Nonparametric estimation

under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France August 30 - September 3, 2010

- L1: Monotone functions: maximum likelihood and least squares
- L2: Optimality of the MLE of a monotone density (and comparisons?)
- L3: Estimation of convex and k-monotone density functions
- L4: Estimation of log-concave densities: d = 1 and beyond
- L5: More on higher dimensions ...
 - ... and some open problems

Outline: Lecture 5

- A: Some multivariate shape-constrained classes
 - \triangleright Log-concave & h-convex on \mathbb{R}^d
 - \triangleright Block-decreasing on \mathbb{R}^d_+

 \triangleright Scale mixtures of uniform on \mathbb{R}^d_+

 \triangleright *h*-convex on \mathbb{R}^d_+ with *h* increasing.

- B: Review of available theory; MLEs for multivariate classes.
- C: Some alternative classes in ℝ: Bondesson's hyperbolically monotone classes.
- D: Open problems and questions: \mathbb{R}^1
- E: Some problems and questions: \mathbb{R}^d

- "Block decreasing" densities on $R^{+d} = [0, \infty)^d$
- Monotone with non-negative increments on rectangles (as for a multivariate d.f.)
- Convex and decreasing
- *k*-monotone; completely monotone
- log-concave; s-concave; h- transform of convex (or concave)

Block-decreasing densities on $\mathbb{R}^{+d} = [0,\infty)^d$

$$\mathcal{BD}(\mathbb{R}^d) = \left\{ \begin{array}{l} f: [0,\infty)^d \to \mathbb{R}^+ \big| \int f(\underline{x}) d\underline{x} = 1, \\ f(\underline{x} + h\underline{e}_j) \le f(x) \\ \text{for all basis vectors } \underline{e}_j, j = 1, \dots, d, h > 0 \end{array} \right\}.$$

- Polonik (1995, 1998): MLE exists and coincides with "silhouette estimator".
- Biau and Devroye (2003): global minimax lower bounds
 ... and showed that a generalization of Birgé's histogram estimator acheives the bounds.
- Pavlides (2008, 2009): asymptotic minimax lower bounds for estimation of $f(x_0)$

Monotone with non-negative increments on rectangles (as for a multivariate d.f.)

="Scale mixtures of uniform densities" on \mathbb{R}^{+d}

$$f(\underline{x}) = \int_{\mathbb{R}^{+d}} \frac{1}{\prod_{j=1}^{d} y_j} \mathbf{1}_{[\underline{0},\underline{y}]}(\underline{x}) dG(\underline{y})$$

for some probability distribution G on \mathbb{R}^{+d} . Example: $dG(y_1, y_2) = (y_1y_2)^{-2}g(1/y_1, 1/y_2, \theta)dy_1dy_2$ with

$$g(u, v, \theta) = \{(1 + \theta u)(1 + \theta v) - \theta\}\exp(-u - v - \theta uv), \qquad \theta = .4,$$

Convex and decreasing on \mathbb{R}^d

• Seregin (2010)'s increasing convex transformed classes with h(x) = x, so that $f(x) = \varphi(x)$ with φ convex (or convex and decreasing).

Example:
$$f(x) = \exp(-|x|) \mathbf{1}_{(0,\infty)^d}(x)$$
.

Log-concave densities on \mathbb{R}^d

$$f(\underline{x}) = \exp(\varphi(\underline{x})) = \exp(-(-\varphi(\underline{x})))$$

where $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$ is concave (so $-\varphi$ is convex).

 Exponentially decaying tails; does not include multivariate t-densities.

s-convex densities and h- convex densities
 (Koenker and Mizera; Seregin, Seregin and Wellner)

$$f(\underline{x}) = h(\varphi(\underline{x}))$$

where $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$ is convex, $h : \mathbb{R} \mapsto \mathbb{R}^+$ is decreasing and continuous; e.g. $h_s(u) \equiv (1 + u/s)^{-s}$ with s > d. Larger classes than log-concave: includes multivariate t_n for d < s < n + d.

