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0. Basics: notation and facts

Notation:
e © CRY ¢g>1; F =/{all distribution functions on R}.

e Copulas: {Cy: 0 € ©} = a parametric family of distribu-
tion functions on [O,1]d with uniform marginal distributions
Co(1,...,1,u5,1,...,1) =u; foru; € (0,1) and j=1,...,d.

e Semiparametric copula distribution functions and measures:
FQ,FLW,Fd(le, ce ,:Ud) = Cg(Fl(ajl), Cee Fd(wd)) for distribution
functions F; on R,

Py . 5, (A) = [gdFyp  p,(z), A€ B

e Semiparametric copula model:
P:{PQ,Fl,...,Fd: 06@7 Fj GJT", ]: 177d}

Stat. Inference, high-dim models, IMS-China, Kunming, July 2, 2015 1.3



Main focus here: multivariate Gaussian copulas

Py(z) = Pp(X <z) =d.f. of Ny(0,3(0)),

where
[ 1 p12 p13 - pra )
s0) = | P12 1 po3 o P2d
\ P1,d pi-14 1 )

and pi,j = pZ,J(Q) Then

Py(D 7 (ug), ..., P (uy)),
Gbe(q)_l(ul)) JRIR CD_]'(ud))
7, (&~ 1(u)

for u = (ul,...,ud) c (O,l)d, and ...

Co(u)

co(u) =

Y
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For .. p(T1,. . 2q) = Cp(Fi (1), ..., Fy(zg)), 0€O, Fj€F,

and P, is a semiparametric Gaussian copula model based on cy.

Now suppose that we observe X+q,...,Xyn i.i.d. with probability
distribution Py, ry4,....Fy 4 € Pa-

Questions:
e How well can we estimate 6 € ©7 (Lower bounds)

e Can we construct (rank-based) estimators achieving the
lower bounds?
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Since the model is invariant under monotone transformations on
each axis, it is clear that the (multivariate) ranks are a maximal
invariant.

More notation: let X denote the n x d matrix with rows
X1,...,Xn. Let R(X) : RnxXd 5 RXd he the corresponding n x d
matrix of ranks where R = (R; ;) and

R; ; = the rank of X; ; among {X1 ;,..., Xy}, j=1,...,d.

Hoff (2007) has shown that the ranks R are partially sufficient
in several senses, and it seems natural to try base inference
procedures on them if possible.
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1. Bivariate Gaussian copulas

Here d = 2 and 6 € © = (—-1,1). Klaassen and W (1997)
showed:

o Iy(P2) = (1-02)"2.
e Normal margins are least favorable.

e 0, = normal scores rank correlation coefficient is asymptot-
ically efficient:

Vn(6, —0) =, N(O, (1 — 62)?).
e §n IS asymptotically equivalent to the maximum pseudo
likelihood estimator @Pl¢: \/n(6y, — 05'°) = 0,(1) where
Pl = argmaxgcoln (0, Gn, Hy)

where Gy, Hj,, are the marginal empirical distribution func-
tions of the data. (Note that 5?3}6 is also a function of the
ranks.)
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1. Bivariate Gaussian copulas

Here with X; = (Y;,Z;), i=1,...,n,

nT iy T HGH(Y)) P (Z))
Iy 1 ()

n e, el () et (53

n—1 Z?—l e-1 (77,—71;—1)2

é\n —

Asymptotic linearity:

V(0 — Z Lo(X;) + op(1)

3|

where

Ze(yaz) — Ig_lez(yaz)
= > H(GW)O L HR) — ¢ (71w + > H)?).
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2. Multivariate Gaussian copulas, d > 2

e When > (0) is unstructured (i.e.

0 = ()01’2, P1,35---5P1,ds--- 7pd—1,d) S [_17 1]d(d_1)/2)1 then the
pseudo-likelihood estimator continues to be semiparametric
efficient, as noted by Klaassen & W (1997), and Segers, von

den Akker, Werker (2014).
e What if d > 2 and >(6) is structured?
Examples:

e Example 1. (Exchangeable) >(0) = (1 —0)I; + 0117 with
0e[-1/(d+1),1). For example for d = 4

() =

SE DD
= 3 &

0
1
0
0

DI
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e Example 2. (Circular) For d = 4,
(1 0
6 1
02 6
\ 0 0% 6 1 )

)

02 0
0 02
>(0) = 1 0

e Example 3. (Toeplitz). Here ¥ = (o;;) with o;; = 1 for
all z, 055 = 9|z'—j| for 6 = (917‘92:"'79d—1) c (—1,1)d_1. For
example, with d = 4,

1 0, 0, 603
0, 1 60, 6
0 01 1 64
03 65 67 1

>(0) =
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More background:

e Genest and Werker (2000): studied efficiency properties
of pseudo-likelihood estimators for general semiparametric

copula models:
Conclusion: 5216 is not efficient in general for (non-Gaussian)

copulas.

