Bi- s^{*}-Concave Distributions

Jon A. Wellner (Seattle)

Non- and Semiparametric Statistics
In Honor of Arnold Janssen,
On the occasion of his 65th Birthday

Non- and Semiparametric Statistics:
In Honor of Arnold Janssen Dusseldorf, Germany

$$
\text { July 21-22, } 2017
$$

Based on joint work with: Nilanjana Laha

Outline

- 0. A mysterious condition: quantile process theory
- 1. Bi-log-concavity.
- 2. Questions and examples.
- 3. $\mathrm{Bi}-s^{*}$-concavity.
- 4. Open questions.

1. A Mysterious condition: quantile process
 theory

- Let X_{1}, \ldots, X_{n} be i.i.d. F, absolutely continuous with density f.
- Let \mathbb{F}_{n} denote the empirical distribution function of the X_{i} 's:

$$
\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1\left\{X_{i} \leq x\right\} .
$$

- Let \mathbb{F}_{n}^{-1} denote the empirical quantile function, and let F^{-1} denote the population quantile function, where $F^{-1}(t) \equiv \inf \{x: F(x) \geq t\}, 0<t<1$.
- The standardized quantile process \mathbb{Q}_{n} is defined by

$$
\mathbb{Q}_{n}(t) \equiv g(t) \sqrt{n}\left(\mathbb{F}_{n}^{-1}(t)-F^{-1}(t)\right) \quad \text { for } \quad 0<t<1 .
$$

where

$$
g(t) \equiv f\left(F^{-1}(t)\right) .
$$

is the density quantile function.

Now suppose that $X_{i} \equiv F^{-1}\left(\xi_{i}\right)$ for $1 \leq i \leq n$ where:

- ξ_{1}, \ldots, ξ_{n} are i.i.d. Uniform $(0,1)$ random variables.
- \mathbb{G}_{n} is the empirical d.f. of the ξ_{i} 's.
- \mathbb{G}_{n}^{-1} is the empirical quantile function of the ξ_{i} 's.
- $\mathbb{V}_{n}(t) \equiv \sqrt{n}\left(\mathbb{G}_{n}^{-1}(t)-t\right)$ is the uniform quantile process.

Csörgó and Révész (1978) imposed the following mysterious condition in their study of the asymptotic equivalence of \mathbb{V}_{n} and \mathbb{Q}_{n}^{0}, the version of \mathbb{Q}_{n} with the X_{i} 's constructed in terms of the ξ_{i} 's as above.
Suppose

$$
\begin{equation*}
\gamma(F) \equiv \sup _{x \in J(F)} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq \text { some } M<\infty \tag{1}
\end{equation*}
$$

Then, for any (small) $r>0$

$$
\left\|\mathbb{Q}_{n}^{0}-\mathbb{V}_{n}\right\|_{\infty}=O\left(n^{-1 / 2}(\log \log n)^{M}(\log n)^{(1+r)(M-1)}\right) \text { a.s. }
$$

Define the $C R(x)$ and $C R_{m}(x)$ functions as follows:

$$
\begin{aligned}
& C R(x) \equiv F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)}, \\
& C R_{m}(x) \equiv \min \{F(x), 1-F(x)\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} .
\end{aligned}
$$

The condition (1) has also appeared in the study of transportation distances between the empirical measure and true measure \mathbb{P}_{n} and P on \mathbb{R}; see e.g.

- del Barrio, E., Giné, E., and Utzet, F. (2005). Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11, 131-189.
- Bobkov, S. and Ledoux, M. (2014). One - Dimensional empirical measures, order statistics, and Kantorovich transport distances. Memoirs of the American Mathematical Society, to appear. (especially see p. 45)

2. Bi-log-concavity

Definition: Dümbgen, Kolesnyk, and Wilke (2017)
A distribution function F on \mathbb{R} is bi-log-concave if both $\log F$ and $\log (1-F)$ are concave functions from \mathbb{R} to $[-\infty, 0]$.