MLEs for multivariate classes

Block decreasing densities on \mathbb{R}^{+d}

Problem	Lower Bound	Upper Bound / MLE
Α		Polonik (1995,1998)
(consist)		Pavlides (2008?)
В	Pavlides (2008 & 2009)	?
(local)	rate: $n^{1/(d+2)}$	rate: $n^{1/(d+2)}$??
	$\left\{\prod_{j=1}^{d} \frac{\partial f}{\partial x_j}(x) f(x)\right\}^{1/(d+2)}$	const: ??
С	Biau and Devroye (2003)	Biau and Devroye (2003)
(global)	rate: $n^{1/(d+2)}$	analogues of Birgé's
		histogram estimators

MLEs for multivariate classes

Scale mixtures of uniform on \mathbb{R}^{+d}

Problem	Lower Bound	Upper Bound / MLE
Α		Pavlides (2008)
(consist)		Pavlides & W (2010)
В	Pavlides (2008)	?
(local)	rate: $n^{1/3}$ (all d)	Pavlides (2008),
	$\left\{rac{\partial^d f}{\partial x_1\cdots\partial x_d}(x)f(x) ight\}^{1/3}$	partial results
С	??	??
(global)	(hints from entropy bounds	??
	of Blei, Gao, and Li)	??
	??	

MLEs for multivariate classes

Log concave densities on \mathbb{R}^d

Problem	Lower Bound	Upper Bound / MLE
A	consistency with	Cule and Samworth (2010a)
(consist)	misspecification!	Schumacher, Rufibach,
		Samworth (2010)
	computation:	Cule, Samworth, Stewart
		(2010)
В	Seregin (2010)	??
(local)	rate: $n^{2/(d+4)}$??
	$\left\{f^{d+2}(x)\operatorname{curv}_{x}(\varphi)\right\}^{1/(d+4)}$??
	$\int \operatorname{curv}_x(\varphi) = \det \nabla^2 \varphi(x)$	
С	??	??
(global)	conjectures:	??
	Seregin and W (2010)	??

MLEs for multivariate classes

s-convex and h-convex densities on \mathbb{R}^d

Problem	Lower Bound	Upper Bound / MLE
A		Seregin & W (2010)
(consist)	computation:	
	(related estimators)	Koenker & Mizera (2010)
	(convex regression)	Seijo and Sen (2010)
В	Seregin (2010)	MLE & LSE rate inefficient
(local)	rate: $n^{2/(d+4)}$	d > 4 ??
	$\left\{\frac{f(x)\operatorname{Curv}_{x}(\varphi)}{h'(\varphi(x))^{4}}\right\}^{1/(d+4)}$??
С	??	?? LSE rate inefficient,
(global)	??	d > 4??
	??	or $d \geq$ 4??

Bondesson's hyperbolically monotone classes

Let $k \ge 1$ be an integer. $f : (0, \infty) \to \mathbb{R}^+$ is hyperbolically monotone of order k (HM_k) if, for each fixed u > 0, the function

$$H(w) \equiv f(uv)f(u/v), \quad w \equiv \frac{1}{2}\left(v+\frac{1}{v}\right) \geq 1,$$

is such that

$$(-1)^{j}H^{(j)}(w) \ge 0$$
, for $j = 0, \dots, k-1$,
 $(-1)^{k}H^{(k-1)}(w)$ is right continuous and decreasing.

If f is hyperbolically monotone for all k, f is said to be hyperbolically completely monotone (HCM or HM_{∞}).

Note that f(uv)f(u/v) is always a function of w by symmetry, and for $v \ge 1$ $v = w + \sqrt{w^2 - 1}$.

Bondesson's hyperbolically monotone classes

Example 1. Half-normal distributions

$$f(x) = \sqrt{\frac{2}{\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \mathbf{1}_{(0,\infty)}(x)$$

has

$$H(w) = f(uv)f(u/v) = \frac{2}{\pi\sigma^2} \exp\left(-\frac{u^2}{2\sigma^2}\left(v + \frac{1}{v}\right)^2 + \frac{u^2}{\sigma^2}\right)$$
$$= \frac{2}{\pi\sigma^2} \exp\left(-\frac{u^2}{2\sigma^2}w^2 + \frac{u^2}{\sigma^2}\right).$$

For fixed u > 0 $w \mapsto H(w)$ is decreasing, but -H' is not. Thus $f \in HM_1$ while $f \notin HM_2$.