e Chen, Fan, and Tsyrennikov (2006) constructed semipara-
metric efficient estimators for general multivariate copula
models using parametric sieve methods. Their estimators
of 0 are not based solely on the multivariate ranks
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Questions:

e Do Maximum Likelihood Estimators based on rank likeli-
hoods achieve semiparametric efficiency for general multi-
variate copula models?

e Do alternative estimators based on ranks achieve semipara-
metric efficiency?

e Are the pseudo maximum likelihood estimators semiparamet-
ric efficient for structured Gaussian copula models?
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For 0 € © C R? with ¢ <d(d—1)/2, let
L(6;R) denote the likelihood of the ranks R,
L(60,;X) denote the likelihood of the data X,

where ¢y € W denotes parameters for the marginal transforma-
tions. For fixed 6 € ©, ¥ € V let

L(0 + t/\/m; R)

AR (t) =log L(6:R) ;
A (L 5) = IOgL(H + t/]:\/(ﬁe,z.;;/\/ﬁ; X)
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Theorem 1. (Hoff-Niu-W, 2014) Let {Fpy(z): 0 €O, ¢ € W}
be an absolutely continuous copula model where, for given 6 and
¢t there exist ¢ and s such that under i.i.d. sampling from Fy ;.
Suppose that:

(1) Ax(t,s) satisfies Local Asymptotic Normality (LAN):

Ax(t, 8) —q 4

(2) There exists an R-measurable approximation AX(t,s) such
that Ax(t, S) — Ax —p 0.

Then Ag(t) —4 Z under i.i.d. sampling from any population with
copula Cy(-) equal to that of F(:;0,4) and arbitrary absolutely
continuous marginal distributions.

Conclusion: To show that the local likelihood ratio of the
ranks satisfies LAN (from which an information bound follows
for procedures based on the ranks follows), we need to construct
suitable rank-measurable approximations of the local likelihood
ratios of the data for parametric submodels.
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Let X4,...,Xn be i.id. from a member Fy, of a collection of
N4(0,3 ) Where 6 parameterizes the correlations and ¢ are the

variance parameters. Then

1 n
AX(ta S) — \/—ﬁ Z X?AX’L + C(ea wa ta S) + Op(]-)
1=1

where A = Ay ;9. A natural rank-based approximation is

1 & ST o
Aot s) =— S XTAR, + (6,1,
X( s) \/EZ; g Ly + c(0,,t,5)

where

R B R: .
Xi,j p— \/VG/I"(XZ"]')(D 1 (n——:—,jl> .

This leads to the following theorem:
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Theorem 2. (Hoff, Niu, & W, 2014) Let X4,...,X, be
i.i.d. Ny(0,C) where C is a correlation matrix and let Xz-,j =
dD_l(Ri)j/(n + 1)). Let A be a matrix such that the diagonal
entries of AC + AL'C are zero. Then

1
NG Zl{X;-FAXZ- — XTAX;Y = 0p(2).
1=

e [ he proof of Theorem 2 is based on some classical results
of de Wet and Venter (1972).

e It remains to apply the results of Theorems 1 and 2 to the
setting of Gaussian copulas:
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Theorem 3. (Hoff, Niu, & W, 2014). Suppose that {3<(0) : 6

© C RY} is a collection of positive definite correlation matrices
such that zi,j(e) is continuously differentiable with respect to
each 0, 1 <k <gq. If Xq,...,Xy are i.i.d. P9’¢ with absolutely
continuous marginals and Gaussian copula Cy for some 6 € ©,
then the local likelihood ratio of the ranks Ar(t) satisfies LAN:

AR(E) —q N(—(1/2)t1 Igg.yt, t! Igg. 1)
where Iyg., is the information for 6 in the Gaussian model with
correlation matrix >(6) and precisions 2.

Summary: Let B(0) =X~1(6). Then, for ¢ =1,

e T he efficient score function 62 is, with
y = (P Y(F1(z1),..., P L (Fy(zy)):

Gy) = Ly—Tpyly by = —yT {%tr(BQC)B - wBe} Y
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e The efficient influence function ¢, for 6 is, with
y = (P L(F(z1),..., P L (Fy(zyp)):
lo(y) = Ipgyts(y),  where
(1/2){tr(ByCByC) — tr(ByC)?/d}.

