Signal detection and goodness-of-fit: the Berk-Jones statistics revisited

Jon A. Wellner (Seattle)

INET Big Data Conference

INET Big Data Conference, Cambridge September 29-30, 2015

Based on joint work with:

- Lutz Dümbgen (Bern)
- Leah Jager (U.S. Naval Academy)

Outline

- 1: Introduction: some history
- 2: Testing for sparse normal means: optimal detection boundary
- 3: Consequences and tradeoffs.
- 4: The LIL and strong LIL for Brownian motion and Brownian bridge
- 5: A new class of test statistics:

LIL adjusted higher criticism \& Berk-Jones.

- 6: Power properties and confidence bands.

1. Introduction: some history

- Setting: classical "goodness - of - fit"
- X_{1}, \ldots, X_{n} i.i.d. with distribution function F
- $\mathbb{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left[X_{i} \leq x\right]}$
- Test $H: F=F_{0}$ versus $K: F \neq F_{0}, F_{0}$ continuous
- Without loss of generality $F_{0}(x)=x$, the $U(0,1)$ distribution
- Break hypotheses down into family of pointwise hypotheses: $H_{x}: F(x)=F_{0}(x)$ versus $K_{x}: F(x) \neq F_{0}(x)$
- $H=\cap_{x} H_{x}, K=\cup_{x} K_{x}$

1. Introduction: some history

- $n \mathbb{F}_{n}(x) \sim \operatorname{Binomial}(n, F(x))$.
- Likelihood ratio statistic for testing H_{x} versus K_{x} :

$$
\begin{aligned}
\lambda_{n}(x) & =\frac{\sup _{F(x)} L_{n}(F(x))}{L_{n}\left(F_{0}(x)\right)}=\frac{L_{n}\left(\mathbb{F}_{n}(x)\right)}{L_{n}\left(F_{0}(x)\right)} \\
& =\frac{\mathbb{F}_{n}(x)^{n \mathbb{F}_{n}(x)}\left(1-\mathbb{F}_{n}(x)\right)^{n\left(1-\mathbb{F}_{n}(x)\right)}}{F_{0}(x)^{n \mathbb{F}_{n}(x)}\left(1-F_{0}(x)\right)^{n\left(1-\mathbb{F}_{n}(x)\right)}} \\
& =\left(\frac{\mathbb{F}_{n}(x)}{F_{0}(x)}\right)^{n \mathbb{F}_{n}(x)}\left(\frac{1-\mathbb{F}_{n}(x)}{1-F_{0}(x)}\right)^{n\left(1-\mathbb{F}_{n}(x)\right)}
\end{aligned}
$$

1. Introduction: some history

- Thus

$$
\begin{aligned}
\log \lambda_{n}(x)= & n \mathbb{F}_{n}(x) \log \left(\frac{\mathbb{F}_{n}(x)}{F_{0}(x)}\right) \\
& \quad+n\left(1-\mathbb{F}_{n}(x)\right) \log \left(\frac{1-\mathbb{F}_{n}(x)}{1-F_{0}(x)}\right) \\
= & n K\left(\mathbb{F}_{n}(x), F_{0}(x)\right)
\end{aligned}
$$

- $K(u, v) \equiv u \log \left(\frac{u}{v}\right)+(1-u) \log \left(\frac{1-u}{1-v}\right)$,

Kullback - Leibler "distance"

$$
\text { Bernoulli }(u) \text {, Bernoulli }(v)
$$

- Berk-Jones (1979) test statistic: via S.N. Roy's union intersection principle,

$$
R_{n} \equiv \sup _{x} n^{-1} \log \lambda_{n}(x)=\sup _{x} K\left(\mathbb{F}_{n}(x), F_{0}(x)\right)
$$

