Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010

Outline: Five Lectures on Shape Restrictions

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

Outline: Lecture 4

- A: Log-concave densities on \mathbb{R}^{1}
- B: Nonparametric estimation, log-concave on \mathbb{R}
- C: Limit theory at a fixed point in \mathbb{R}
- D: Estimation of the mode, log-concave density on \mathbb{R}
- E: Generalizations: s-concave densities on \mathbb{R} and \mathbb{R}^{d}
- F: Summary; problems and open questions

A. Log-concave densities on \mathbb{R}^{1}

Suppose that

$$
f(x) \equiv f_{\varphi}(x)=\exp (\varphi(x))=\exp (-(-\varphi(x)))
$$

where φ is concave (and $-\varphi$ is convex). The class of all densities f on \mathbb{R} of this form is called the class of log-concave densities, $\mathcal{P}_{\text {log-concave }} \equiv \mathcal{P}_{0}$.

Properties of log-concave densities:

- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density f is unimodal (but need not be symmetric).
- \mathcal{P}_{0} is closed under convolution.

A. Log-concave densities on \mathbb{R}^{1}

- Many parametric families are log-concave, for example:
\triangleright Normal $\left(\mu, \sigma^{2}\right)$
\triangleright Uniform (a, b)
$\triangleright \operatorname{Gamma}(r, \lambda)$ for $r \geq 1$
$\triangleright \operatorname{Beta}(a, b)$ for $a, b \geq 1$
- t_{r} densities with $r>0$ are not log-concave
- Tails of log-concave densities are necessarily sub-exponential
- $\mathcal{P}_{\text {log-concave }}=$ the class of "Polyá frequency functions of order 2", $P F F_{2}$, in the terminology of Schoenberg (1951) and Karlin (1968). See Marshall and Olkin (1979), chapter 18, and Dharmadhikari and Joag-Dev (1988), page 150. for nice introductions.

B. Nonparametric estimation, log-concave on \mathbb{R}

- The (nonparametric) MLE \widehat{f}_{n} exists (Rufibach, Dümbgen and Rufibach).
- \widehat{f}_{n} can be computed: R-package "logcondens" (Dümbgen and Rufibach)
- In contrast, the (nonparametric) MLE for the class of unimodal densities on \mathbb{R}^{1} does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.
- Consistency and rates of convergence for \widehat{f}_{n} : Dümbgen and Rufibach, (2007); Pal, Woodroofe and Meyer (2007).
- Pointwise limit theory? Yes! Balabdaoui, Rufibach, and W (2009).

B. Nonparametric estimation, log-concave on \mathbb{R}

MLE of f and φ : Let \mathcal{C} denote the class of all concave function $\varphi: \mathbb{R} \rightarrow[-\infty, \infty)$. The estimator $\hat{\varphi}_{n}$ based on X_{1}, \ldots, X_{n} i.i.d. as f_{0} is the maximizer of the "adjusted criterion function"

$$
\begin{aligned}
\ell_{n}(\varphi) & =\int \log f_{\varphi}(x) d \mathbb{F}_{n}(x)-\int f_{\varphi}(x) d x \\
& =\int \varphi(x) d \mathbb{F}_{n}(x)-\int e^{\varphi(x)} d x
\end{aligned}
$$

over $\varphi \in \mathcal{C}$.
Properties of $\hat{f}_{n}, \hat{\varphi}_{n}$: (Dümbgen \& Rufibach, 2009)

- $\hat{\varphi}_{n}$ is piecewise linear.
- $\widehat{\varphi}_{n}=-\infty$ on $\mathbb{R} \backslash\left[X_{(1)}, X_{(n)}\right]$.
- The knots (or kinks) of $\hat{\varphi}_{n}$ occur at a subset of the order statistics $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$.
- Characterized by ...

