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1. The setting and basic problem

Suppose that:

• X1, . . . , Xn are i.i.d. P on a measurable space (X ,A).

• Pn = n−1∑n
i=1 δXi = the empirical measure.

• Gn ≡
√
n(Pn − P ) = the empirical process.

• If f : X → R is measurable,

Pn(f) = n−1
n∑
i=1

f(Xi), Gn(f) = n−1/2
n∑
i=1

(f(Xi)− Pf).

• When F is a given class of measurable functions f , it is useful

to consider

‖Gn‖F ≡ sup
f∈F
|Gn(f)|.
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1. The setting and basic problem

Problem: Find useful bounds for the mean value

E∗P‖Gn‖F .

Entropy and two entropy integrals:

Uniform entropy: For r ≥ 1

N(ε,F , Lr(Q)) =

{
minimal number of balls of radius ε
needed to cover F

}
,

F an envelope function for F :

i.e. |f(x)| ≤ F (x) for all f ∈ F , x ∈ X ;

‖f‖Q,r ≡ Q(|f |r)1/r ;

J(δ,F , Lr) ≡ sup
Q

∫ δ
0

√
1 + logN(ε‖F‖Q,r,F , Lr(Q))dε.
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1. The setting and basic problem

Bracketing entropy: For r ≥ 1

N[ ](ε,F , Lr(P )) =

{
minimal number of brackets [l, u]
of Lr(P )-size ε needed to cover F

}
;

[l, u] ≡ {f : l(x) ≤ f(x) ≤ u(x) for all x ∈ X};
‖u− l‖r,P < ε;

J[ ](δ,F , Lr(P )) ≡
∫ δ

0

√
1 + logN[ ](ε‖F‖r,P ,F , Lr(P ))dε.
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2. Available bounds:

bracketing and uniform entropy

Basic bound, uniform entropy: (Pollard, 1990) Under some

measurability assumptions,

E∗P‖Gn‖F . J(1,F , L2)‖F‖P,2. (1)

Basic bound, bracketing entropy: (Pollard)

E∗P‖Gn‖F . J[ ](1,F , L2(P ))‖F‖P,2.

Small f bound, bracketing entropy: vdV & W (1996)

If ‖f‖∞ ≤ 1 and Pf2 ≤ δ2PF2 for all f ∈ F and some δ ∈ (0,1),

then

E∗P‖Gn‖F . J[ ](δ,F , L2(P ))‖F‖P,2

(
1 +

J[ ](δ,F , L2(P ))

δ2√n‖F‖P,2

)
.
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3. The new bound: uniform entropy

Small f bound, uniform entropy?

Goal here:

provide a bound analogous to the “small f bound, bracketing

entropy”, but for uniform entropy.

Definition: The class of functions F is P−measurable if the

map

(X1, . . . , Xn) 7→ sup
f∈F

∣∣∣ n∑
i=1

eif(Xi)
∣∣∣

on the completion of the probability space (Xn,An, Pn) is

measurable, for every sequence e1, e2, . . . , en ∈ {−1,1}.
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3. The new bound: uniform entropy

Theorem 1. Suppose that F is a P−measurable class of

measurable functions with envelope function F ≤ 1 and such

that F2 is P−measurable. If Pf2 < δ2P (F2) for every f and

some δ ∈ (0,1), then

E∗P‖Gn‖F . J(δ,F , L2)‖F‖P,2

(
1 +

J(δ,F , L2)

δ2√n‖F‖P,2

)
.
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4. The perspective of a convex or concave

function

Suppose that f : Rd → R. Then the perspective of f is the

function g = gf : Rd+1 → R defined by

g(x, t) = tf(x/t),

for (x, t) ∈ dom(g) = {(x, t) : x/t ∈ dom(f), t > 0}.
Then:

• If f is convex, then g is also convex.

• If f is concave, then g is also concave.

This seems to be due to Hiriart-Urruty and and Lemaréchal

(1990), vol. 1, page 100; see also Boyd and Vandenberghe

(2004), page 89.

Example: f(x) = x2; then g(x, t) = t(x/t)2 = x2/t.
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4. The perspective of a convex or concave

function
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4. The perspective of a convex or concave

function
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4. The perspective of a convex or concave

function

Suppose that h : Rp → R and gi : Rd → R for i = 1, . . . , p. Then

consider

f(x) = h(g1(x), . . . , gp(x))

as a map from Rd to R.

