (nonparametric) MLE for the class of

unimodal densities on R1 does not exist. Birgé (1997) and

Bickel and Fan (1996) consider alternatives to maximum

likelihood for the class of unimodal densities.

• Consistency and rates of convergence for f̂n:

Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer

(2007).

• Pointwise limit theory? Yes! Balabdaoui, Rufibach, and W

(2009).
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B. Nonparametric estimation, log-concave on R

MLE of f and ϕ: Let C denote the class of all concave function

ϕ : R→ [−∞,∞). The estimator ϕ̂n based on X1, . . . , Xn i.i.d. as

f0 is the maximizer of the “adjusted criterion function”

`n(ϕ) =
∫

logfϕ(x)dFn(x)−
∫
fϕ(x)dx

=
∫
ϕ(x)dFn(x)−

∫
eϕ(x)dx

over ϕ ∈ C.

Properties of f̂n, ϕ̂n: (Dümbgen & Rufibach, 2009)

• ϕ̂n is piecewise linear.

• ϕ̂n = −∞ on R \ [X(1), X(n)].

• The knots (or kinks) of ϕ̂n occur at a subset of the order

statistics X(1) < X(2) < · · · < X(n).

• Characterized by ...
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B. Nonparametric estimation, log-concave on R

... ϕ̂n is the MLE of logf0 = ϕ0 if and only if

Ĥn(x)

{
≤ Hn(x), for all x > X(1),

= Hn(x), if x is a knot.

where

F̂n(x) =
∫ x
X(1)

f̂n(y)dy, Ĥn(x) =
∫ x
X(1)

F̂n(y)dy,

Hn(x) =
∫ x
−∞

Fn(y)dy.

Furthermore, for every function ∆ such that ϕ̂n+ t∆ is concave

for t small enough,∫
R

∆(x)dFn(x) ≤
∫
R

∆(x)dF̂n(x).
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B. Nonparametric estimation, log-concave on R

Consistency of f̂n and ϕ̂n:

• (Pal, Woodroofe, & Meyer, 2007):

If f0 ∈ P0, then H(f̂n, f0)→a.s. 0.

• (Dümbgen & Rufibach, 2009):

If f0 ∈ P0 and ϕ0 ∈ Hβ,L(T ) for some compact T = [A,B] ⊂
{x : f0(x) > 0}◦, M <∞, and 1 ≤ β ≤ 2. Then

sup
t∈T

(ϕ̂n(t)− ϕ0(t)) = Op

(logn

n

)β/(2β+1)
 , and

sup
t∈Tn

(ϕ0(t)− ϕ̂n(t)) = Op

(logn

n

)β/(2β+1)


where Tn ≡ [A+ (logn/n)β/(2β+1), B − (logn/n)β/(2β+1)] and

β/(2β + 1) ∈ [1/3,2/5] for 1 ≤ β ≤ 2.

• The same remains true if ϕ̂n, ϕ0 are replaced by f̂n, f0.
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B. Nonparametric estimation, log-concave on R

• If ϕ0 ∈ Hβ,L(T ) as above and, with ϕ′0 = ϕ0(·−) or ϕ′0(·+),

ϕ′0(x)−ϕ′0(y) ≥ C(y−x) for some C > 0 and all A ≤ x < y ≤ B,

then

sup
t∈Tn
|F̂n(t)− Fn(t)| = Op

(logn

n

)3β/(4β+2)
 .

where 3β/(2β + 4) ∈ [1/2,3/5] = [.5, .6] for 1 ≤ β ≤ 2.