B. Nonparametric estimation, log-concave on \mathbb{R}

$\ldots \hat{\varphi}_{n}$ is the MLE of $\log f_{0}=\varphi_{0}$ if and only if

$$
\widehat{H}_{n}(x)\left\{\begin{array}{l}
\leq \mathbb{H}_{n}(x), \\
=\mathbb{H}_{n}(x), \quad \text { for all } x>X_{(1)}, \\
\text { is a knot. }
\end{array}\right.
$$

where

$$
\begin{aligned}
& \widehat{F}_{n}(x)=\int_{X_{(1)}}^{x} \widehat{f}_{n}(y) d y, \quad \widehat{H}_{n}(x)=\int_{X_{(1)}}^{x} \widehat{F}_{n}(y) d y, \\
& \mathbb{H}_{n}(x)=\int_{-\infty}^{x} \mathbb{F}_{n}(y) d y .
\end{aligned}
$$

Furthermore, for every function Δ such that $\hat{\varphi}_{n}+t \Delta$ is concave for t small enough,

$$
\int_{\mathbb{R}} \Delta(x) d \mathbb{F}_{n}(x) \leq \int_{\mathbb{R}} \Delta(x) d \widehat{F}_{n}(x) .
$$

B. Nonparametric estimation, log-concave on \mathbb{R}

Consistency of \hat{f}_{n} and $\hat{\varphi}_{n}$:

- (Pal, Woodroofe, \& Meyer, 2007):

If $f_{0} \in \mathcal{P}_{0}$, then $H\left(\hat{f}_{n}, f_{0}\right) \rightarrow$ a.s. 0 .

- (Dümbgen \& Rufibach, 2009):

If $f_{0} \in \mathcal{P}_{0}$ and $\varphi_{0} \in \mathcal{H}^{\beta, L}(T)$ for some compact $T=[A, B] \subset$ $\left\{x: f_{0}(x)>0\right\}^{\circ}, M<\infty$, and $1 \leq \beta \leq 2$. Then

$$
\begin{aligned}
& \sup _{t \in T}\left(\widehat{\varphi}_{n}(t)-\varphi_{0}(t)\right)=O_{p}\left(\left(\frac{\log n}{n}\right)^{\beta /(2 \beta+1)}\right), \text { and } \\
& \sup _{t \in T_{n}}\left(\varphi_{0}(t)-\widehat{\varphi}_{n}(t)\right)=O_{p}\left(\left(\frac{\log n}{n}\right)^{\beta /(2 \beta+1)}\right)
\end{aligned}
$$

where $T_{n} \equiv\left[A+(\log n / n)^{\beta /(2 \beta+1)}, B-(\log n / n)^{\beta /(2 \beta+1)}\right]$ and $\beta /(2 \beta+1) \in[1 / 3,2 / 5]$ for $1 \leq \beta \leq 2$.

- The same remains true if $\hat{\varphi}_{n}, \varphi_{0}$ are replaced by \hat{f}_{n}, f_{0}.

B. Nonparametric estimation, log-concave on \mathbb{R}

- If $\varphi_{0} \in \mathcal{H}^{\beta, L}(T)$ as above and, with $\varphi_{0}^{\prime}=\varphi_{0}(\cdot-)$ or $\varphi_{0}^{\prime}(\cdot+)$, $\varphi_{0}^{\prime}(x)-\varphi_{0}^{\prime}(y) \geq C(y-x)$ for some $C>0$ and all $A \leq x<y \leq B$, then

$$
\sup _{t \in T_{n}}\left|\widehat{F}_{n}(t)-\mathbb{F}_{n}(t)\right|=O_{p}\left(\left(\frac{\log n}{n}\right)^{3 \beta /(4 \beta+2)}\right) .
$$

where $3 \beta /(2 \beta+4) \in[1 / 2,3 / 5]=[.5, .6]$ for $1 \leq \beta \leq 2$.

- If $\beta>1$, this implies $\sup _{t \in T_{n}}\left|\widehat{F}_{n}(t)-\mathbb{F}_{n}(t)\right|=o_{p}\left(n^{-1 / 2}\right)$.
B. Nonparametric estimation, log-concave on \mathbb{R}

B. Nonparametric estimation, log-concave on \mathbb{R}

Fig 2. The estimated log-concave density for different simulation examples. The sample sizes are 50,100 and 200 respectively for first, second and third columns. The three rows correspond to simulations from a Normal(0,1), a double-exponential and a $\operatorname{Gamma}(3,2)$ density. The bold one corresponds to the true density and the dotted one is the estimator.
B. Nonparametric estimation, log-concave on \mathbb{R}

50
L. Dümbgen and K. Rufibach

Figure 3. Density functions and empirical processes for Gumbel samples of size $n=200$ and $n=2000$.