1. Introduction: some history

- History:
\triangleright Berk and Jones (1979)
\triangleright Groeneboom and Shorack (1981)
\triangleright Shorack and Wellner (1986, p. 786)
\triangleright Owen (1995): inversion of R_{n} to get confidence bands; finite - sample distribution via Noé's recursion
\triangleright Einmahl and McKeague (2002): integral version of R_{n}
\triangleright Donoho and Jin (2004): Tukey's "Higher-Criticism" statistic for testing "sparse normal means" model with comparisons to Berk - Jones statistic R_{n}

2. Testing for sparse normal means

- Initial setting: multiple testing of normal means

For $i=1, \ldots, n$ consider testing

$$
H_{0, i}: X_{i} \sim N(0,1)
$$

versus

$$
H_{1, i}: X_{i} \sim N\left(\mu_{i}, 1\right) \text { with } \mu_{i}>0 .
$$

- Sparsity: proportion $\epsilon_{n} \equiv n^{-1} \#\left\{i \leq n\right.$: $\left.\mu_{i}>0\right\}$ is small; $\epsilon_{n} \sim n^{-\beta}$ with $0<\beta<1$.
- Three questions (in increasing order of difficulty):
\triangleright Q1: Can we tell if at least one null hypothesis is false?
\triangleright Q2: What is the proportion of false null hypotheses?
\triangleright Q3: Which null hypotheses are false?
- Main focus here: Q1.

2. Testing for sparse normal means

- Previous work: Q1: is there any signal?
\triangleright Ingster $(1997,1999)$
$\triangleright \operatorname{Jin}(2004)$
\triangleright Donoho and Jin (2004)
\triangleright Jager and Wellner (2007)
\triangleright Hall and Jin (2007)
\triangleright Cai and Wu (2014)

2. Testing for sparse normal means

Change of setting: Ingster - Donoho - Jin testing problem

- Suppose Y_{1}, \ldots, Y_{n} i.i.d. G on \mathbb{R}
- test $H: G=N(0,1)$ versus $H_{1}: G=(1-\epsilon) N(0,1)+\epsilon N(\mu, 1)$, and, in particular, against

$$
H_{1}^{(n)}: G=\left(1-\epsilon_{n}\right) N(0,1)+\epsilon_{n} N\left(\mu_{n}, 1\right) .
$$

for $\epsilon_{n}=n^{-\beta}, \quad \mu_{n}=\sqrt{2 r \log n}$
$0<\beta<1,0<r<1$.

- Let $\Phi(z) \equiv P(Z \leq z)=\int_{-\infty}^{z}(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right) d x, Z \sim$ $N(0,1)$.
- transform to $X_{i} \equiv 1-\Phi\left(Y_{i}\right) \in[0,1]$ i.i.d.

$$
F=1-G\left(\Phi^{-1}(1-\cdot)\right) .
$$

2. Testing for sparse normal means

- Then the testing problem becomes: test

$$
\begin{aligned}
& H_{0}: F=F_{0}=U(0,1) \quad \text { versus } \\
& H_{1}^{(n)}: F(u)=u+\epsilon_{n}\left\{(1-u)-\Phi\left(\Phi^{-1}(1-u)-\mu_{n}\right)\right\} \\
& =\left(1-\epsilon_{n}\right) u+\epsilon_{n}\left\{1-\Phi\left(\Phi^{-1}(1-u)-\mu_{n}\right)\right\}
\end{aligned}
$$

- Test statistics: Donoho and Jin (2004) proposed

$$
\begin{aligned}
H C_{n}^{*} & \equiv \sup _{X_{(1)} \leq u \leq X_{([n / 2])}} \frac{\sqrt{n}\left(\mathbb{F}_{n}(u)-u\right)}{\sqrt{u(1-u)}} \\
& \equiv \text { Tukey's "higher criticism statistic" }
\end{aligned}
$$

where $\mathbb{F}_{n}(u) \equiv n^{-1} \sum_{i=1}^{n} 1_{[0, u]}\left(X_{i}\right)=$ empirical distribution function of the X_{i} 's.