A preservation result:

• If h is concave and nondecreasing in each argument and

g1, . . . , gd are all concave, then f is concave. See e.g. Boyd

and Vandenberghe (2004), page 86.
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5. Proof, part 1: concavity of the entropy

integral

The proof begins much as in the proof of the easy bound (1);
see e.g. van der Vaart and Wellner (1996), sections 2.5.1 and
2.14.1 and especially the fourth display on page 128, section
2.5.1: this argument yields

E∗P‖Gn‖F . E∗PJ

supf(Pnf2)1/2

(PnF2)1/2
,F , L2

 (PnF2)1/2. (2)

Since δ 7→ J(δ,F , L2) is the integral of a non-increasing nonneg-
ative function, it is a concave function. Hence its perspective
function

(x, t) 7→ tJ(x/t,F , L2)

is a concave function of its two arguments. Furthermore, by the
composition rule with p = 2, the function

(x, y) 7→ √yJ(
√
x/
√
y,F , L2)

is concave.
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5. Proof, part 1: concavity of the entropy

integral

Note that EPPnF2 = ‖F‖2P,2. Therefore, by Jensen’s inequality

applied to the right side of (2) it follows that

E∗P‖Gn‖F . J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F , L2

 ‖F‖P,2. (3)

Now since Pn(f2) = Pf2 + n−1/2Gnf2 and Pf2 ≤ δ2PF2 for all

f , it follows, by using symmetrization, the contraction inequality

for Rademacher random variables, de-symmetrization, and then

(3), that
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5. Proof, part 1: concavity of the entropy

integral

E∗P (sup
f

Pnf2) ≤ δ2‖F‖2P,2 +
1
√
n
EP ∗ ‖Gn‖F2

≤ δ2‖F‖2P,2 +
2
√
n
EP ∗ ‖G0

n‖F2

≤ δ2‖F‖2P,2 +
4
√
n
E∗P‖G

0
n‖F

≤ δ2‖F‖2P,2 +
8
√
n
E∗P‖Gn‖F

. δ2‖F‖2P,2 +
8
√
n
J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F , L2

 ‖F‖P,2.
Dividing through by ‖F‖2P,2 we see that z2 ≡ E∗P (supf Pnf2)}/‖F‖2P,2
satisfies

z2 . δ2 +
J(z,F , L2)
√
n‖F‖P,2

. (4)
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2. Proof, part 2: inversion

Lemma. (Inversion) Let J : (0,∞) → R be a concave,
nondecreasing function with J(0) = 0. If z2 ≤ A2 + B2J(zr)
for some r ∈ (0,2) and A,B > 0, then

J(z) . J(A)

{
1 + J(Ar)

(
B

A

)2
}1/(2−r)

.

Applying this Lemma with r = 1, A = δ and B2 = 1/(
√
n‖F‖P,2)

yields

J(z,F , L2) . J(δ,F , L2)

(
1 +

J(δ,F , L2)

δ2√n‖F‖P,2

)
.

Combining this with (3) completes the proof:

E∗P‖Gn‖F . J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F , L2

 ‖F‖P,2
. J(δ,F , L2)

(
1 +

J(δ,F , L2)

δ2√n‖F‖P,2

)
‖F‖P,2. (5)
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2. Proof, part 2: inversion

Proof of the inversion lemma: For 0 < s < t we can write

s = (s/t)t + (1 − s/t)0, so by concavity of J and J(0) = 0 we

have

J(s) ≥
s

t
J(t),

and hence J(t)/t is decreasing. Thus for C ≥ 1 and t > 0 it

follows that

J(Ct) ≤ CJ(t). (6)

Now since J is ↗ it follows from the hypothesis on z that a

J(zr) ≤ J((A2 +B2J(zr))r/2)

= J(Ar(1 + (B/A)2J(zr))r/2) ≡ J(tC) with C ≥ 1

≤ J(Ar)
(
1 + (B/A)2J(zr)

)r/2

≤ 2 max{J(Ar), J(Ar)(B/A)rJ(zr)r/2}.
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2. Proof, part 2: inversion

If J(zr) ≤ J(Ar)(B/A)rJ(zr)r/2, then J(zr)1−r/2 ≤ J(Ar)(B/A)r,

so

J(zr) ≤ {J(Ar)(B/A)r}2/(2−r).