B. Nonparametric estimation, log-concave on \mathbb{R}

Estimating log-concave densities

Figure 1. Distribution functions and the process $D(t)$ for a Gumbel sample.

C: Limit theory at a fixed point in \mathbb{R}

Assumptions: - f_{0} is log-concave, $f_{0}\left(x_{0}\right)>0$.

- If $\varphi_{0}^{\prime \prime}\left(x_{0}\right) \neq 0$, then $k=2$; otherwise, k is the smallest integer such that $\varphi_{0}^{(j)}\left(x_{0}\right)=0, j=2, \ldots, k-1, \varphi_{0}^{(k)}\left(x_{0}\right) \neq 0$.
- $\varphi_{0}^{(k)}$ is continuous in a neighborhood of x_{0}.

Example: $f_{0}(x)=C \exp \left(-x^{4}\right)$ with $C=\sqrt{2} \Gamma(3 / 4) / \pi: k=4$.
Driving process: $\quad Y_{k}(t)=\int_{0}^{t} W(s) d s-t^{k+2}, W$ standard 2-sided
Brownian motion.
Invelope process: H_{k} determined by limit Fenchel relations:

- $H_{k}(t) \leq Y_{k}(t)$ for all $t \in \mathbb{R}$
- $\int_{\mathbb{R}}\left(H_{k}(t)-Y_{k}(t)\right) d H_{k}^{(3)}(t)=0$.
- $H_{k}^{(2)}$ is concave.

C: Limit theory at a fixed point in \mathbb{R}

Theorem. (Balabdaoui, Rufibach, \& W, 2009)

- Pointwise limit theorem for $\widehat{f}_{n}\left(x_{0}\right)$:

$$
\binom{n^{k /(2 k+1)}\left(\widehat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right)}{n^{(k-1) /(2 k+1)}\left(\widehat{f}_{n}^{\prime}\left(x_{0}\right)-f_{0}^{\prime}\left(x_{0}\right)\right)} \rightarrow_{d}\binom{c_{k} H_{k}^{(2)}(0)}{d_{k} H_{k}^{(3)}(0)}
$$

where

$$
\begin{aligned}
c_{k} & \equiv\left(\frac{f_{0}\left(x_{0}\right)^{k+1}\left|\varphi_{0}^{(k)}\left(x_{0}\right)\right|}{(k+2)!}\right)^{1 /(2 k+1)} \\
d_{k} & \equiv\left(\frac{f_{0}\left(x_{0}\right)^{k+2}\left|\varphi_{0}^{(k)}\left(x_{0}\right)\right|^{3}}{[(k+2)!]^{3}}\right)^{1 /(2 k+1)} .
\end{aligned}
$$

C: Limit theory at a fixed point in \mathbb{R}

- Pointwise limit theorem for $\widehat{\varphi}_{n}\left(x_{0}\right)$:

$$
\binom{n^{k /(2 k+1)}\left(\widehat{\varphi}_{n}\left(x_{0}\right)-\varphi_{0}\left(x_{0}\right)\right)}{n^{(k-1) /(2 k+1)}\left(\hat{\varphi}_{n}^{\prime}\left(x_{0}\right)-\varphi_{0}^{\prime}\left(x_{0}\right)\right)} \rightarrow_{d}\binom{C_{k} H_{k}^{(2)}(0)}{D_{k} H_{k}^{(3)}(0)}
$$

where

$$
\begin{aligned}
C_{k} & \equiv\left(\frac{\left|\varphi_{0}^{(k)}\left(x_{0}\right)\right|}{f_{0}\left(x_{0}\right)^{k}(k+2)!}\right)^{1 /(2 k+1)}, \\
D_{k} & \equiv\left(\frac{\left|\varphi_{0}^{(k)}\left(x_{0}\right)\right|^{3}}{f_{0}\left(x_{0}\right)^{k-1}[(k+2)!]^{3}}\right)^{1 /(2 k+1)} .
\end{aligned}
$$

- Proof: Use the same perturbation as for convex-decreasing density proof with perturbation version of characterization:

C: Limit theory at a fixed point in \mathbb{R}

D: Mode estimation, log-concave density on \mathbb{R}

Let $x_{0}=M\left(f_{0}\right)$ be the mode of the log-concave density f_{0}, recalling that $\mathcal{P}_{0} \subset \mathcal{P}_{\text {unimodal }}$. Lower bound calculations using Jongbloed's perturbation φ_{ϵ} of φ_{0} yields:

Proposition. If $f_{0} \in \mathcal{P}_{0}$ satisfies $f_{0}\left(x_{0}\right)>0, f_{0}^{\prime \prime}\left(x_{0}\right)<0$, and $f_{0}^{\prime \prime}$ is continuous in a neighborhood of x_{0}, and T_{n} is any estimator of the mode $x_{0} \equiv M\left(f_{0}\right)$, then $f_{n} \equiv \exp \left(\varphi_{\epsilon_{n}}\right)$ with $\epsilon_{n} \equiv \nu n^{-1 / 5}$ and $\nu \equiv 2 f_{0}^{\prime \prime}\left(x_{0}\right)^{2} /\left(5 f_{0}\left(x_{0}\right)\right)$,

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} n^{1 / 5} \inf _{T_{n}} \max \left\{E_{n}\left|T_{n}-M\left(f_{n}\right)\right|, E_{0}\left|T_{n}-M\left(f_{0}\right)\right|\right\} \\
& \quad \geq \frac{1}{4}\left(\frac{5 / 2}{10 e}\right)^{1 / 5}\left(\frac{f_{0}\left(x_{0}\right)}{f_{0}^{\prime \prime}\left(x_{0}\right)^{2}}\right)^{1 / 5}
\end{aligned}
$$

Does the MLE $M\left(\widehat{f}_{n}\right)$ achieve this?

D: Mode estimation, log-concave density on \mathbb{R}

D: Mode estimation, log-concave density on \mathbb{R}

Proposition. (Balabdaoui, Rufibach, \& W, 2009) Suppose that $f_{0} \in \mathcal{P}_{0}$ satisfies:

- $\varphi_{0}^{(j)}\left(x_{0}\right)=0, j=2, \ldots, k-1$,
- $\varphi_{0}^{(k)}\left(x_{0}\right) \neq 0$, and
- $\varphi_{0}^{(k)}$ is continuous in a neighborhood of x_{0}.

Then $\widehat{M}_{n} \equiv M\left(\widehat{f}_{n}\right) \equiv \min \left\{u: \widehat{f}_{n}(u)=\sup _{t} \widehat{f}_{n}(t)\right\}$, satisfies
$n^{1 /(2 k+1)}\left(\widehat{M}_{n}-M\left(f_{0}\right)\right) \rightarrow_{d}\left(\frac{((k+2)!)^{2} f_{0}\left(x_{0}\right)}{f_{0}^{(k)}\left(x_{0}\right)^{2}}\right)^{1 /(2 k+1)} M\left(H_{k}^{(2)}\right)$
where $M\left(H_{k}^{(2)}\right)=\operatorname{argmax}\left(H_{k}^{(2)}\right)$.
Note that when $k=2$ this agrees with the lower bound calculation, at least up to absolute constants.

D: Mode estimation, log-concave density on \mathbb{R}

D: Mode estimation, log-concave density on \mathbb{R}

When $f_{0}=\phi$, the standard normal density, $M\left(f_{0}\right)=0, f_{0}(0)=$ $(2 \pi)^{-1 / 2}, f_{0}^{\prime \prime}(0)=-(2 \pi)^{-1 / 2}$, and hence

$$
\left(\frac{((4)!)^{2} f_{0}(0)}{f_{0}^{(2)}\left(x_{0}\right)^{2}}\right)^{1 / 5}=\left(\frac{24^{2}(2 \pi)^{-1 / 2}}{(2 \pi)^{-1}}\right)^{1 / 5}=4.28452 \ldots
$$

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

Three generalizations:

- log-concave densities on \mathbb{R}^{d}
(Cule, Samworth, and Stewart, 2010)
- s-concave and h - transformed convex densities on \mathbb{R}^{d} (Seregin, 2010)
- Hyperbolically k-monotone and completely monotone densities on \mathbb{R}; (Bondesson, 1981, 1992)

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

Log-concave densities on \mathbb{R}^{d} :

- A density f on \mathbb{R}^{d} is log-concave if $f(x)=\exp (\varphi(x))$ with φ concave.
- Some properties:
\triangleright Any log-concave f is unimodal
\triangleright The level sets of f are closed convex sets
\triangleright Convolutions of log-concave distributions are log-concave.
\triangleright Marginals of log-concave distributions are log-concave.