- Let $K_{2}(u, v)=2^{-1}(u-v)^{2} /(v(1-v))^{2}$; then

$$
2^{-1}\left(H C_{n}^{*}\right)^{2}=\sup _{X_{(1)} \leq x \leq X_{[n / 2]}} K_{2}^{+}\left(\mathbb{F}_{n}(x), x\right)
$$

where $K_{2}^{+}(u, v)=K_{2}(u, v) 1_{[v \leq u]}$.

2. Testing for sparse normal means

Optimal detection boundary $\rho^{*}(\beta)$ defined by:

$$
\rho^{*}(\beta)= \begin{cases}\beta-1 / 2, & 1 / 2<\beta \leq 3 / 4 \\ (1-\sqrt{1-\beta})^{2}, & 3 / 4<\beta<1 .\end{cases}
$$

- Theorem 1: (Donoho - Jin, 2004). For $r>\rho^{*}(\beta)$ the tests T_{n} based on $2^{-1}\left(H C_{n}^{*}\right)^{2}$ or R_{n}^{+}are both size and power consistent for testing H_{0} versus $H_{1}^{(n)}$.
- With $t_{n}\left(\alpha_{n}\right)=\log \log (n)(1+o(1))$

$$
\begin{aligned}
& P_{H_{0}}\left(T_{n}>t_{n}\left(\alpha_{n}\right)\right)=\alpha_{n} \rightarrow 0, \quad \text { and } \\
& P_{H_{1}^{(n)}}\left(T_{n}>t_{n}\left(\alpha_{n}\right)\right) \rightarrow 1, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

2. Testing for sparse normal means

2. Testing for sparse normal means

- A family of statistics via phi-divergences
- For $s \in \mathbb{R}, x \geq 0$ define

$$
\phi_{s}(x)= \begin{cases}\frac{1-s+s x-x^{s}}{s(1-s)}, & s \neq 0,1 \\ x \log (x)-x+1, & s=1 \\ x-\log (x)-1, & s=0\end{cases}
$$

- Then define

$$
K_{s}(u, v)=v \phi_{s}(u / v)+(1-v) \phi_{s}((1-u) /(1-v)) .
$$

2. Testing for sparse normal means

- Special cases:

$$
\begin{aligned}
& K_{2}(u, v)=\frac{1}{2} \frac{(u-v)^{2}}{v(1-v)} \\
& K_{1}(u, v)=K(u, v) \\
& \quad=u \log (u / v)+(1-u) \log ((1-u) /(1-v)) \\
& K_{1 / 2}(u, v)=2\left\{(\sqrt{u}-\sqrt{v})^{2}+(\sqrt{1-u}-\sqrt{1-v})^{2}\right\} \\
& \quad=4\{1-\sqrt{u v}-\sqrt{(1-u)(1-v)}\} . \\
& K_{0}(u, v)=K(v, u) \\
& K_{-1}(u, v)=
\end{aligned}
$$

2. Testing for sparse normal means

- The ϕ-divergence family of statistics (Jager \& W, 2007):

$$
S_{n}(s)= \begin{cases}\sup _{x \in \mathbb{R}} K_{s}\left(\mathbb{F}_{n}(x), F_{0}(x)\right), & s \geq 1 \\ \sup _{x \in\left[X_{(1)}, X_{(n)}\right)} K_{s}\left(\mathbb{F}_{n}(x), F_{0}(x)\right), & s<1,\end{cases}
$$

- Thus, with $F_{0}(x)=x$,

$$
\begin{aligned}
& S_{n}(2)=\frac{1}{2} \sup _{x \in \mathbb{R}} \frac{\left(\mathbb{F}_{n}(x)-x\right)^{2}}{x(1-x)}, \\
& S_{n}(1)=R_{n}=\text { Berk-Jones statistic } \\
& S_{n}(1 / 2) \\
& \quad=4 \sup _{x \in\left[X_{(1), X}, X_{(n)}\right)}\left\{1-\sqrt{\mathbb{F}_{n}(x) x}-\sqrt{\left(1-\mathbb{F}_{n}(x)\right)(1-x)}\right\} \\
& S_{n}(0)=\text { "reversed" Berk-Jones } \equiv \widetilde{R}_{n} \\
& S_{n}(-1)=\frac{1}{2} \sup _{x \in\left[X_{(1)}, X_{(n)}\right)} \frac{\left(\mathbb{F}_{n}(x)-x\right)^{2}}{\mathbb{F}_{n}(x)\left(1-\mathbb{F}_{n}(x)\right)}
\end{aligned}
$$

