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Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and

least squares

• L2: Optimality of the MLE of a monotone density

(and comparisons?)

• L3: Estimation of convex and k−monotone density functions

• L4: Estimation of log-concave densities:

d = 1 and beyond

• L5: More on higher dimensions ...

... and some open problems
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Outline: Lecture 5

• A: Some multivariate shape-constrained classes

B Log-concave & h−convex on Rd

B Block-decreasing on Rd+
B Scale mixtures of uniform on Rd+
B h−convex on Rd+ with h increasing.

• B: Review of available theory; MLEs for multivariate classes.

• C: Some alternative classes in R:

Bondesson’s hyperbolically monotone classes.

• D: Open problems and questions: R1

• E: Some problems and questions: Rd
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A. Some multivariate shape-constrained classes

• “Block decreasing” densities on R+d = [0,∞)d

• Monotone with non-negative increments on rectangles (as

for a multivariate d.f.)

• Convex and decreasing

• k−monotone; completely monotone

• log−concave; s−concave; h− transform of convex (or con-

cave)
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A. Some multivariate shape-constrained classes

Block-decreasing densities on R+d = [0,∞)d

•

BD(Rd) =


f : [0,∞)d → R+

∣∣∣ ∫ f(x)dx = 1,

f(x+ hej) ≤ f(x)
for all basis vectors ej, j = 1, . . . , d, h > 0

 .
• Polonik (1995, 1998): MLE exists and coincides with

“silhouette estimator”.

• Biau and Devroye (2003): global minimax lower bounds

... and showed that a generalization of Birgé’s histogram

estimator acheives the bounds.

• Pavlides (2008, 2009): asymptotic minimax lower bounds for

estimation of f(x0)
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A. Some multivariate shape-constrained classes
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A. Some multivariate shape-constrained classes
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A. Some multivariate shape-constrained classes

Monotone with non-negative increments on rectangles

(as for a multivariate d.f.)

=“Scale mixtures of uniform densities” on R+d

f(x) =
∫
R+d

1∏d
j=1 yj

1[0,y](x)dG(y)

for some probability distribution G on R+d.

Example: dG(y1, y2) = (y1y2)−2g(1/y1,1/y2, θ)dy1dy2 with

g(u, v, θ) = {(1 + θu)(1 + θv)− θ}exp(−u− v − θuv), θ = .4,
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A. Some multivariate shape-constrained classes
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A. Some multivariate shape-constrained classes

Convex and decreasing on Rd

• Seregin (2010)’s increasing convex transformed classes with

h(x) = x, so that f(x) = ϕ(x) with ϕ convex (or convex and

decreasing).

Example: f(x) = exp(−|x|)1(0,∞)d(x).
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A. Some multivariate shape-constrained classes

Log-concave densities on Rd

•

f(x) = exp(ϕ(x)) = exp(−(−ϕ(x))

where ϕ : Rd 7→ R is concave (so −ϕ is convex).

• Exponentially decaying tails; does not include multivariate

t−densities.
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A. Some multivariate shape-constrained classes

• s−convex densities and h− convex densities

(Koenker and Mizera; Seregin, Seregin and Wellner)

f(x) = h(ϕ(x))

where ϕ : Rd 7→ R is convex, h : R 7→ R+ is decreasing and

continuous; e.g. hs(u) ≡ (1 + u/s)−s with s > d.

Larger classes than log-concave: includes multivariate tn for

d < s ≤ n+ d.
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B: Review of available theory:

MLEs for multivariate classes

Block decreasing densities on R+d

Problem Lower Bound Upper Bound / MLE

A Polonik (1995,1998)
(consist) Pavlides (2008?)
B Pavlides (2008 & 2009) ?

(local) rate: n1/(d+2) rate: n1/(d+2) ??{∏d
j=1

∂f
∂xj

(x)f(x)
}1/(d+2)

const: ??

C Biau and Devroye (2003) Biau and Devroye (2003)

(global) rate: n1/(d+2) analogues of Birgé’s
histogram estimators
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B: Review of available theory:

MLEs for multivariate classes

Scale mixtures of uniform on R+d

Problem Lower Bound Upper Bound / MLE

A Pavlides (2008)
(consist) Pavlides & W (2010)
B Pavlides (2008) ?
(local) rate: n1/3 (all d) Pavlides (2008),{

∂df
∂x1···∂xd

(x)f(x)
}1/3

partial results

C ?? ??
(global) (hints from entropy bounds ??

of Blei, Gao, and Li) ??
??
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B: Review of available theory:

MLEs for multivariate classes

Log concave densities on Rd

Problem Lower Bound Upper Bound / MLE

A consistency with Cule and Samworth (2010a)
(consist) misspecification! Schumacher, Rufibach,

Samworth (2010)
computation: Cule, Samworth, Stewart

(2010)
B Seregin (2010) ??

(local) rate: n2/(d+4) ??{
fd+2(x)curvx(ϕ)

}1/(d+4)
??

curvx(ϕ) = det∇2ϕ(x)
C ?? ??
(global) conjectures: ??

