A Local Maximal Inequality under Uniform Entropy

Jon A. Wellner

University of Washington, Seattle

XiAn, China
July 9, 2011

IMS-China International Conference on

Statistics and Probability

Based on joint work with: Aad van der Vaart

- Last day of this conference: July 11 ($7 / 11$, both primes).
- 2011 is the sum of 11 consecutive primes.
- 3 of the 11 primes are (consecutive!) twin primes; e.g. 3 \& 5 or $11 \& 13$.
- Prove the twin prime conjecture! (There are infinitely many twin primes.)

Outline

- 1. The setting and basic problem
- 2. Available bounds: bracketing and uniform entropy
- 3. The new bound: uniform entropy
- 4. The perspective of a convex (or concave) function
- 5. Proof, part 1: concavity of the entropy integral
- 6. Proof, part 2: inversion
- 7. Generalizations
- 8. An application

1. The setting and basic problem

Suppose that:

- X_{1}, \ldots, X_{n} are i.i.d. P on a measurable space $(\mathcal{X}, \mathcal{A})$.
- $\mathbb{P}_{n}=n^{-1} \sum_{i=1}^{n} \delta_{X_{i}}=$ the empirical measure.
- $\mathbb{G}_{n} \equiv \sqrt{n}\left(\mathbb{P}_{n}-P\right)=$ the empirical process.
- If $f: \mathcal{X} \rightarrow R$ is measurable,
$\mathbb{P}_{n}(f)=n^{-1} \sum_{i=1}^{n} f\left(X_{i}\right), \quad \mathbb{G}_{n}(f)=n^{-1 / 2} \sum_{i=1}^{n}\left(f\left(X_{i}\right)-P f\right)$.
- When \mathcal{F} is a given class of measurable functions f, it is useful to consider

$$
\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \equiv \sup _{f \in \mathcal{F}}\left|\mathbb{G}_{n}(f)\right| .
$$

1. The setting and basic problem

Problem: Find useful bounds for the mean value

$$
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} .
$$

Entropy and two entropy integrals:

Uniform entropy: For $r \geq 1$

$$
N\left(\epsilon, \mathcal{F}, L_{r}(Q)\right)=\left\{\begin{array}{l}
\text { minimal number of balls of radius } \epsilon \\
\text { needed to cover } \mathcal{F}
\end{array}\right\}
$$

F an envelope function for \mathcal{F} :
i.e. $|f(x)| \leq F(x)$ for all $f \in \mathcal{F}, x \in \mathcal{X}$;
$\|f\|_{Q, r} \equiv Q\left(|f|^{r}\right)^{1 / r}$;
$J\left(\delta, \mathcal{F}, L_{r}\right) \equiv \sup _{Q} \int_{0}^{\delta} \sqrt{1+\log N\left(\epsilon\|F\|_{Q, r}, \mathcal{F}, L_{r}(Q)\right)} d \epsilon$.

1. The setting and basic problem

Bracketing entropy: For $r \geq 1$

$$
\begin{aligned}
& N_{[]}\left(\epsilon, \mathcal{F}, L_{r}(P)\right)=\left\{\begin{array}{l}
\text { minimal number of brackets }[l, u] \\
\text { of } L_{r}(P) \text {-size } \epsilon \text { needed to cover } \mathcal{F}
\end{array}\right\} ; \\
& {[l, u] \equiv\{f: l(x) \leq f(x) \leq u(x) \text { for all } x \in \mathcal{X}\} ;} \\
& \|u-l\|_{r, P}<\epsilon ; \\
& J_{[]}\left(\delta, \mathcal{F}, L_{r}(P)\right) \equiv \int_{0}^{\delta} \sqrt{1+\log N_{[]}\left(\epsilon\|F\|_{r, P}, \mathcal{F}, L_{r}(P)\right)} d \epsilon .
\end{aligned}
$$

2. Available bounds: bracketing and uniform entropy

Basic bound, uniform entropy: (Pollard, 1990) Under some measurability assumptions,

$$
\begin{equation*}
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim J\left(1, \mathcal{F}, L_{2}\right)\|F\|_{P, 2} . \tag{1}
\end{equation*}
$$

Basic bound, bracketing entropy: (Pollard)

$$
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim J_{[]}\left(1, \mathcal{F}, L_{2}(P)\right)\|F\|_{P, 2}
$$