- DKW (2017) noted that if F has log-concave density $f=F^{\prime}$, then F is bi-log-concave.
- But ... bi-log-concavity of F is a much weaker constraint:
\triangleright While any log-concave density is unimodal,
\triangleright a bi-log-concave distribution function F may have a density with an arbitrary number of modes; e.g.

$$
f_{k, a}(x)=\left(1+\frac{a \sin (2 \pi k x)}{k \pi}\right) 1_{[0,1]}(x) / C(k, a)
$$

for a small, is bi-log-concave

CR functions, mixed Gaussian density:

$$
2^{-1} \phi(x+\delta)+2^{-1} \phi(x-\delta), \delta=1.37
$$

Multi-modal perturbed uniform density, $f_{k, a}$ with $k=4, a=0.795$

C-R functions, multi-modal perturbed uniform density:

$$
f_{k, a} \text { with } k=4, a=0.0795
$$

Let

$$
J(F) \equiv\{x \in \mathbb{R}: \quad 0<F(x)<1\}
$$

Then a distribution function F is non-degenerate if $J(F) \neq \emptyset$.

Theorem 1. (DKW-2017).
If F is non-degenerate, the following four statements are equivalent:
(i) F is bi-log-concave.
(ii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that

$$
F(x+t)\left\{\begin{array}{l}
\leq F(x) \exp \left(\frac{f(x)}{F(x)} t\right) \\
\geq 1-(1-F(x)) \exp \left(-\frac{f(x)}{1-F(x)} t\right)
\end{array}\right.
$$

for all $x \in J(F)$ and $t \in \mathbb{R}$.
(iii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that the hazard function $f /(1-F)$ is nondecreasing and the reverse hazard function f / F in non-increasing on $J(F)$.
(iv) F is continuous on \mathbb{R} and differentiable on $J(F)$ with bounded and strictly positive derivative $f=F^{\prime}$. Furthermore, f is locally Lipschitz continuous on $J(F)$ with L^{1}-derivative $f^{\prime}=F^{\prime \prime}$ satisfying

$$
\frac{-f^{2}}{1-F} \leq f^{\prime} \leq \frac{f^{2}}{F}
$$

or, equivalently,

$$
\frac{-f}{1-F} \leq \frac{f^{\prime}}{f} \leq \frac{f}{F} .
$$

Corollary. If F is bi-log-concave

$$
\begin{aligned}
\tilde{\gamma}(F) & \equiv \sup _{x \in \mathbb{R}}\{F(x) \wedge(1-F(x))\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1, \\
\gamma(F) & \equiv \sup _{x \in \mathbb{R}} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1 .
\end{aligned}
$$

3. Questions and some examples

If a density f on \mathbb{R}^{d} is of the form

$$
f(x) \equiv f_{\varphi}(x)= \begin{cases}(\varphi(x))^{1 / s}, & \varphi \text { convex, if } s<0 \\ \exp (-\varphi(x)), & \varphi \text { convex, if } s=0 \\ (\varphi(x))^{1 / s}, & \varphi \text { concave, if } s>0\end{cases}
$$

then f is s-concave.
The classes of all densities f on \mathbb{R}^{d} of these forms are called the classes of s-concave densities, \mathcal{P}_{s}. The following inclusions hold: if $-\infty<s<0<r<\infty$, then

$$
\mathcal{P}_{\infty} \subset \mathcal{P}_{r} \subset \mathcal{P}_{0} \subset \mathcal{P}_{s} \subset \mathcal{P}_{-\infty}
$$

Questions:

- Q1: What if the density f is s-concave with $s \neq 0$. In particular, what if $f \in \mathcal{P}_{s}$ with $s<0$ where we know (Borell, Brascamp \& Lieb, Rinott, ...)

$$
\begin{aligned}
& \mathcal{P}_{-\infty} \supset \mathcal{P}_{s} \supset \mathcal{P}_{0} \supset \mathcal{P}_{r} \supset \mathcal{P}_{\infty} \\
& \text { for }-\infty<s<0<r<\infty ?
\end{aligned}
$$

- Q2: If $f \in \mathcal{P}_{s}$, is there a class of bi-s*-concave distribution functions F with the property that F and $1-F$ are s^{*} concave?
- Q3: Is there an analogue of Theorem 1 including an analogue of Theorem 1 (iv) with the corollary that $\gamma(F)$ is bounded by some function of s ?