• If β > 1, this implies supt∈Tn |F̂n(t)− Fn(t)| = op(n−1/2).
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B. Nonparametric estimation, log-concave on R

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

de
ns

ity
 fu

nc
tio

ns

0 1 2 3 4 5

7

6

5

4

3

2

1

0

lo
g

de
ns

ity
 fu

nc
tio

ns

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

C
D

Fs

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

ha
za

rd
 fu

nc
tio

ns

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

de
ns

ity
 fu

nc
tio

ns

0 2 4 6 8 10

7

6

5

4

3

2

1

0

lo
g

de
ns

ity
 fu

nc
tio

ns

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

C
D

Fs

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

ha
za

rd
 fu

nc
tio

ns

Statistical Seminar, Fréjus 4.10



B. Nonparametric estimation, log-concave on R
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B. Nonparametric estimation, log-concave on R
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B. Nonparametric estimation, log-concave on R
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C: Limit theory at a fixed point in R

Assumptions: • f0 is log-concave, f0(x0) > 0.

• If ϕ′′0(x0) 6= 0, then k = 2;

otherwise, k is the smallest integer such that

ϕ
(j)
0 (x0) = 0, j = 2, . . . , k − 1, ϕ(k)

0 (x0) 6= 0.

• ϕ(k)
0 is continuous in a neighborhood of x0.

Example: f0(x) = Cexp(−x4) with C =
√

2Γ(3/4)/π: k = 4.

Driving process: Yk(t) =
∫ t
0W (s)ds−tk+2, W standard 2-sided

Brownian motion.

Invelope process: Hk determined by limit Fenchel relations:

• Hk(t) ≤ Yk(t) for all t ∈ R

•
∫
R(Hk(t)− Yk(t))dH(3)

k (t) = 0.

• H(2)
k is concave.
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C: Limit theory at a fixed point in R

Theorem. (Balabdaoui, Rufibach, & W, 2009)

• Pointwise limit theorem for f̂n(x0):(
nk/(2k+1)(f̂n(x0)− f0(x0))

n(k−1)/(2k+1)(f̂ ′n(x0)− f ′0(x0))

)
→d

 ckH
(2)
k (0)

dkH
(3)
k (0)


where

ck ≡

f0(x0)k+1|ϕ(k)
0 (x0)|

(k + 2)!

1/(2k+1)

,

dk ≡

f0(x0)k+2|ϕ(k)
0 (x0)|3

[(k + 2)!]3

1/(2k+1)

.

Statistical Seminar, Fréjus 4.15



C: Limit theory at a fixed point in R

• Pointwise limit theorem for ϕ̂n(x0):(
nk/(2k+1)(ϕ̂n(x0)− ϕ0(x0))

n(k−1)/(2k+1)(ϕ̂′n(x0)− ϕ′0(x0))

)
→d

 CkH
(2)
k (0)

DkH
(3)
k (0)


where

Ck ≡

 |ϕ(k)
0 (x0)|

f0(x0)k(k + 2)!

1/(2k+1)

,

Dk ≡

 |ϕ(k)
0 (x0)|3

f0(x0)k−1[(k + 2)!]3

1/(2k+1)

.

• Proof: Use the same perturbation as for convex - decreasing

density proof with perturbation version of characterization:
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C: Limit theory at a fixed point in R

Τ
-

Τ Τ
+
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D: Mode estimation, log-concave density on R

Let x0 = M(f0) be the mode of the log-concave density f0,

recalling that P0 ⊂ Punimodal. Lower bound calculations using

Jongbloed’s perturbation ϕε of ϕ0 yields:

Proposition. If f0 ∈ P0 satisfies f0(x0) > 0, f ′′0(x0) < 0, and f ′′0
is continuous in a neighborhood of x0, and Tn is any estimator

of the mode x0 ≡ M(f0), then fn ≡ exp(ϕεn) with εn ≡ νn−1/5

and ν ≡ 2f ′′0(x0)2/(5f0(x0)),

lim inf
n→∞ n1/5 inf

Tn
max {En|Tn −M(fn)|, E0|Tn −M(f0)|}

≥
1

4

(
5/2

10e

)1/5(
f0(x0)

f ′′0(x0)2

)1/5

.