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

MLE of $f \in \mathcal{P}_{0}\left(\mathbb{R}^{d}\right)$: (Cule, Samworth, Stewart, 2010)

- MLE $\widehat{f}_{n}=\operatorname{argmax}_{f \in \mathcal{P}_{0}\left(\mathbb{R}^{d}\right)} \mathbb{P}_{n} \log f$ exists and is unique if $n \geq d+1$.
- The estimator $\hat{\varphi}_{n}$ of φ_{0} is a "taut tent" stretched over "tent poles" of certain heights at a subset of the observations.
- Computable via non-differentiable convex optimization methods: Shor's (1985) r-algorithm: R-package LogConcDEAD (Cule, Samworth, Stewart, 2008).

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

Fig. 3. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a standard bivariate normal distribution.

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

- If f_{0} is any density on \mathbb{R}^{d} with $\int_{\mathbb{R}^{d}}\|x\| f_{0}(x) d x<\infty$, $\int_{\mathbb{R}^{d}} f_{0}(x) \log f_{0}(x) d x<\infty$, and $\left\{x \in \mathbb{R}^{d}: f_{0}(x)>0\right\}^{\circ}=$ $\operatorname{int}\left(\operatorname{supp}\left(f_{0}\right)\right) \neq \emptyset$, then \widehat{f}_{n} satisfies:

$$
\int_{\mathbb{R}^{d}}\left|\widehat{f}_{n}(x)-f^{*}(x)\right| d x \rightarrow a . s .0
$$

where, for the Kullback-Leibler divergence

$$
\begin{aligned}
& K\left(f_{0}, f\right)=\int f_{0} \log \left(f_{0} / f\right) d \mu, \\
& f^{*}=\operatorname{argmin}_{f \in \mathcal{P}_{0}\left(\mathbb{R}^{d}\right)} K\left(f_{0}, f\right)
\end{aligned}
$$

is the "pseudo-true" density in $\mathcal{P}_{0}\left(\mathbb{R}^{d}\right)$ corresponding to f_{0}. In fact:

$$
\int_{\mathbb{R}^{d}} e^{a\|x\|}\left|\widehat{f}_{n}(x)-f^{*}(x)\right| d x \rightarrow_{a . s .} 0
$$

for any $a<a_{0}$ where $f^{*}(x) \leq \exp \left(-a_{0}\|x\|+b_{0}\right)$.

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

r-concave and h - transformed convex densities on \mathbb{R}^{d} : (Seregin, 2010; Seregin \&, 2010)
Generalization to s-concave densities: A density f on \mathbb{R}^{d} is r-concave on $C \subset \mathbb{R}^{d}$ if

$$
f(\lambda x+(1-\lambda) y) \geq M_{r}(f(x), f(y) ; \lambda)
$$

for all $x, y \in C$ and $0<\lambda<1$ where

$$
M_{r}(a, b ; \lambda)= \begin{cases}\left((1-\lambda) a^{r}+\lambda b^{r}\right)^{1 / r}, & r \neq 0, a, b>0 \\ 0, & r<0, a b=0 \\ a^{1-\lambda} b^{\lambda}, & r=0\end{cases}
$$

Let \mathcal{P}_{r} denote the class of all r-concave densities on C. For $r \leq 0$ it suffices to consider $C=\mathbb{R}^{d}$, and it is almost immediate from the definitions that if $f \in \mathcal{P}_{r}$ for some $r \leq 0$, then

$$
f(x)=\left\{\begin{array}{ll}
g(x)^{1 / r}, & r<0 \\
\exp (-g(x)), & r=0
\end{array}\right\} \quad \text { for } g \text { convex. }
$$

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

- Long history: Avriel (1972), Prékopa (1973), Borell (1975), Rinott (1976), Brascamp and Lieb (1976)
- Nice connections to t-concave measures: (Borell, 1975)
- Known now in math-analysis as the Borell, Brascamp, Lieb inequality
- One way to get heavier tails than log-concave!

Example: Multivariate t-density with p-degrees of freedom: if

$$
f(x)=f(x ; p, d)=\frac{\Gamma((d+p) / 2)}{\Gamma(p / 2)(p \pi)^{d / 2}} \frac{1}{\left(1+\frac{\|x\|^{2}}{p}\right)^{(d+p) / 2}}
$$

then $f \in \mathcal{P}_{-1 / s}$ for $s \in(d, d+p]$; i.e. $f \in \mathcal{P}_{r}\left(\mathbb{R}^{d}\right)$ for $-1 /(d+$ $p) \leq r<-1 / d$.

