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1. The setting and basic problem

Suppose that:

X1,...,Xn arei.i.d. P on a measurable space (X, A).
P, =n"1y0 §x, = the empirical measure.
Gn = v/n(Pp, — P) = the empirical process.

If f.: X — R is measurable,

P =nt Y F(X). Gl = Y23 (F(X) - PP,

1=1 1=1
When F is a given class of measurable functions f, it is useful
to consider

|1Gn|| 7 = sup |Gn(f)].
feF

IMS-China International Conference, XiAn, July 9, 2011 1.3



1. The setting and basic problem

Problem: Find useful bounds for the mean value
Ep||Gn|| £

Entropy and two entropy integrals:

Uniform entropy: Forr >1

needed to cover F
F an envelope function for F :

i.e. |f(x)|<F(x) forall feF, e X;
1fllor=QUANYT;

)
I, F, Ly) = sup |1+ 109N (el Flig.r, F. Lr(Q))de.

minimal number of balls of radius
N(e, F, Lr(Q)) = { ‘
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1. The setting and basic problem

Bracketing entropy: Forr >1

__ | minimal number of brackets [I, u]
Nple 7, Lr(P)) = { of L,(P)-size ¢ needed to cover F

[Lul =4{f: (z) < f(x) <wu(x) for all x € X}
lu =1l p <e

)
6. F, Le(P)) = [ /14 10aN (€l Fllyp, F, Lr(P))de.
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2. Available bounds:

bracketing and uniform entropy

Basic bound, uniform entropy: (Pollard, 1990) Under some
measurability assumptions,

Ep|Gnllr S J(1,F,Lo)||F| po2- (1)

Basic bound, bracketing entropy: (Pollard)

Ep|GnllF < J (1, F, L2(P)IIF| p2-

Small f bound, bracketing entropy: vdV & W (1996)
If ||fllco <1 and Pf2 < §2PF2 for all f € F and some § € (0,1),
then

E5|Gnh Ji1(8, F, Lo(P))||F 1+
PIGnllF S J1y(8, F, Lo(P))| ”P?( 52/ Fllpo
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3. The new bound: uniform entropy

Small f bound, uniform entropy?

Goal here:

provide a bound analogous to the "small f bound, bracketing
entropy’’, but for uniform entropy.

Definition: The class of functions F is P—measurable if the

map
n
(X1, Xn) P> sup | 3 e f(X;)
fer i=1
on the completion of the probability space (X", A", P") is
measurable, for every sequence eq,ep,...,en € {—1,1}.
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3. The new bound: uniform entropy

Theorem 1. Suppose that F is a P—measurable class of
measurable functions with envelope function F < 1 and such
that F2 is P—measurable. If Pf2 < §2P(F?) for every f and
some § € (0,1), then

* ‘](57;7 LQ)
EllGall 7 < I8, F, L) | Fllpo (1 n ) |

02/l F| p2
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4. The perspective of a convex or concave

function

Suppose that f RY — R. Then the perspective of f is the
function g = gy : R4T1 — R defined by

9(z,t) = tf(x/t),

for (x,t) € dom(g) = {(x,t) : z/t € dom(f), t > 0}.
Then:

e If f is convex, then g is also convex.

e If f is concave, then g is also concave.

This seems to be due to Hiriart-Urruty and and Lemaréchal

(1990), vol. 1, page 100; see also Boyd and Vandenberghe
(2004), page 89.

Example: f(z) = z2; then g(z,t) = t(z/t)? = z2/t.
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4. The perspective of a convex or concave

function
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4. The perspective of a convex or concave

function
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4. The perspective of a convex or concave

function

Suppose that h : RP > R and g, : R - R for i = 1,...,p. Then
consider
f(z) = h(g1(2),...,gp(x))

as a map from R? to R.

A preservation result:

e If h is concave and nondecreasing in each argument and
Jg1,...,94 are all concave, then f is concave. See e.g. Boyd
and Vandenberghe (2004), page 86.
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5. Proof, part 1: concavity of the entropy

integral

The proof begins much as in the proof of the easy bound (1);
see e.g. van der Vaart and Wellner (1996), sections 2.5.1 and
2.14.1 and especially the fourth display on page 128, section
2.5.1: this argument yields

sup p(Pp f2)1/2
(PpF2)t/2
Since 6 — J(4, F, L>) is the integral of a non-increasing nonneg-

ative function, it is a concave function. Hence its perspective
function

Ep|Gnllr S EpJ ( , F, L2> (PrF2)1/2, (2)

(x,t) — tJ(x/t, F, Lo)

IS @ concave function of its two arguments. Furthermore, by the
composition rule with p = 2, the function

(z,9) = VyJ(Vz/\/y, F, L)
IS concave.
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5. Proof, part 1: concavity of the entropy

integral

Note that EpP,F? = ||F||%,. Therefore, by Jensen's inequality
applied to the right side of (2) it follows that

5(sup Ppf2)}1/2
1F[|p2

Now since Pn(f2) = Pf2 + n~1/2G,f2 and Pf2 < §2PF2 for all
f, it follows, by using symmetrization, the contraction inequality
for Rademacher random variables, de-symmetrization, and then

(3), that

{E
EF|GnWF§%]( , F,Lo | || Fllp2- (3)
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5. Proof, part 1: concavity of the entropy

integral
1
Ep(supPnf?) < 8°||F|po + ——=Ep * |Gl z
f ) \/FL F
2
< &°||F %,2+\7EP* Gl 2
5 4
< 4 ||F||P2+\/——EP”G nll F
< 8