2. Testing for sparse normal means

- Null hypothesis distribution theory:
- Owen (1995) and Jager (2006):
finite sample critical points via Noé's recursion for $n \leq 3000$
- For $n \geq$ 3000, asymptotic theory via Jaeschke (1979) and Eicker (1979) (cf. SW p. 597-615), together with

$$
K_{s}(u, v) \approx 2^{-1}(u-v)^{2} /[v(1-v)]
$$

SO

$$
n K_{s}\left(\mathbb{F}_{n}(x), x\right) \approx \frac{1}{2} \frac{n\left(\mathbb{F}_{n}(x)-x\right)^{2}}{x(1-x)} \equiv \frac{1}{2} \mathbb{Z}_{n}(x)^{2}
$$

where

$$
\mathbb{Z}_{n}(x) \equiv \frac{\sqrt{n}\left(\mathbb{F}_{n}(x)-x\right)}{\sqrt{x(1-x)}} \rightarrow_{f . d .} \frac{\mathbb{U}(x)}{\sqrt{x(1-x)}} \equiv \mathbb{Z}(x)
$$

with \mathbb{U} a standard Brownian bridge process on $[0,1]$.

2. Testing for sparse normal means

- Let $r_{n} \equiv \log \log (n)+(1 / 2) \log \log \log (n)-(1 / 2) \log (4 \pi)$

$$
=\log \log (n)(1+o(1))
$$

- Theorem 1. If $F=F_{0}$, the uniform distribution on $[0,1]$, then for $-1 \leq s \leq 2$

$$
n S_{n}(s)-r_{n} \rightarrow_{d} Y_{4}
$$

where $P\left(Y_{4} \leq x\right)=\exp (-4 \exp (-x))$.

- Theorem 2. If $F=F_{n}$, the Ingster - Donoho - Jin sparse normal means model, then for each $s \in[-1,2]$

$$
\begin{array}{lc}
P_{H_{0}}\left(n S_{n}(s)>t_{n}\left(\alpha_{n}\right)\right) \rightarrow 0, & \text { and } \\
P_{H_{1}^{(n)}}\left(n S_{n}(s)>t_{n}\left(\alpha_{n}\right)\right) \rightarrow 1 & \text { if } \quad r>\rho^{*}(\beta)
\end{array}
$$

3. Consequences and tradeoffs:

trouble in the middle!

Although the test statistics $n S_{n}(s)$ (and their one-sided, onetailed counterparts) have excellent power behavior against sparse normal means and other "tail" alternatives, we have lost something in the middle:
if $\left\{F_{n}\right\}$ is a sequence of distribution functions satisfying

$$
\begin{aligned}
& \sqrt{n}\left(f_{n}^{1 / 2}-f_{0}^{1 / 2}\right) \rightarrow 2^{-1} a f_{0}^{1 / 2}, \text { in } L_{2}(\lambda) \\
& \sqrt{n}\left(F_{n}-F_{0}\right) \rightarrow A \text { uniformly }
\end{aligned}
$$

where $A(x)=\int_{-\infty}^{x} a(y) d F_{0}(y)$, then it is not hard to see that for any $\kappa>0$

$$
P_{F_{n}}\left(n S_{n}(s)-r_{n}>\kappa\right) \rightarrow 0
$$

Can we find a new family of test statistics which have good power properties for alternatives of both the "tail" and "central" type?