Hence we conclude that

J(zr) . J(Ar) + J(Ar)2/(2−r)(B/A)2r/(2−r).

Repeating the argument above, but starting with J(z) and then

using the above bound for J(zr) yields

J(z) ≤ J((A2 +B2J(zr))1/2)

= J(A(1 + (B/A)2J(zr))1/2) ≡ J(tC) with C ≥ 1

≤ J(A)
(
1 + (B/A)2J(zr)

)1/2

≤ J(A)
(
1 + (B/A)2

(
J(Ar) + J(Ar)2/(2−r)(B/A)2r/(2−r)

))1/2

≤ J(A)
(
1 + J(Ar)1/2(B/A) + J(Ar)1/(2−r)(B/A)2/(2−r)

)
.
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2. Proof, part 2: inversion

But by Young’s inequality the second term x ≡ J(Ar)1/2(B/A) is

bounded above by 1p + xq for any conjugate exponents p and q

(ie for a, b > 0, ab ≤ ap+ bq). Choosing p = 2/r and q = 2/(2− r)
yields

J(Ar)1/2(B/A) ≤ 1 + J(Ar)1/(2−r)(B/A)2/(2−r).

Thus the preceding argument yields the conclusion:

J(z) ≤ 2J(A)
(
1 + J(Ar)1/(2−r)(B/A)2/(2−r)

)
. J(A)

(
1 + J(Ar)(B/A)2

)1/(2−r)
.
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7. Generalizations to unbounded classes F

Theorem 2. Let F be a P−measurable class of measurable

functions with envelope function F such that PF (4p−2)/(p−1) <∞
for some p > 1 and such that F2 and F4 are P−measurable. If

Pf2 < δ2PF2 for every f ∈ F and some δ ∈ (0,1), then

E∗P‖Gn‖F

. J(δ,F , L2)‖F‖P,2

1 +
J(δ1/p,F , L2)

δ2√n

‖F‖2−1/p
P,(4p−2)/(p−1)

‖F‖2−1/p
P,2


p/(2p−1)

.
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7. Generalizations to unbounded classes F

Theorem 3. Let F be a P−measurable class of measurable

functions with envelope function F such that Pexp(F p+ρ) < ∞
for some p, ρ > 0 and such that F2 and F4 are P−measurable.

If Pf2 < δ2PF2 for every f ∈ F and some δ ∈ (0,1/2), then for

a constant c depending on p, PF2, PF4 and Pexp(F p+ρ),

E∗P‖Gn‖F . cJ(δ,F , L2)

(
1 +

J(δ(log(1/δ))1/p,F , L2)

δ2√n

)
.
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8. An application:

minimum contrast estimators

Suppose that θ̂n minimizes

θ 7→ Mn(θ) ≡ Pnmθ

for given measurable functions mθ : X → R indexed by a

parameter θ, and that the population contrast

θ 7→ M(θ) = Pmθ

satisfies, for θ0 ∈ Θ and some metric d on Θ,

Pmθ − Pmθ0
& d2(θ, θ0).

A bound on the rate of convergence of θ̂n to θ0 can then be

derived from the modulus of continuity of the empirical process

Gnmθ index by the functions mθ.
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8. An application:

minimum contrast estimators

If φn is a function such that δ 7→ φn(δ)/δα is decreasing for some

α < 2 and

E sup
θ:δ(θ,θ0)<δ

|Gn(mθ −mθ0
)| . φn(δ), (7)

then d(θ̂n, θ0) = Op(δn) for δn any solution to

φn(δn) ≤
√
nδ2
n.

The inequality (7) involves the empirical process indexed by the

class of functions Mδ = {mθ−mθ0
: d(θ, θ0) < δ}. If d dominates

the L2(P )−norm, or another norm ‖ ‖ (such as the Bernstein

norm) and the norms of the envelopes Mδ of the classes Mδ are

bounded in δ, then we can choose

φn(δ) = J(δ,Mδ, ‖ · ‖)
(

1 +
J(δ,Mδ, ‖ · ‖)

δ2√n

)
.

where J is an appropriate entropy integral.
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Thank You!
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