Does the MLE M(f̂n) achieve this?
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D: Mode estimation, log-concave density on R

!4 !3 !2 !1 1 2

!10

!8

!6

!4

!2

2

4

Statistical Seminar, Fréjus 4.19



D: Mode estimation, log-concave density on R

Proposition. (Balabdaoui, Rufibach, & W, 2009)

Suppose that f0 ∈ P0 satisfies:

• ϕ(j)
0 (x0) = 0, j = 2, . . . , k − 1,

• ϕ(k)
0 (x0) 6= 0, and

• ϕ(k)
0 is continuous in a neighborhood of x0.

Then M̂n ≡M(f̂n) ≡ min{u : f̂n(u) = supt f̂n(t)}, satisfies

n1/(2k+1)(M̂n −M(f0))→d

((k + 2)!)2f0(x0)

f
(k)
0 (x0)2

1/(2k+1)

M(H(2)
k )

where M(H(2)
k ) = argmax(H(2)

k ).

Note that when k = 2 this agrees with the lower bound

calculation, at least up to absolute constants.

Statistical Seminar, Fréjus 4.20



D: Mode estimation, log-concave density on R
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D: Mode estimation, log-concave density on R

When f0 = φ, the standard normal density, M(f0) = 0, f0(0) =

(2π)−1/2, f ′′0(0) = −(2π)−1/2, and hence((4)!)2f0(0)

f
(2)
0 (x0)2

1/5

=

(
242(2π)−1/2

(2π)−1

)1/5

= 4.28452 . . .
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E: Generalizations of log-concave to R and Rd:

Three generalizations:

• log−concave densities on Rd

(Cule, Samworth, and Stewart, 2010)

• s−concave and h− transformed convex densities on Rd

(Seregin, 2010)

• Hyperbolically k−monotone and completely monotone

densities on R; (Bondesson, 1981, 1992)
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E: Generalizations of log-concave to R and Rd:

Log-concave densities on Rd:

• A density f on Rd is log-concave if f(x) = exp(ϕ(x)) with ϕ

concave.

• Some properties:

B Any log−concave f is unimodal

B The level sets of f are closed convex sets

B Convolutions of log-concave distributions are log-concave.

B Marginals of log-concave distributions are log-concave.
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E: Generalizations of log-concave to R and Rd:

MLE of f ∈ P0(Rd): (Cule, Samworth, Stewart, 2010)

• MLE f̂n = argmaxf∈P0(Rd)Pnlogf exists and is unique if

n ≥ d+ 1.

• The estimator ϕ̂n of ϕ0 is a “taut tent” stretched over “tent

poles” of certain heights at a subset of the observations.

• Computable via non-differentiable convex optimization meth-

ods: Shor’s (1985) r−algorithm: R−package LogConcDEAD

(Cule, Samworth, Stewart , 2008).
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:

• If f0 is any density on Rd with
∫
Rd ‖x‖f0(x)dx <∞,∫

Rd f0(x)logf0(x)dx < ∞, and {x ∈ Rd : f0(x) > 0}◦ =

int(supp(f0)) 6= ∅, then f̂n satisfies:∫
Rd
|f̂n(x)− f∗(x)|dx→a.s. 0

where, for the Kullback-Leibler divergence

K(f0, f) =
∫
f0log(f0/f)dµ,

f∗ = argminf∈P0(Rd)K(f0, f)

is the “pseudo-true” density in P0(Rd) corresponding to f0.

In fact: ∫
Rd
ea‖x‖|f̂n(x)− f∗(x)|dx→a.s. 0

for any a < a0 where f∗(x) ≤ exp(−a0‖x‖+ b0).
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:

r−concave and h− transformed convex densities on Rd:
(Seregin, 2010; Seregin &, 2010)

Generalization to s−concave densities: A density f on Rd is

r−concave on C ⊂ Rd if

f(λx+ (1− λ)y) ≥Mr(f(x), f(y);λ)

for all x, y ∈ C and 0 < λ < 1 where

Mr(a, b;λ) =


((1− λ)ar + λbr)1/r, r 6= 0, a, b > 0,
0, r < 0, ab = 0
a1−λbλ, r = 0.