4. The LIL and Strong LIL for Brownian Motion and Bridge

Standard Brownian motion $\mathbb{W}=(\mathbb{W}(t))_{t \geq 0}$

LIL for BM:

$$
\begin{aligned}
& \underset{t \downarrow 0}{\limsup } \frac{ \pm \mathbb{W}(t)}{\sqrt{2 t \log \log \left(t^{-1}\right)}}=1 \quad \text { almost surely }, \\
& \limsup _{t \uparrow \infty} \frac{ \pm \mathbb{W}(t)}{\sqrt{2 t \log \log (t)}}=1 \quad \text { almost surely. }
\end{aligned}
$$

Refined (upper) strong LIL for BM: For arbitrary constants
$\nu>3 / 2$,

$$
\limsup _{t \rightarrow\{0, \infty\}}\left(\frac{\mathbb{W}(t)^{2}}{2 t}-\log \log \left(t+t^{-1}\right)-\nu \cdot \log \log \log \left(t+t^{-1}\right)\right)<0
$$

almost surely.

4. The LIL and Strong LIL for Brownian Motion and Bridge

- Reformulation for standard Brownian bridge $\mathbb{U}=(\mathbb{U}(t))_{t \in(0,1)}$

$$
\begin{aligned}
&(0,1) \ni t \mapsto \operatorname{logit}(t):=\log \left(\frac{t}{1-t}\right) \in \mathbb{R}, \\
& \mathbb{R} \ni x \mapsto \quad \ell(x) \quad:=\frac{e^{x}}{1+e^{x}} \quad \in(0,1) . \\
& C(t):=\log \sqrt{1+\operatorname{logit}(t)^{2} / 2} \quad \approx \log \log (1 / t) \quad \text { as } t \downarrow 0, \\
& D(t):=\log \sqrt{1+C(t)^{2} / 2} \quad \approx \log \log \log (1 / t) \quad \text { as } t \downarrow 0 .
\end{aligned}
$$

$$
\limsup _{t \rightarrow\{0,1\}}\left(\frac{\mathbb{U}(t)^{2}}{2 t(1-t)}-C(t)-\nu \cdot D(t)\right)<0
$$

almost surely.

5: A new class of test statistics:

LIL adjusted higher criticism \& Berk-Jones.

This suggests a new class of test statistics as follows:

- Fix $s \in[1,2]$ and $\nu>3 / 2$.
- Define $X_{n, s}(t) \equiv n K_{s}\left(\mathbb{G}_{n}(t), t\right)$.
- Set $T_{n}(s, \nu) \equiv \sup _{0<t<1}\left\{X_{n, s}(t)-C(t)-\nu D(t)\right\}$.

If $s \in[-1,1)$ replace the supremum over $(0,1)$ by the sup over $\left[X_{(1)}, X_{(n)}\right)$.

Theorem. For all $s \in[-1,2]$ and $\nu>3 / 2$, if H_{0} holds then

$$
T_{n}(s, \nu) \rightarrow_{d} T_{\nu} \equiv \sup _{0<t<1}\left\{\frac{\mathbb{U}^{2}(t)}{2 t(1-t)}-C(t)-\nu D(t)\right\}
$$

where T_{ν} is finite almost surely.
Proof: Careful use of strong approximation methods:
Csörgő, Csörgő, Horvath, and Mason (1986).

In particular for the LIL adjusted higher criticism \& Berk-Jones statistics:

$$
\begin{aligned}
T_{n}(2, \nu) & \equiv \sup _{0<t<1}\left\{\frac{\mathbb{U}_{n}^{2}(t)}{2 t(1-t)}-C(t)-\nu D(t)\right\} \rightarrow_{d} T_{\nu}, \\
T_{n}(1, \nu) & \equiv \sup _{0<t<1}\left\{n K_{1}\left(\mathbb{G}_{n}(t), t\right)-C(t)-\nu D(t)\right\} \rightarrow_{d} T_{\nu} . \\
\text { where } K_{1}(u, v) & \equiv K(u, v)=u \log (u / v)+(1-u) \log ((1-u) /(1-v)) .
\end{aligned}
$$

- What about power?
\triangleright Tail alternatives, e.g. sparse normal means?
\triangleright Central (or contiguous) alternatives?
- Widths of confidence bands?