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

A measure μ on $(\mathbb{R}, \mathcal{B})$ is called t-concave if for all $A, B \in \mathcal{B}$ and $0 \leq \lambda \leq 1$

$$
\mu(\lambda A+(1-\lambda) B) \geq M_{t}(\mu(A), \mu(B), \lambda)
$$

Theorem. (Borell, 1975) If $f \in \mathcal{P}_{r}$ with $-1 / d \leq r \leq \infty$, then the measure $P=P_{f}$ defined by $P(A)=\int_{A} f(x) d x$ for Borel subsets A of \mathbb{R}^{d} is t-concave with

$$
t= \begin{cases}\frac{r}{1+d r}, & \text { if }-1 / d<r<\infty, \\ -\infty, & \text { if } r=-1 / d, \\ 1 / d, & \text { if } r=\infty,\end{cases}
$$

and conversely.

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

h - convex densities: Seregin (2010), Seregin \& W (2010))

$$
\begin{equation*}
f(\underline{x})=h(\varphi(\underline{x})) \tag{1}
\end{equation*}
$$

where $\varphi: \mathbb{R}^{d} \mapsto \mathbb{R}$ is convex, $h: \mathbb{R} \mapsto \mathbb{R}^{+}$is decreasing and continuous; e.g. $h_{s}(u) \equiv(1+u / s)^{-s}$ with $s>d$.

This motivates the following definition:
Definition. Say that $h: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a decreasing transformation if, with $y_{0} \equiv \sup \{y: h(y)>0\}, y_{\infty} \equiv \inf \{y: h(y)<\infty\}$,

- $h(y)=o\left(y^{-\alpha}\right)$ for some $\alpha>d$ as $y \rightarrow \infty$.
- If $y_{\infty}>-\infty$, then $h(y) \asymp\left(y-y_{\infty}\right)^{-\beta}$ for some $\beta>d$ as $y \searrow y_{\infty}$.
- If $y_{\infty}=-\infty$, then $h(y)^{\gamma} h(-C y)=o(1)$ as $y \rightarrow-\infty$ for some $\gamma, C>0$.
- h is continuously differentiable on (y_{∞}, y_{0}).

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

Let \mathcal{P}_{h} denote the collection of all densities on \mathbb{R}^{d} of the form $f=h \circ \varphi$ for a fixed decreasing transformation h and φ convex, and let

$$
\widehat{f}_{n} \equiv \operatorname{argmax}_{f \in \mathcal{P}_{h}} \mathbb{P}_{n} \log f, \quad \text { the MLE. }
$$

Theorem. $\widehat{f}_{n} \in \mathcal{P}_{h}$ exists if $n \geq\left\lceil n_{d}\right\rceil$ where

$$
\begin{aligned}
n_{d} & \equiv d+d \gamma 1\left\{y_{\infty}=-\infty\right\}+\frac{\beta d^{2}}{\alpha(\beta-d)} 1\left\{y_{\infty}>-\infty\right\} \\
& = \begin{cases}d+1, & \text { if } h(y)=e^{-y}, \\
d\left(\frac{s}{s-d}\right), & \text { if } h(y)=y^{-s}, s>d .\end{cases}
\end{aligned}
$$

Theorem. If h is a decreasing transformation as defined above, and $f_{0} \in \mathcal{P}_{h}$, then

$$
H\left(\widehat{f}_{n}, f_{0}\right) \rightarrow \text { a.s. } 0 .
$$

$E:$ Generalizations of log-concave to \mathbb{R} and \mathbb{R}^{d} :

Questions:

- Rates of convergence?
- Multivariate classes with nice preservation/closure properties and smoother than log-concave?
- Can we treat $\widehat{f}_{n} \in \mathcal{P}_{h}$ with miss-specification: $f_{0} \notin \mathcal{P}_{h}$?
- Algorithms for computing $\hat{f}_{n} \in \mathcal{P}_{h}$?

To be continued ... in lecture 5!

Outline: Tomorrow

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: $d=1$ and beyond
- L5: More on higher dimensions and some open problems