Small f bound, bracketing entropy: vdV \& W (1996) If $\|f\|_{\infty} \leq 1$ and $P f^{2} \leq \delta^{2} P F^{2}$ for all $f \in \mathcal{F}$ and some $\delta \in(0,1)$, then

$$
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim J_{[]}\left(\delta, \mathcal{F}, L_{2}(P)\right)\|F\|_{P, 2}\left(1+\frac{J_{[]}\left(\delta, \mathcal{F}, L_{2}(P)\right)}{\delta^{2} \sqrt{n}\|F\|_{P, 2}}\right) .
$$

3. The new bound: uniform entropy

Small f bound, uniform entropy?
Goal here:
provide a bound analogous to the "small f bound, bracketing entropy", but for uniform entropy.

Definition: The class of functions \mathcal{F} is P-measurable if the map

$$
\left(X_{1}, \ldots, X_{n}\right) \mapsto \sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n} e_{i} f\left(X_{i}\right)\right|
$$

on the completion of the probability space $\left(\mathcal{X}^{n}, \mathcal{A}^{n}, P^{n}\right)$ is measurable, for every sequence $e_{1}, e_{2}, \ldots, e_{n} \in\{-1,1\}$.

3. The new bound: uniform entropy

Theorem 1. Suppose that \mathcal{F} is a P-measurable class of measurable functions with envelope function $F \leq 1$ and such that \mathcal{F}^{2} is P-measurable. If $P f^{2}<\delta^{2} P\left(F^{2}\right)$ for every f and some $\delta \in(0,1)$, then

$$
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim J\left(\delta, \mathcal{F}, L_{2}\right)\|F\|_{P, 2}\left(1+\frac{J\left(\delta, \mathcal{F}, L_{2}\right)}{\delta^{2} \sqrt{n}\|F\|_{P, 2}}\right) .
$$

4. The perspective of a convex or concave

 functionSuppose that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Then the perspective of f is the function $g=g_{f}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ defined by

$$
g(x, t)=t f(x / t)
$$

for $(x, t) \in \operatorname{dom}(g)=\{(x, t): x / t \in \operatorname{dom}(f), t>0\}$.
Then:

- If f is convex, then g is also convex.
- If f is concave, then g is also concave.

This seems to be due to Hiriart-Urruty and and Lemaréchal (1990), vol. 1, page 100; see also Boyd and Vandenberghe (2004), page 89.

Example: $f(x)=x^{2}$; then $g(x, t)=t(x / t)^{2}=x^{2} / t$.
4. The perspective of a convex or concave function

4. The perspective of a convex or concave function

4. The perspective of a convex or concave

 functionSuppose that $h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $g_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ for $i=1, \ldots, p$. Then consider

$$
f(x)=h\left(g_{1}(x), \ldots, g_{p}(x)\right)
$$

as a map from \mathbb{R}^{d} to \mathbb{R}.

A preservation result:

- If h is concave and nondecreasing in each argument and g_{1}, \ldots, g_{d} are all concave, then f is concave. See e.g. Boyd and Vandenberghe (2004), page 86.

5. Proof, part 1: concavity of the entropy integral

The proof begins much as in the proof of the easy bound (1); see e.g. van der Vaart and Wellner (1996), sections 2.5.1 and 2.14 .1 and especially the fourth display on page 128 , section 2.5.1: this argument yields

$$
\begin{equation*}
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim E_{P}^{*} J\left(\frac{\sup _{f}\left(\mathbb{P}_{n} f^{2}\right)^{1 / 2}}{\left(\mathbb{P}_{n} F^{2}\right)^{1 / 2}}, \mathcal{F}, L_{2}\right)\left(\mathbb{P}_{n} F^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Since $\delta \mapsto J\left(\delta, \mathcal{F}, L_{2}\right)$ is the integral of a non-increasing nonnegative function, it is a concave function. Hence its perspective function

$$
(x, t) \mapsto t J\left(x / t, \mathcal{F}, L_{2}\right)
$$

is a concave function of its two arguments. Furthermore, by the composition rule with $p=2$, the function

$$
(x, y) \mapsto \sqrt{y} J\left(\sqrt{x} / \sqrt{y}, \mathcal{F}, L_{2}\right)
$$

is concave.