6. Confidence bands and power properties

Let $U_{1}, U_{2}, \ldots, U_{n}$ be i.i.d. \sim Unif[0,1]. Auxiliary function K : $[0,1] \times(0,1) \rightarrow[0, \infty]$,

$$
K(x, p):=x \log \left(\frac{x}{p}\right)+(1-x) \log \left(\frac{1-x}{1-p}\right)
$$

i.e. Kullback-Leibler divergence between $\operatorname{Bin}(1, x)$ and $\operatorname{Bin}(1, p)$.

Two key properties:

$$
\begin{gathered}
K(x, p)=\frac{(x-p)^{2}}{2 p(1-p)}(1+o(1)) \quad \text { as } x \rightarrow p \\
K(x, p) \leq c \quad \text { implies } \quad|x-p| \leq\left\{\begin{array}{l}
\sqrt{2 c p(1-p)}+c \\
\sqrt{2 c x(1-x)}+c
\end{array}\right.
\end{gathered}
$$

6. Confidence bands and power properties

Uniform order statistics

$$
\begin{gathered}
0<U_{n: 1}<U_{n: 2}<\cdots<U_{n: n}<1 \\
\mathcal{T}_{n}:=\left\{t_{n 1}, t_{n 2}, \ldots, t_{n n}\right\} \quad \text { with } \quad t_{n i}:=\mathbb{E}\left(U_{n: i}\right)=\frac{i}{n+1} .
\end{gathered}
$$

Theorem 2. For the process $\tilde{X}_{n}=\left(\tilde{X}_{n}(t)\right)_{t \in \mathcal{T}_{n}}$ with

$$
\tilde{X}_{n}\left(t_{n i}\right) \equiv(n+1) K\left(t_{n i}, U_{n: i}\right)
$$

for $\nu>3 / 2$ we have

$$
\widetilde{T}_{n}(1, \nu) \equiv \sup _{\mathcal{T}_{n}}\left\{\tilde{X}_{n}-C-\nu D\right\} \rightarrow_{d} T_{\nu} .
$$

- Some realizations of $\tilde{X}_{n}-C-\nu D$ for $n=5000$ and $\nu=3$:

Distribution function of $\arg \boldsymbol{m a x}_{t} \tilde{X}_{n}(t)$:

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with unknown c.d.f. F on \mathbb{R}.

- Empirical df: $\mathbb{F}_{n}(x):=\frac{1}{n} \sum_{i=1}^{n} 1_{\left[X_{i} \leq x\right]}$.
- Testing problem: $H_{0}: F \equiv F_{0}$ versus $K: F \not \equiv F_{0}$.
- Berk-Jones statistic: $R_{n}\left(F_{0}\right):=\sup _{\mathbb{R}} n K\left(\mathbb{F}_{n}, F_{0}\right)$.
- Critical value:

$$
\begin{aligned}
\kappa_{n, \alpha}^{\mathrm{BJ}} & \equiv(1-\alpha)-\text { quantile of } \sup _{t \in(0,1)} n K_{n}\left(\mathbb{G}_{n}(t), t\right) \\
& =\log \log (n)+O(\log \log \log (n))
\end{aligned}
$$

- New proposal:

$$
T_{n}\left(F_{0}\right) \equiv \sup _{\mathbb{R}}\left(n K\left(\mathbb{F}_{n}, F_{0}\right)-C\left(F_{0}\right)-\nu D\left(F_{0}\right)\right)
$$

... with critical value

$$
\begin{aligned}
\kappa_{n, \alpha}^{\text {new }} \equiv & (1-\alpha)-\text { quantile of } \\
& \sup _{t \in(0,1)}\left(n K\left(\mathbb{G}_{n}(t), t\right)-C(t)-\nu D(t)\right) \\
\rightarrow & (1-\alpha)-\text { quantile of } \\
& \sup _{t \in(0,1)}\left(\frac{\mathbb{U}(t)^{2}}{2 t(1-t)}-C(t)-\nu D(t)\right)
\end{aligned}
$$