From Borell, Brascamp, \& Lieb, Rinott, we know that if $f \in \mathcal{P}_{s}$ for $s>-1$, then the measure $P_{f}(A)=\int_{A} f d \lambda$ for Borel sets A is t-concave with $t=s /(1+s) \equiv s^{*}$ for $s>-1$. Thus by taking $A=(-\infty, x]$, it follows that $x \mapsto F(x)$ is s^{*}-concave; similarly, taking $A=[x, \infty)$ it follows that $x \mapsto 1-F(x)$ is s^{*}-concave.
Example 1. t_{r} densities: $s=-1 /(1+r) ; s^{*}=s /(1+s)=-1 / r$. Suppose that

$$
f_{r}(x)=\frac{C_{r}}{\left(1+\frac{x^{2}}{r}\right)^{(r+1) / 2}}
$$

where $C_{r}=\Gamma((r+1) / 2) /(\sqrt{\pi} \Gamma(r / 2))$. Then f_{r} is s-concave for all $s \leq-(1+r)^{-1}$. By the Borell-Brascamp-Lieb-Rinott correspondence between s-concave densities we know that

$$
x \mapsto F_{r}(x)^{s^{*}} \quad \text { and } \quad x \mapsto\left(1-F_{r}(x)\right)^{s^{*}}
$$

are convex.

Here are some plots, for $r \in\{1 / 8,1 / 4,1 / 2,1,4,16\}$, and hence $s \in\{-8 / 9,-4 / 5,-2 / 3,-1 / 2,-1 / 3,-1 / 5\}$:

- f_{r},
- $f_{r}^{s}, s=-1 /(1+r)$.
- $f_{r} /\left(1-F_{r}\right)^{1-s^{*}}, s^{*}=s /(1+s)=-1 / r$.
- $C R m(x, f) \equiv \min \{F(x), 1-F(x)\} f^{\prime}(x) / f(x)^{2}$ for $f=f_{r}$. $C R(x, f) \equiv F(x)(1-F(x)) f^{\prime}(x) / f(x)^{2}$.

Here the black bounding lines at the top and bottom are given by

$$
1-s^{*}=\frac{1}{1+s}=\frac{1}{1-8 / 9}=9 \quad \text { since } \quad s=-\frac{1}{1+1 / 8}=-\frac{8}{9} .
$$

Example 2. (Mixtures of t_{r}) Suppose that

$$
f(x)=f(x ; r, \delta) \equiv \frac{1}{2} g_{r}(x-\delta)+\frac{1}{2} g_{r}(x+\delta)
$$

where g_{r} is the t_{r}-density in Example 1 and where $\delta>0$ is not too large. For example here are Figures 2-5 of Laha \& W (2017). Showing g_{r} with $r=1$ and $\delta=1.3$

Example 3. (symmetric beta densities). Now consider the family of s-concave densities with $s>0$ given for any $r \in(0, \infty)$ by

$$
f_{r}(x)=\sqrt{r} C_{r}\left(1-x^{2}\right)^{r / 2} 1_{[-1,1]}(x)
$$

where $C_{r} \equiv \Gamma((3+r) / 2) /(\sqrt{\pi r} \Gamma(1+r / 2))$. Then $f_{r} \in \mathcal{P}_{s}$. with $s=2 / r$. Here are some plots, for $r \in\{1 / 8,1 / 2,2,4,8,16\}$, and hence $s \in\{16,4,1,1 / 2,1 / 4,1 / 8\}$:

- f_{r},
- $f_{r}^{s}, s=2 / r$.
- $f_{r} /\left(1-F_{r}\right)^{1-s^{*}}, s^{*}=s /(1+s)=$.
- $C R m(x, f) \equiv \min \{F(x), 1-F(x)\} f^{\prime}(x) / f(x)^{2}$ for $f=f_{r}$. $C R(x, f) \equiv F(x)(1-F(x)) f^{\prime}(x) / f(x)^{2}$.