5. Proof, part 1: concavity of the entropy integral

Note that $E_{P} \mathbb{P}_{n} F^{2}=\|F\|_{P, 2}^{2}$. Therefore, by Jensen's inequality applied to the right side of (2) it follows that

$$
\begin{equation*}
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim J\left(\frac{\left\{E_{P}^{*}\left(\sup _{f} \mathbb{P}_{n} f^{2}\right)\right\}^{1 / 2}}{\|F\|_{P, 2}}, \mathcal{F}, L_{2}\right)\|F\|_{P, 2} \tag{3}
\end{equation*}
$$

Now since $\mathbb{P}_{n}\left(f^{2}\right)=P f^{2}+n^{-1 / 2} \mathbb{G}_{n} f^{2}$ and $P f^{2} \leq \delta^{2} P F^{2}$ for all f, it follows, by using symmetrization, the contraction inequality for Rademacher random variables, de-symmetrization, and then (3), that

5. Proof, part 1: concavity of the entropy integral

$$
\begin{aligned}
E_{P}^{*}\left(\sup _{f} \mathbb{P}_{n} f^{2}\right) & \leq \delta^{2}\|F\|_{P, 2}^{2}+\frac{1}{\sqrt{n}} E_{P} *\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}^{2}} \\
& \leq \delta^{2}\|F\|_{P, 2}^{2}+\frac{2}{\sqrt{n}} E_{P} *\left\|\mathbb{G}_{n}^{0}\right\|_{\mathcal{F}^{2}} \\
& \leq \delta^{2}\|F\|_{P, 2}^{2}+\frac{4}{\sqrt{n}} E_{P}^{*}\left\|\mathbb{G}_{n}^{0}\right\|_{\mathcal{F}} \\
& \leq \delta^{2}\|F\|_{P, 2}^{2}+\frac{8}{\sqrt{n}} E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \\
& \lesssim \delta^{2}\|F\|_{P, 2}^{2}+\frac{8}{\sqrt{n}} J\left(\frac{\left\{E_{P}^{*}\left(\sup _{f} \mathbb{P}_{n} f^{2}\right)\right\}^{1 / 2}}{\|F\|_{P, 2}}, \mathcal{F}, L_{2}\right)\|F\|_{P, 2}
\end{aligned}
$$

Dividing through by $\|F\|_{P, 2}^{2}$ we see that $\left.z^{2} \equiv E_{P}^{*}\left(\sup _{f} \mathbb{P}_{n} f^{2}\right)\right\} /\|F\|_{P, 2}^{2}$
satisfies

$$
\begin{equation*}
z^{2} \lesssim \delta^{2}+\frac{J\left(z, \mathcal{F}, L_{2}\right)}{\sqrt{n}\|F\|_{P, 2}} \tag{4}
\end{equation*}
$$

2. Proof, part 2: inversion

Lemma. (Inversion) Let $J:(0, \infty) \rightarrow \mathbb{R}$ be a concave, nondecreasing function with $J(0)=0$. If $z^{2} \leq A^{2}+B^{2} J\left(z^{r}\right)$ for some $r \in(0,2)$ and $A, B>0$, then

$$
J(z) \lesssim J(A)\left\{1+J\left(A^{r}\right)\left(\frac{B}{A}\right)^{2}\right\}^{1 /(2-r)}
$$

Applying this Lemma with $r=1, A=\delta$ and $B^{2}=1 /\left(\sqrt{n}\|F\|_{P, 2}\right)$ yields

$$
J\left(z, \mathcal{F}, L_{2}\right) \lesssim J\left(\delta, \mathcal{F}, L_{2}\right)\left(1+\frac{J\left(\delta, \mathcal{F}, L_{2}\right)}{\delta^{2} \sqrt{n}\|F\|_{P, 2}}\right) .
$$

Combining this with (3) completes the proof:

$$
\begin{align*}
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} & \lesssim J\left(\frac{\left\{E_{P}^{*}\left(\sup _{f} \mathbb{P}_{n} f^{2}\right)\right\}^{1 / 2}}{\|F\|_{P, 2}}, \mathcal{F}, L_{2}\right)\|F\|_{P, 2} \\
& \lesssim J\left(\delta, \mathcal{F}, L_{2}\right)\left(1+\frac{J\left(\delta, \mathcal{F}, L_{2}\right)}{\delta^{2} \sqrt{n}\|F\|_{P, 2}}\right)\|F\|_{P, 2} \tag{5}
\end{align*}
$$