Lemma. For any critical value $\kappa>0$ there exists a constant B_{κ} such that

$$
\mathbb{P}_{F}\left(T_{n}\left(F_{o}\right) \leq \kappa\right) \leq B_{\kappa} \Delta_{n}\left(F, F_{o}\right)^{-4 / 5}
$$

where

$$
\Delta_{n}\left(F, F_{o}\right):=\sup _{\mathbb{R}} \frac{\sqrt{n}\left|F-F_{o}\right|}{\sqrt{\Gamma\left(F_{o}\right) F_{o}\left(1-F_{o}\right)+\Gamma\left(F_{o}\right) / \sqrt{n}}}
$$

and $\Gamma(\cdot):=C(\cdot)+1$.

Note:

$$
\sqrt{\Gamma(t) t(1-t)} \rightarrow 0 \quad \text { as } t \rightarrow\{0,1\}
$$

Special case: Detecting heterogeneous Gaussian mixtures (Donoho-Jin 2004)

$$
\begin{aligned}
& F_{o}:=\Phi, \\
& F_{n}:=\left(1-\varepsilon_{n}\right) \Phi+\varepsilon_{n} \Phi\left(\cdot-\mu_{n}\right), \quad \varepsilon_{n} \in(0,1), \mu_{n}>0 .
\end{aligned}
$$

Setting 1 (Donoho-Jin, 2004):

$$
\varepsilon_{n}=n^{-\beta+o(1)} \quad \text { for some } \beta \in(1 / 2,1) .
$$

Setting 2:

$$
\varepsilon_{n}=n^{-1 / 2+o(1)} \quad \text { but } \quad \pi_{n}:=n^{1 / 2} \varepsilon_{n} \rightarrow 0 .
$$

Theorem A. For any fixed $\kappa>0$,

$$
\mathbb{P}_{F_{n}}\left(T_{n}\left(F_{o}\right)>\kappa\right) \rightarrow 1
$$

provided that μ_{n} satisfies the following conditions:
Setting $1\left(\varepsilon_{n}=n^{-\beta+o(1)}, \beta \in(1 / 2,1)\right)$:

$$
\mu_{n}=\sqrt{2 r \log (n)} \quad \text { with } \quad r> \begin{cases}\beta-1 / 2 & \text { if } \beta \leq 3 / 4 \\ (1-\sqrt{1-\beta})^{2} & \text { if } \beta \geq 3 / 4\end{cases}
$$

Setting $2\left(\varepsilon_{n}=n^{-1 / 2+o(1)}, \pi_{n}=n^{1 / 2} \varepsilon_{n} \rightarrow 0\right)$:

$$
\mu_{n}=\sqrt{2 s \log \left(1 / \pi_{n}\right)} \quad \text { with } \quad s>1 .
$$

Setting 2' (contiguous alternatives): For fixed $\pi, \mu>0$,

$$
\varepsilon_{n}=\pi n^{-1 / 2} \quad \text { and } \quad \mu_{n}=\mu
$$

Optimal test of F versus F_{n} has asymptotic power

$$
\Phi\left(\Phi^{-1}(\alpha)+\frac{\pi^{2}\left(\exp \left(\mu^{2}\right)-1\right)}{4}\right)
$$

Theorem B. As $\pi \downarrow 0$ and $\mu=\sqrt{2 s \log (1 / \pi)}$ for fixed $s>0$,

$$
\begin{aligned}
\Phi\left(\Phi^{-1}(\alpha)+\frac{\pi^{2}\left(\exp \left(\mu^{2}\right)-1\right)}{4}\right) & \rightarrow \begin{cases}\alpha & \text { if } s<1 \\
1 & \text { if } s>1\end{cases} \\
\limsup _{n \rightarrow \infty} \mathbb{P}_{F_{n}}\left(T_{n}\left(F_{0}\right)>\kappa_{n, \alpha}\right) & \rightarrow \quad 1 \quad \text { if } s>1
\end{aligned}
$$