I@g.w
Consequences:

e No information concerning 6 is lost (asymptotically) by
reducing to the ranks R.

e Gaussian marginals are least favorable.

e The information bounds for estimation of 6 in such a
Gaussian copula model are given in terms of 19_9.1%&.
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The efficient influence function ¢4(z) can be shown to be

lo(z) = Ipg- {g(x) — Igyly () }
The influence function of the pseudo likelihood estimator is given
by

d
o(z) = I, (59(@ - > Wj@j))
j=1
where

32
Wi(x;) = /(O,l)d (898%-'0969(&)) (1{<D(a:j) <wujt - uj) co(uw)du.

Corollary: The maximum pseudo likelihood estimator is semi-
parametric efficient if

d
Z WJ($]) = %tl’ (BEQ{I — diag(g o) @)}) .
=1
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When ¢ = 1 (and then 9y € R), this simplifies to
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Examples, continued:

e Example 1. (Exchangeable) X(0) = (1 —0)I; 4+ 0111, For
d = 4, calculation vyields

_ 1 5

_ 1 4

lo(z) = —<2 > rir; — 30 > :1:]2 , and
12 1§i<j<4 j=1

~ 60 2

—1g,0 =
optol®) = T og 3024 . Z(
360/2
— —1) = W
1420 - 3062 Z (27— 1) = jzl i (@),
so the pseudo-likelihood estimator is semiparametric effi-

cient.
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Figure 1, Example 1: Information bounds and Monte-carlo
variance of p—mle: red, n = 800.
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e Example 2. (Circular) For d = 4, calculation yields

. 4
I@@-lﬁ _ (1 . 92)27
lo(z) = L (1 + 62 > XX
a 8(1—62) j=i+1,i+3 o

4
— 29233]2-—20 Z a:'ia:j}, and
j=1 j=i42

a complicated quadratic in x;'s and cubic in 6

J

4 o &
= > Wi(x;) = {2 > (x5 —1).
=1

=1

—Igyly ()

so the pseudo-likelihood estimator is not semiparametric
efficient.
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Figure 1, Example 2: Information bound and variance of p-mle
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Figure 2, Example 2: Difference, variance of p-mle and Information bound
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Summary:

e Information bounds for (structured) multivariate Gaussian
models are available and computable.

e Gaussian marginal distributions are least favorable.

e [ he pseudo likelihood estimator is not always semiparametric
efficient (but perhaps not missing efficiency by much).

Questions:

e Can we construct rank-based semiparametric efficient esti-
mators?

e Are the pseudo likelihood estimators sometimes seriously
inefficient?

Segers, van den Akker, and Werker (2014) give affirmative
answers to both questions!
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Recent progress and results

Segers, van den Akker, and Werker (2014) give affirmative
answers to both questions!

Rank-based semiparametric efficient estimators:
via a “one-step’” method:

e Start with a y/n—consistent rank based estimator 53;
e.g the pseudo likelihood estimator Aﬁle.

AN

e Construct the natural one-step estimator starting from 0,,9
and based on the efficient score function é;.
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Recent progress and results

Inefficiency of pseudo likelihood estimator 0°'°:

Example 3: (Toeplitz correlation model) Suppose that § =

(917---79d—1) < (—1,1)d_1 and 2 = (O-’I:,j)gi,j:l = (02)3(0) where
oi; =1 and o; ;(0) = 0,—; for j #1i. For example: when d = 3,

6 = (61,02) € (—1,1)2 and

1 67 6o
Z(Q)Z 01 164 :

6> 61 1
when d =4, 0 = (01,05,03) € (—1,1)3 and

1 61 6> 63

_ |1 61 1 601 6>

>(0) = 6> 61 1 0

03 0> 01 1

Segers, vd Akker, and Werker (2014) show that:
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Recent progress and results

e For d = 3 the Pseudo-Likelihood Estimator (PLE) 6P is
semiparametric efficient.

e For d = 4, A%Zle is not efficient, and some times severely
SO. When 6 = (0.494546,—-0.450276,—-0846249), the
asymptotic relative efficiencies of the PLE with respect to
the information bound are

(18.3%, 19.8%,96.9%).

e The PLE is semiparametric efficient for a large class of
“factor models”: if 6 is a d X g matrix, ¢q < d, © =
an open subset of {§ € R™7 : (901);; < 1, j = 1,...,d}
and

> (0) = 061 + (I, — diag(661)).
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4: Questions and open problems

e Semiparametric efficient estimation of the marginal distribu-
tions?

Can we improve on the marginal empirical distribution
functions? (Apparently not known even for bivariate
Gaussian copula model?)

Asymptotic behavior of the sieve estimators of Chen, Fan,
and Tsyrennikov (2006)7

e Asymptotic behavior of the MLE’'s of 6 based on the rank
likelihood. (Rank likelihood is difficult to compute!)

e Rank-based semiparametric efficient estimators of 6 for non-
Gaussian copula’s?

e Asymptotic theory for P. Hoff's “extended rank likelihood”
(Hoff 2007, 2008)7

e What happens under model miss-specification? (Remember
David X. Li (2000)!)
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