Seregin and W (2010) ??
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B: Review of available theory:

MLEs for multivariate classes

s−convex and h−convex densities on Rd

Problem Lower Bound Upper Bound / MLE

A Seregin & W (2010)
(consist) computation:

(related estimators) Koenker & Mizera (2010)
(convex regression) Seijo and Sen (2010)

B Seregin (2010) MLE & LSE rate inefficient

(local) rate: n2/(d+4) d > 4 ??{
f(x)curvx(ϕ)
h′(ϕ(x))4

}1/(d+4)
??

C ?? ?? LSE rate inefficient,
(global) ?? d > 4??

?? or d ≥ 4??
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Let k ≥ 1 be an integer. f : (0,∞) → R+ is hyperbolically

monotone of order k (HMk) if, for each fixed u > 0, the function

H(w) ≡ f(uv)f(u/v), w ≡
1

2

(
v +

1

v

)
≥ 1,

is such that

(−1)jH(j)(w) ≥ 0, for j = 0, . . . , k − 1,

(−1)kH(k−1)(w) is right continuous and decreasing.

If f is hyperbolically monotone for all k, f is said to be

hyperbolically completely monotone (HCM or HM∞).

Note that f(uv)f(u/v) is always a function of w by symmetry,

and for v ≥ 1 v = w +
√
w2 − 1.
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Example 1. Half-normal distributions

f(x) =

√
2

πσ2
exp

(
−
x2

2σ2

)
1(0,∞)(x)

has

H(w) = f(uv)f(u/v) =
2

πσ2
exp

(
−
u2

2σ2

(
v +

1

v

)2
+
u2

σ2

)

=
2

πσ2
exp

(
−
u2

2σ2
w2 +

u2

σ2

)
.

For fixed u > 0 w 7→ H(w) is decreasing, but −H ′ is not. Thus
f ∈ HM1 while f /∈ HM2.

Example 2. Uniform(a, b) If f(x) = (b − a)−11(a,b)(x) with
0 ≤ a < b, then for v ≥ 1

H(w) = f(uv)f(u/v) = (b− a)−21{a < u/v ≤ uv < b}
so H(w) = 1{1 ≤ v < Vu ≡ min{u/a, b/u}}. Thus H is decreasing
and f ∈ HM1.
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Exercise 1. Show that f(x) = Cxβ−1(1 + cx)−γ1(0,∞(x), with

β, γ, c ≥ 0 and C a normalizing constant, satisfies f ∈ HM∞.

Exercise 2. (log-normal) f(x) = Cexp(−(logx − µ)2/2σ2)

satisfies f ∈ HM∞.

Exercise 3. f(x) = (a− x)γ−1
+ 1(0,∞)(x) satisfies f ∈ HMbγc.

Theorem 1. (Bondesson, 1997) If X and Y are independent

random variables such that X ∼ f ∈ HMk and Y ∼ g ∈ HMk,

then XY ∼ HMk and X/Y ∼ HMk.

Theorem 2. (Bondesson, 1992) X ∼ f ∈ HM1 if and only if

logX ∼ exf(ex) is log-concave.
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Putting these two results together:

• Transform the hyperbolically monotone classes from R+ to

R:

HMk ◦ exp ≡ {g(x) = exf(ex) : f ∈ HMk}
≡ log-hyperbolically k−monotone

• HMk ◦ exp is closed under convolution.

• HMk ◦exp have the same degree of smoothness as the k+1-

monotone densities

• HM∞ ◦ exp contains the Gaussian distributions

(by Exercise 2).

Conclusion: The classes HMk ◦ exp ↘ HM∞ ◦ exp provide a

nice analogue of the k−monotone classes on R+ for R with nice

closure properties.
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D: Open problems and questions: R1

• Are there “natural” switching relations for the k−monotone

MLE’s and / or LSE’s?

• More connections to convexity theory?

• Pointwise rates of convergence for the k−monotone MLE’s?

• Rates of convergence under degenerate mixing, G = δ1?

• Rates of convergence for the MLE’s of G (inverse problems)?

• Global rates of convergence in L1 and Hellinger metrics, log-

concave classes?

• Theory for natural discrete shape-constrained classes?

(Monotone, convex-decreasing, completely monotone, .... )

• MLE’s for Bondesson’s HMk classes?
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E: Open problems and questions: Rd

• local rates and global rates for shape constrained estimators
in Rd?

• Local (pointwise) limiting distribution theory for MLE’s and
other natural divergence-based estimators?

• When are the MLE’s rate (in-)efficient?
Conjecture 1: Block decreasing: inefficient for d > 2.
Conjecture 2: Log-concave and s−concave: inefficient for
d > 4.

• How to penalize or sieve or ... to obtain rate efficient
estimators in these classes for higher dimensions?

• Do there exist natural shape-constraints with smoothness
> 2 for which MLE’s are rate-efficient and which have natural
preservations properties under convolution, marginalization,
and so forth?
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E: Open problems and questions: Rd

• Faster and more efficient algorithms?

• Faster and more efficient algorithms?!
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Je vous remerci!
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