- Confidence Bands

Owen (1995) proposed (1- α)-confidence band

$$
\left\{F: \sup _{\mathbb{R}} n K\left(\mathbb{F}_{n}, F\right) \leq \kappa_{n, \alpha}^{\mathrm{BJ}}\right\}
$$

New proposal: With order statistics $X_{n: 1} \leq X_{n: 2} \leq \cdots \leq X_{n: n}$,

$$
\left\{F: \max _{1 \leq i \leq n}\left((n+1) K\left(t_{n i}, F\left(X_{n: i}\right)\right)-C\left(t_{n i}\right)-\nu D\left(t_{n i}\right)\right) \leq \tilde{\kappa}_{n, \alpha}\right\}
$$

Resulting bounds for $F(x)$: with confidence $1-\alpha$, on $\left[X_{n: i}, X_{n: i+1}\right)$,
$0 \leq i \leq n$,
$F \in\left\{\begin{array}{ll}{\left[a_{n i}^{\mathrm{BJO}}, b_{n i}^{\mathrm{BJO}}\right]} & \text { with Owen's (1995) proposal, } \\ {\left[a_{n i}^{\text {new }}, b_{n i}^{\text {new }}\right]} & \text { with new proposal, }\end{array} \mathbb{F}_{n}\left(X_{n: i}\right)=\right.$

$$
n=500: \quad i \mapsto a_{n i}^{\mathrm{new}}, s_{n i}, b_{n i}^{\mathrm{new}}
$$

$$
n=2000: \quad i \mapsto a_{n i}^{*}-s_{n i}, b_{n i}^{*}-s_{n i}
$$

$$
n=8000: \quad i \mapsto a_{n i}^{*}-s_{n i}, b_{n i}^{*}-s_{n i}
$$

Theorem C. For any fixed $\alpha \in(0,1)$,

$$
\max _{0 \leq i \leq n} \frac{b_{n i}^{\mathrm{new}}-a_{n i}^{\mathrm{new}}}{b_{n i}^{\mathrm{BJO}}-a_{n i}^{\mathrm{BJO}}} \rightarrow 1
$$

while

$$
\begin{aligned}
\max _{0 \leq i \leq n}\left(b_{n i}^{\mathrm{BJO}}-a_{n i}^{\mathrm{BJO}}\right) & =(1+o(1)) \sqrt{\frac{2 \log \log n}{n}} \\
\max _{0 \leq i \leq n}\left(b_{n i}^{\mathrm{new}}-a_{n i}^{\mathrm{new}}\right) & =O\left(n^{-1 / 2}\right)
\end{aligned}
$$

Final comments, extensions

- One can replace $K(u, v)=K_{1}(u, v)$ with more general ' ϕ divergences' $K_{s}(u, v)$ as in Jager-Wellner (2007) under the null hypothesis.
- Power behavior of the family $T_{n}(s, \nu)$ for $s \notin\{1,2\}$ is still unknown.
- Numerical experiments of Walther (2013) and Siegmund and Li (2015) indicate that $K=K_{1}$ has the best small/moderate sample performance in the sparse normal means model of Donoho-Jin (2004).
- Results for more general mixture models: Cai and Wu (2014).
- Proof of Jaeschke - Eicker theorem for $\sup _{0<t<1} \frac{\mathbb{U}_{n}(t)}{\sqrt{t(1-t)}}$:

$$
d_{n}=\frac{(\log n)^{5}}{n}<1 / 2 \quad \text { if } n>1010388 \approx 10^{6}
$$

- Number theory: Littlewood showed that $\operatorname{Li}(x)-\pi(x)$ changes sign infinitely often for x large.
- Skewes (1933): first sign change of $L i(x)-\pi(x)$ before

$$
10^{10^{10^{34}}} \text { if the Riemann hypothesis holds }
$$

- Current estimate: first sign change of $\operatorname{Li}(x)-\pi(x)$ before $10^{316} \approx e^{726.95133}$.

