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Outline: Five Lectures on Shape Restrictions

e L1: Monotone functions: maximum likelihood and
least squares

e L2: Optimality of the MLE of a monotone density
(and comparisons?)

e L3: Estimation of convex and k—monotone density functions

e L4: Estimation of log-concave densities:
d =1 and beyond

e L5: More on higher dimensions ...
. and some open problems
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Outline: Lecture 5

e A: Some multivariate shape-constrained classes

Log-concave & h—convex on R4

Block-decreasing on ]Ric_ll_

Scale mixtures of uniform on IR{fll_

h—convex on Rfﬁ_ with h increasing.

e B: Review of available theory; MLEs for multivariate classes.

e C: Some alternative classes in R:
Bondesson's hyperbolically monotone classes.

e D: Open problems and questions: R}

e E: Some problems and questions: RA
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A. Some multivariate shape-constrained classes

e “Block decreasing” densities on RT% = [0, c0)¢

e Monotone with non-negative increments on rectangles (as
for a multivariate d.f.)

e Convex and decreasing
e k—monotone; completely monotone

e log—concave; s—concave; h— transform of convex (or con-
cave)
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A. Some multivariate shape-constrained classes

Block-decreasing densities on RT% = [0, c0)¢

] £ :[0,00)¢ = RT| [ f(z)dz =1,
BD(RY) = { f(z+ hej) < f(=) &
\ for all basis vectors ¢;,j =1,...,d,h >0 /

e Polonik (1995, 1998): MLE exists and coincides with
“silhouette estimator”.

e Biau and Devroye (2003): global minimax lower bounds
and showed that a generalization of Birgé’'s histogram
estimator acheives the bounds.

e Pavlides (2008, 2009): asymptotic minimax lower bounds for
estimation of f(xzq)
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A. Some multivariate shape-constrained classes
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A. Some multivariate shape-constrained classes

5.6
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A. Some multivariate shape-constrained classes

Monotone with non-negative increments on rectangles
(as for a multivariate d.f.)
— “Scale mixtures of uniform densities” on R4

flz) = /RH 7 - 1194 (2)dG(y)

for some probability distribution G on R14,
Example: dG(y1,y2) = (y1y2) 29(1/y1,1/y2,0)dy1dys with

g(u,v,0) = {(1 + 0u)(1 + 0v) — 0}rexp(—u — v — Ouw), 0 = .4,
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A. Some multivariate shape-constrained classes

5.8
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A. Some multivariate shape-constrained classes

Convex and decreasing on R¢

e Seregin (2010)’'s increasing convex transformed classes with
h(x) = z, so that f(x) = ¢(x) with ¢ convex (or convex and
decreasing).

Example: f(x) = exp(—|x|)1(07m)d(x).
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A. Some multivariate shape-constrained classes

Log-concave densities on R4

f(z) = exp(p(z)) = exp(—(—p(z))

where ¢ : R? — R is concave (so —¢ is convex).

e Exponentially decaying tails; does not include multivariate
t—densities.
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A. Some multivariate shape-constrained classes

e s—convex densities and h— convex densities
(Koenker and Mizera; Seregin, Seregin and Wellner)

f(z) = h(p(z))
where ¢ : R? — R is convex, h : R — RT is decreasing and
continuous; e.g. hs(u) = (1 + u/s)™% with s > d.

LLarger classes than log-concave: includes multivariate t,, for
d<s<n-4d.
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B: Review of available theory:

MLEs for multivariate classes

Block decreasing densities on R14

Problem Lower Bound Upper Bound / MLE

A Polonik (1995,1998)

(consist) Pavlides (20087)

B Pavlides (2008 & 2009) ?

(local) rate: nl/(d+2) rate: nl/(d+2) 27

1/(d+2)
{ oL (:L‘)f(a;)} const: 77

C Biau and Devroye (2003) | Biau and Devroye (2003)

(global) rate; nl/(d+2) analogues of Birgé's
histogram estimators
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B: Review of available theory:

MLEs for multivariate classes

Scale mixtures of uniform on RTd

Problem Lower Bound Upper Bound / MLE
A Pavlides (2008)
(consist) Pavlides & W (2010)
B Pavlides (2008) ?
(local) rate: nl/3 (all d) Pavlides (2008),
6df 1/3 .

{8x1.__axd(m)f(a:)} partial results
C 7?7 7?7
(global) | (hints from entropy bounds 7?7

of Blei, Gao, and Li) 77

?7?
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B: Review of available theory:

MLEs for multivariate classes

LLog concave densities on R

Problem Lower Bound Upper Bound / MLE
A consistency with Cule and Samworth (2010a)
(consist) misspecification! Schumacher, Rufibach,
Samworth (2010)
computation: Cule, Samworth, Stewart
(2010)
B Seregin (2010) 77
(local) rate: n2/(d+4) 77
{fd‘|‘2(:c)cu er(SO)}l/(d—|—4) 7?7
curvg (o) = detV2p(z)
C 77 Fals
(global) conjectures: 7?7
?7

Seregin and W (2010)
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B: Review of available theory:

MLEs for multivariate classes

s—convex and h—convex densities on R?