Example 2. Uniform(a,b) If $f(x) = (b-a)^{-1} \mathbb{1}_{(a,b)}(x)$ with $0 \le a < b$, then for $v \ge 1$

$$H(w) = f(uv)f(u/v) = (b-a)^{-2} \mathbf{1}\{a < u/v \le uv < b\}$$

so $H(w) = 1\{1 \le v < V_u \equiv \min\{u/a, b/u\}\}$. Thus H is decreasing and $f \in HM_1$.

Bondesson's hyperbolically monotone classes

Exercise 1. Show that $f(x) = Cx^{\beta-1}(1+cx)^{-\gamma}\mathbf{1}_{(0,\infty)}(x)$, with $\beta, \gamma, c \ge 0$ and C a normalizing constant, satisfies $f \in HM_{\infty}$.

Exercise 2. (log-normal) $f(x) = C \exp(-(\log x - \mu)^2/2\sigma^2)$ satisfies $f \in HM_{\infty}$.

Exercise 3. $f(x) = (a - x)^{\gamma - 1}_+ \mathbb{1}_{(0,\infty)}(x)$ satisfies $f \in HM_{\lfloor \gamma \rfloor}$.

Theorem 1. (Bondesson, 1997) If X and Y are independent random variables such that $X \sim f \in HM_k$ and $Y \sim g \in HM_k$, then $XY \sim HM_k$ and $X/Y \sim HM_k$.

Theorem 2. (Bondesson, 1992) $X \sim f \in HM_1$ if and only if $\log X \sim e^x f(e^x)$ is log-concave.

Bondesson's hyperbolically monotone classes

Putting these two results together:

• Transform the hyperbolically monotone classes from \mathbb{R}_+ to \mathbb{R} :

$$\mathcal{HM}_k \circ \exp \equiv \{g(x) = e^x f(e^x) : f \in HM_k\}$$

 $\equiv \text{log-hyperbolically } k-\text{monotone}$

- $\mathcal{HM}_k \circ \exp$ is closed under convolution.
- $\mathcal{HM}_k \circ \exp$ have the same degree of smoothness as the k+1- monotone densities
- $\mathcal{HM}_{\infty} \circ exp$ contains the Gaussian distributions (by Exercise 2).

Conclusion: The classes $\mathcal{HM}_k \circ \exp \searrow \mathcal{HM}_\infty \circ \exp$ provide a nice analogue of the *k*-monotone classes on \mathbb{R}^+ for \mathbb{R} with nice closure properties.

D: Open problems and questions: \mathbb{R}^1

- Are there "natural" switching relations for the k-monotone MLE's and / or LSE's?
- More connections to convexity theory?
- Pointwise rates of convergence for the k-monotone MLE's?
- Rates of convergence under degenerate mixing, $G = \delta_1$?
- Rates of convergence for the MLE's of G (inverse problems)?
- Global rates of convergence in L₁ and Hellinger metrics, logconcave classes?
- Theory for natural discrete shape-constrained classes? (Monotone, convex-decreasing, completely monotone,)
- MLE's for Bondesson's HM_k classes?

E: Open problems and questions: \mathbb{R}^d

- local rates and global rates for shape constrained estimators in $\mathbb{R}^d?$
- Local (pointwise) limiting distribution theory for MLE's and other natural divergence-based estimators?
- When are the MLE's rate (in-)efficient?
 Conjecture 1: Block decreasing: inefficient for d > 2.
 Conjecture 2: Log-concave and s-concave: inefficient for d > 4.
- How to penalize or sieve or ... to obtain rate efficient estimators in these classes for higher dimensions?
- Do there exist natural shape-constraints with smoothness > 2 for which MLE's are rate-efficient and which have natural preservations properties under convolution, marginalization, and so forth?

• Faster and more efficient algorithms?

• Faster and more efficient algorithms?!

Je vous remerci!