5|\ F||p0 + \/——E;(DHGan

EY (SUD Pan) 1/2
S PFhe + ({ G

Dividing through by || F||% , we see that 22 = E&L(sup ;s Pnf2)}/ || F||% 5
satisfies

, F, L2> |F] p2-

J(z,F,L>)
V|| Fllpo
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2. Proof, part 2: inversion

Lemma. (Inversion) Let J : (0,00) — R be a concave,
nondecreasing function with J(0) = 0. If 22 < A2 + B2J(z2")
for some r € (0,2) and A, B > 0, then

B 2 1/(2—r)

R

Applying this Lemma with r =1, A= 4§ and B2 = 1/(y/n||F| p2)
yields

J(2) < J(A) {1 a0 (

J(2,F.Ls) < J(6,F, Lo) <1+ (0, F, L) )

52y/n||F|lp2
Combining this with (3) completes the proof:

. (E%(sup Ppf2)}1/2
Eb||GnllFr < J | 22210 F,La | |IF|po
1F[|po
J(6, F,Lp)
< J(6,F, Lo) <1+ >||F||P2- (5)
52y/n||F| p2 ’
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2. Proof, part 2: inversion

Proof of the inversion lemma: For 0 < s < t we can write
s = (s/t)t + (1 — s/t)0, so by concavity of J and J(0) = 0 we
have

I(s) > 2T(),

and hence J(t)/t is decreasing. Thus for C > 1 and t > 0O it
follows that

J(Ct) < CJ(t). (6)

Now since J is 7 it follows from the hypothesis on z that a

J(z") < J((AZ+ B2J(z")"/?)
= J(A"(14 (B/A)2J(z")"/?) = J(tC) with C > 1
< J(AT) (14 (B/A2IED)
< 2max{J(4"), J(A")(B/A)"J(z")"/?}.
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2. Proof, part 2: inversion

If J(2") < J(AT)(B/A)TJ(,ZT)T/Q, then J(zr)l—r/Q < J(A")(B/A)T,
SO

J(2") < {J(A")(B/A)}2/(2=7),
Hence we conclude that
J(z") S J(AT) 4 J(A™)2/ (2= (B A)2r/ (=),

Repeating the argument above, but starting with J(z) and then
using the above bound for J(z") yields

J((A% + B2 (z")1/?)

J(AL + (B/A)?J(z")Y?) = J(tC) with C > 1

J(A) (14 (B/A2IEN) Y2

J(A) (1 + (B/A)? (,](AT) 4 J(AT)Q/(Q—T)(B/A)QT/(Q—T)))1/2
J(A) (1 + J(ADYY2(B/A) + J(Ar)l/(Q—r)(B/A)Q/(Q—r)).

J(2)

| IA

IA

VANVA
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2. Proof, part 2: inversion

But by Young's inequality the second term z = J(A")1/2(B/A) is
bounded above by 1P 4 z9 for any conjugate exponents p and ¢
(ie for a,b > 0, ab < aP 4 b%). Choosing p=2/r and ¢ =2/(2—r)
vields

J(Ar)l/Q(B/A) <1+ J(Ar)l/(Q_T)(B/A)Q/(Q_T).
Thus the preceding argument vields the conclusion:

J(z) < 2J(4)(1 +J(A?“)l/@—”(B/A)Q/@—?“))

S J(A) (14 A (B/A2) Y ET
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7. QGeneralizations to unbounded classes F

Theorem 2. Let F be a P—measurable class of measurable
functions with envelope function F such that PF(4r—2)/(r—1) ~ o5
for some p > 1 and such that F2 and F* are P—measurable. If
Pf2 < §2PF? for every f € F and some § € (0,1), then

E;;”GnH}"
o 1/p p/(2p-1)
J(6Y/7, F, L) 1 p (ap—2) /(p—1)
SJO,F, L) Fllpo | 1+ 52\/5 ”F”Q 1/p
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7. QGeneralizations to unbounded classes F

Theorem 3. Let F be a P—measurable class of measurable
functions with envelope function F such that Pexp(FP1P) < oo
for some p,p > 0 and such that F2 and F% are P—measurable.
If Pf2 < §2PF?2 for every f € F and some 6§ € (0,1/2), then for
a constant ¢ depending on p, PF2, PF* and Pexp(FPTr),

J(6(log(1/8)Y/P, F, L)
w2

Ep|Gall 7 < eI (5. F, L) (1 +
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8. An application:

minimum contrast estimators

Suppose that 6, minimizes

for given measurable functions my : X — R indexed by a
parameter 6, and that the population contrast

0 — M(Q) = ng
satisfies, for g € © and some metric d on ©,
Pmg — Pmyg, 2 d?(0,0p).

A bound on the rate of convergence of 6, to 6y can then be
derived from the modulus of continuity of the empirical process
Gnmy index by the functions my.
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8. An application:

minimum contrast estimators

If ¢, is @ function such that § — ¢, (5)/0% is decreasing for some
a < 2 and

E  sup  |Gp(mg—mgy)| S ¢n(6), (7)
0:5(0,00)<6

then d(0n,0g) = O,(6,) for §, any solution to

dn(6n) < v/nb2.

The inequality (7) involves the empirical process indexed by the
class of functions My = {mgy—mg, : d(6,00) < é}. If d dominates
the Lo(P)—norm, or another norm |[||| (such as the Bernstein
norm) and the norms of the envelopes My of the classes Mg are
bounded in 4, then we can choose

b (8) = J(6, Mg, || - 1) (1 L IO M- ||>> |

§2\/n
where J is an appropriate entropy integral.
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Thank You!
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2011 = Y {157,163,167,173,179,181,191,193,197,199,211}
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