2. Proof, part 2: inversion

Proof of the inversion lemma: For $0<s<t$ we can write $s=(s / t) t+(1-s / t) 0$, so by concavity of J and $J(0)=0$ we have

$$
J(s) \geq \frac{s}{t} J(t)
$$

and hence $J(t) / t$ is decreasing. Thus for $C \geq 1$ and $t>0$ it follows that

$$
\begin{equation*}
J(C t) \leq C J(t) \tag{6}
\end{equation*}
$$

Now since J is \nearrow it follows from the hypothesis on z that a

$$
\begin{aligned}
J\left(z^{r}\right) & \leq J\left(\left(A^{2}+B^{2} J\left(z^{r}\right)\right)^{r / 2}\right) \\
& =J\left(A^{r}\left(1+(B / A)^{2} J\left(z^{r}\right)\right)^{r / 2}\right) \equiv J(t C) \quad \text { with } C \geq 1 \\
& \leq J\left(A^{r}\right)\left(1+(B / A)^{2} J\left(z^{r}\right)\right)^{r / 2} \\
& \leq 2 \max \left\{J\left(A^{r}\right), J\left(A^{r}\right)(B / A)^{r} J\left(z^{r}\right)^{r / 2}\right\} .
\end{aligned}
$$

2. Proof, part 2: inversion

If $J\left(z^{r}\right) \leq J\left(A^{r}\right)(B / A)^{r} J\left(z^{r}\right)^{r / 2}$, then $J\left(z^{r}\right)^{1-r / 2} \leq J\left(A^{r}\right)(B / A)^{r}$, so

$$
J\left(z^{r}\right) \leq\left\{J\left(A^{r}\right)(B / A)^{r}\right\}^{2 /(2-r)}
$$

Hence we conclude that

$$
J\left(z^{r}\right) \lesssim J\left(A^{r}\right)+J\left(A^{r}\right)^{2 /(2-r)}(B / A)^{2 r /(2-r)} .
$$

Repeating the argument above, but starting with $J(z)$ and then using the above bound for $J\left(z^{r}\right)$ yields

$$
\begin{aligned}
J(z) & \leq J\left(\left(A^{2}+B^{2} J\left(z^{r}\right)\right)^{1 / 2}\right) \\
& =J\left(A\left(1+(B / A)^{2} J\left(z^{r}\right)\right)^{1 / 2}\right) \equiv J(t C) \quad \text { with } C \geq 1 \\
& \leq J(A)\left(1+(B / A)^{2} J\left(z^{r}\right)\right)^{1 / 2} \\
& \leq J(A)\left(1+(B / A)^{2}\left(J\left(A^{r}\right)+J\left(A^{r}\right)^{2 /(2-r)}(B / A)^{2 r /(2-r)}\right)\right)^{1 / 2} \\
& \leq J(A)\left(1+J\left(A^{r}\right)^{1 / 2}(B / A)+J\left(A^{r}\right)^{1 /(2-r)}(B / A)^{2 /(2-r)}\right) .
\end{aligned}
$$

2. Proof, part 2: inversion

But by Young's inequality the second term $x \equiv J\left(A^{r}\right)^{1 / 2}(B / A)$ is bounded above by $1^{p}+x^{q}$ for any conjugate exponents p and q (ie for $a, b>0, a b \leq a^{p}+b^{q}$). Choosing $p=2 / r$ and $q=2 /(2-r)$ yields

$$
J\left(A^{r}\right)^{1 / 2}(B / A) \leq 1+J\left(A^{r}\right)^{1 /(2-r)}(B / A)^{2 /(2-r)}
$$

Thus the preceding argument yields the conclusion:

$$
\begin{aligned}
J(z) & \leq 2 J(A)\left(1+J\left(A^{r}\right)^{1 /(2-r)}(B / A)^{2 /(2-r)}\right) \\
& \lesssim J(A)\left(1+J\left(A^{r}\right)(B / A)^{2}\right)^{1 /(2-r)}
\end{aligned}
$$

7. Generalizations to unbounded classes \mathcal{F}

Theorem 2. Let \mathcal{F} be a P-measurable class of measurable functions with envelope function F such that $P F^{(4 p-2) /(p-1)}<\infty$ for some $p>1$ and such that \mathcal{F}^{2} and \mathcal{F}^{4} are P-measurable. If $P f^{2}<\delta^{2} P F^{2}$ for every $f \in \mathcal{F}$ and some $\delta \in(0,1)$, then $E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}}$

$$
\lesssim J\left(\delta, \mathcal{F}, L_{2}\right)\|F\|_{P, 2}\left(1+\frac{J\left(\delta^{1 / p}, \mathcal{F}, L_{2}\right)}{\delta^{2} \sqrt{n}} \frac{\|F\|_{P,(4 p-2) /(p-1)}^{2-1 / p}}{\|F\|_{P, 2}^{2-1 / p}}\right)^{p /(2 p-1)} .
$$