Let Pr denote the class of all r−concave densities on C. For

r ≤ 0 it suffices to consider C = Rd, and it is almost immediate

from the definitions that if f ∈ Pr for some r ≤ 0, then

f(x) =

{
g(x)1/r, r < 0
exp(−g(x)), r = 0

}
for g convex.
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E: Generalizations of log-concave to R and Rd:

• Long history: Avriel (1972), Prékopa (1973), Borell (1975),

Rinott (1976), Brascamp and Lieb (1976)

• Nice connections to t−concave measures: (Borell, 1975)

• Known now in math-analysis as the Borell, Brascamp, Lieb

inequality

• One way to get heavier tails than log-concave!

Example: Multivariate t−density with p−degrees of freedom:

if

f(x) = f(x; p, d) =
Γ((d+ p)/2)

Γ(p/2)(pπ)d/2

1(
1 + ‖x‖2

p

)(d+p)/2

then f ∈ P−1/s for s ∈ (d, d + p]; i.e. f ∈ Pr(Rd) for −1/(d +

p) ≤ r < −1/d.
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E: Generalizations of log-concave to R and Rd:

A measure µ on (R,B) is called t−concave if for all A,B ∈ B and

0 ≤ λ ≤ 1

µ(λA+ (1− λ)B) ≥Mt(µ(A), µ(B), λ).

Theorem. (Borell, 1975) If f ∈ Pr with −1/d ≤ r ≤ ∞, then

the measure P = Pf defined by P (A) =
∫
A f(x)dx for Borel

subsets A of Rd is t−concave with

t =


r

1+dr, if − 1/d < r <∞,
−∞, if r = −1/d,
1/d, if r =∞,

and conversely.
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E: Generalizations of log-concave to R and Rd:

h− convex densities: Seregin (2010), Seregin & W (2010))

f(x) = h(ϕ(x)) (1)

where ϕ : Rd 7→ R is convex, h : R 7→ R+ is decreasing and
continuous; e.g. hs(u) ≡ (1 + u/s)−s with s > d.

This motivates the following definition:

Definition. Say that h : R→ R+ is a decreasing transformation
if, with y0 ≡ sup{y : h(y) > 0}, y∞ ≡ inf{y : h(y) <∞} ,

• h(y) = o(y−α) for some α > d as y →∞.

• If y∞ > −∞, then h(y) � (y − y∞)−β for some β > d as
y ↘ y∞.

• If y∞ = −∞, then h(y)γh(−Cy) = o(1) as y → −∞ for some
γ, C > 0.

• h is continuously differentiable on (y∞, y0).
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E: Generalizations of log-concave to R and Rd:
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E: Generalizations of log-concave to R and Rd:

Let Ph denote the collection of all densities on Rd of the form

f = h ◦ ϕ for a fixed decreasing transformation h and ϕ convex,

and let

f̂n ≡ argmaxf∈PhPnlogf, the MLE.

Theorem. f̂n ∈ Ph exists if n ≥ dnde where

nd ≡ d+ dγ1{y∞ = −∞}+
βd2

α(β − d)
1{y∞ > −∞}

=

{
d+ 1, if h(y) = e−y,
d
(
s
s−d

)
, if h(y) = y−s, s > d.

Theorem. If h is a decreasing transformation as defined above,

and f0 ∈ Ph, then

H(f̂n, f0)→a.s. 0.
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E: Generalizations of log-concave to R and Rd:

Questions:

• Rates of convergence?

• Multivariate classes with nice preservation/closure properties

and smoother than log-concave?

• Can we treat f̂n ∈ Ph with miss-specification: f0 /∈ Ph?

• Algorithms for computing f̂n ∈ Ph?

To be continued ... in lecture 5!
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Outline: Tomorrow

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities: d = 1 and beyond

• L5: More on higher dimensions and some open prob-

lems
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