Problem Lower Bound Upper Bound / MLE
A Seregin & W (2010)
(consist) computation:
(related estimators) | Koenker & Mizera (2010)
(convex regression) Seijo and Sen (2010)
B Seregin (2010) MLE & LSE rate inefficient
(local) rate; n2/(dt+4) d>4 7?7
{f(x)cuer(¢)}1/(d+4) 27
W (p(z))? -
C Fals 7?7 LSE rate inefficient,
(global) 7?7 d> 477
7?7 or d> 477
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Let £ > 1 be an integer. f : (0,00) — R1 is hyperbolically
monotone of order k (HMj,,) if, for each fixed v > 0, the function

Hw) = f@)f(ufo), w=3(v+-)>1,

IS such that

(—1)7HU (w) >0, for j=0,...,k—1,
(—1)kH(k_1)(w) is right continuous and decreasing.

If f is hyperbolically monotone for all k, f is said to be
hyperbolically completely monotone (HCM or HMy).

Note that f(wv)f(u/v) is always a function of w by symmetry,
and forv>1v=w4+ w2 —1.
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Example 1. Half-normal distributions

2 2
f(z) = \/QQXD <—2%2> 1(O,oo)($)

Uu

2 2 2
Hw) = f(m)f(ufv) = pexp (—ﬁ (v+1) +—2)

o
2 w2 > w2
——exp | ——= — .
o2 P ( 202w T 02>

has

For fixed u > 0 w — H(w) is decreasing, but —H’ is not. Thus
f € HM4 while f ¢ HMo>.

Example 2. Uniform(a,b) If f(z) = (b—a) 11, (x) with
O<a<hb, then forv>1
H(w) = f(w) f(u/v) = (b—a) ?1{a < u/v < uv < b}

so H(w) = 1{1 <v < Vi = min{u/a,b/u}}. Thus H is decreasing
and f e HM;.
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Exercise 1. Show that f(z) = Cz?~1(1 + ca:)_’yl(o’oo(a:), with
B,v,c >0 and C' a normalizing constant, satisfies f € HMxo.

Exercise 2. (log-normal) f(z) = Cexp(—(logz — p)?/202)
satisfies f € HMx.

Exercise 3. f(x) = (a — :1:)1_11(0700)(517) satisfies f € HM|,|.

Theorem 1. (Bondesson, 1997) If X and Y are independent
random variables such that X ~ f € HM; and Y ~ g € HM;,
then XY ~ HM,;, and X/Y ~ HM,.

Theorem 2. (Bondesson, 1992) X ~ f € HM; if and only if
logX ~ e*f(e*) is log-concave.,
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C: Some alternative classes on R:

Bondesson’s hyperbolically monotone classes

Putting these two results together:

e Transform the hyperbolically monotone classes from R, to
R:

HMpoexp = {g(x) =¢e*f(e*): fe HM.}
= log-hyperbolically k—monotone

e HM; oexp is closed under convolution.

o HMoexp have the same degree of smoothness as the £+ 1-
monotone densities

o HM o exp contains the Gaussian distributions
(by Exercise 2).

Conclusion: The classes HM; o exp \ HMs o €xp provide a
nice analogue of the k—monotone classes on RT for R with nice
closure properties.
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D: Open problems and questions: R1

e Are there “natural” switching relations for the k—monotone
MLE's and / or LSE’'s?

e More connections to convexity theory?

e Pointwise rates of convergence for the k—monotone MLE’'s?
e Rates of convergence under degenerate mixing, G = 617

e Rates of convergence for the MLE's of G (inverse problems)?

e Global rates of convergence in L1 and Hellinger metrics, log-
concave classes?

e [ heory for natural discrete shape-constrained classes?
(Monotone, convex-decreasing, completely monotone, .... )

e MLE's for Bondesson's H M, classes?
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E: Open problems and questions: R

e |local rates and global rates for shape constrained estimators
in R4?

e Local (pointwise) limiting distribution theory for MLE's and
other natural divergence-based estimators?

e When are the MLE's rate (in-)efficient?
Conjecture 1: Block decreasing: inefficient for d > 2.
Conjecture 2: Log-concave and s—concave: inefficient for
d> 4.

e How to penalize or sieve or ... to obtain rate efficient
estimators in these classes for higher dimensions?

e Do there exist natural shape-constraints with smoothness
> 2 for which MLE's are rate-efficient and which have natural
preservations properties under convolution, marginalization,
and so forth?
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E: Open problems and questions: R

e Faster and more efficient algorithms?

e Faster and more efficient algorithms?!
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Je vous remerci!
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