7. Generalizations to unbounded classes \mathcal{F}

Theorem 3. Let \mathcal{F} be a P-measurable class of measurable functions with envelope function F such that $P \exp \left(F^{p+\rho}\right)<\infty$ for some $p, \rho>0$ and such that \mathcal{F}^{2} and \mathcal{F}^{4} are P-measurable. If $P f^{2}<\delta^{2} P F^{2}$ for every $f \in \mathcal{F}$ and some $\delta \in(0,1 / 2)$, then for a constant c depending on $p, P F^{2}, P F^{4}$ and $P \exp \left(F^{p+\rho}\right)$,

$$
E_{P}^{*}\left\|\mathbb{G}_{n}\right\|_{\mathcal{F}} \lesssim c J\left(\delta, \mathcal{F}, L_{2}\right)\left(1+\frac{J\left(\delta(\log (1 / \delta))^{1 / p}, \mathcal{F}, L_{2}\right)}{\delta^{2} \sqrt{n}}\right) .
$$

8. An application:

minimum contrast estimators

Suppose that $\hat{\theta}_{n}$ minimizes

$$
\theta \mapsto \mathbb{M}_{n}(\theta) \equiv \mathbb{P}_{n} m_{\theta}
$$

for given measurable functions $m_{\theta}: \mathcal{X} \rightarrow R$ indexed by a parameter θ, and that the population contrast

$$
\theta \mapsto \mathbb{M}(\theta)=P m_{\theta}
$$

satisfies, for $\theta_{0} \in \Theta$ and some metric d on Θ,

$$
P m_{\theta}-P m_{\theta_{0}} \gtrsim d^{2}\left(\theta, \theta_{0}\right) .
$$

A bound on the rate of convergence of $\hat{\theta}_{n}$ to θ_{0} can then be derived from the modulus of continuity of the empirical process $\mathbb{G}_{n} m_{\theta}$ index by the functions m_{θ}.

8. An application:

minimum contrast estimators

If ϕ_{n} is a function such that $\delta \mapsto \phi_{n}(\delta) / \delta^{\alpha}$ is decreasing for some $\alpha<2$ and

$$
\begin{equation*}
E \sup _{\theta: \delta\left(\theta, \theta_{0}\right)<\delta}\left|\mathbb{G}_{n}\left(m_{\theta}-m_{\theta_{0}}\right)\right| \lesssim \phi_{n}(\delta), \tag{7}
\end{equation*}
$$

then $d\left(\hat{\theta}_{n}, \theta_{0}\right)=O_{p}\left(\delta_{n}\right)$ for δ_{n} any solution to

$$
\phi_{n}\left(\delta_{n}\right) \leq \sqrt{n} \delta_{n}^{2} .
$$

The inequality (7) involves the empirical process indexed by the class of functions $\mathcal{M}_{\delta}=\left\{m_{\theta}-m_{\theta_{0}}: d\left(\theta, \theta_{0}\right)<\delta\right\}$. If d dominates the $L_{2}(P)$-norm, or another norm ||\| (such as the Bernstein norm) and the norms of the envelopes M_{δ} of the classes \mathcal{M}_{δ} are bounded in δ, then we can choose

$$
\phi_{n}(\delta)=J\left(\delta, \mathcal{M}_{\delta},\|\cdot\|\right)\left(1+\frac{J\left(\delta, \mathcal{M}_{\delta},\|\cdot\|\right)}{\delta^{2} \sqrt{n}}\right) .
$$

where J is an appropriate entropy integral.

Selected References:

- Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
- Hiriart-Urruty, J-B. and Lemaréchal, C. (2004). Fundamentals of Convex Analysis. Corrected Second Printing. Springer, Berlin.
- Pollard, D. (1990). Empirical processes: theory and applications. NSF-CBMS Regional Conference Series in Probability and Statistics, 2. Institute of Mathematical Statistics, Hayward, CA.
- Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer-Verlag, New York.

Thank You!

$2011=\sum\{157,163,167,173,179,181, \underline{191}, 193, \underline{197}, 199,211\}$