Symmetrized beta densities f_{r} with $r \in\{1 / 8,1 / 4,1 / 2,2,4,16\}$

Powers of symmetrized beta densities $f_{r}^{s}=f_{r}^{2 / r}$
with $r \in\{1 / 8,1 / 4,1 / 2,2,4,16\}$

$\operatorname{CRm}(x)$ for f_{r} symmetrized Beta, $r \in\{\{1 / 8,1 / 4,1 / 2,2,4,16\}$ Here the black bounding lines at the top and bottom are given by the bound for the biggest class, namely for $r=16$, so $s=1 / 8$ and

$$
1-s^{*}=\frac{1}{1+s}=\frac{1}{1+1 / 8}=\frac{8}{9} \quad \text { since } \quad s=\frac{2}{16}=\frac{1}{8} .
$$

3. Bi-s*-concave distributions

Definition.

- For $s \in(-1, \infty)$, let $s^{*} \equiv s /(1+s) \in(-\infty, 1]$.
- For $s \in(-1,0)$, a distribution function F on \mathbb{R} is bi-s*-concave if both $x \mapsto F^{s^{*}}(x)$ and $x \mapsto(1-F)^{s^{*}}(x)$ are convex functions of $x \in J(F)$.
- For $s \in(0, \infty), F$ on \mathbb{R} is bi-s*-concave if $x \mapsto F^{s^{*}}(x)$ is concave for $x \in(\inf J(F), \infty)$ and and $x \mapsto(1-F)^{s^{*}}(x)$ is concave for $x \in(-\infty, \sup J(F))$.
- For $s=0, F$ on \mathbb{R} is bi-0-concave or bi-log-concave if both $x \mapsto \log F(x)$ and $x \mapsto \log (1-F(x))$ are concave functions of $x \in J(F)$.

Theorem 2. ($\mathrm{Bi}-s^{*}$-characterization theorem) Let $s \in(-1, \infty]$. For a non-degenerate distribution function F the following four statements are equivalent:
(i) F is $\mathrm{bi}-s^{*}$-concave.
(ii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$. Moreover when $s \leq 0$,

$$
F(x+t)\left\{\begin{array}{l}
\leq F(x) \cdot\left(1+s^{*} \frac{f(x)}{F(x)} t\right)^{1 / s^{*}} \tag{2}\\
\geq 1-(1-F(x)) \cdot\left(1-s^{*} \frac{f(x)}{1-F(x)} t\right)_{+}^{1 / s^{*}}
\end{array}\right.
$$

for all $x \in \mathbb{R}$ and $t \in \mathbb{R}$. When $s>0$,
$F(x+t) \begin{cases}\leq F(x) \cdot\left(1+s^{*} \frac{f(x)}{F(x)} t\right)_{+}^{1 / s^{*}}, & \text { for } t \in(a-x, \infty) \\ \geq 1-(1-F(x)) \cdot\left(1-s^{*} \frac{f(x)}{1-F(x)} t\right)_{+}^{1 / s^{*}}, & \text { for } t \in(-\infty, b-x)\end{cases}$
for all $x \in J(F)$.
(iii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that the s^{*}-hazard function $f /(1-F)^{1-s^{*}}$ is non-decreasing, and the reverse s^{*}-hazard function $f / F^{1-s^{*}}$ is non-increasing on $J(F)$.
(iv) F is continuous on \mathbb{R} and differentiable on $J(F)$ with bounded and strictly positive derivative $f=F^{\prime}$. Furthermore, f is locally Lipschitz-continuous on $J(F)$ with L^{1}-derivative $f^{\prime}=F^{\prime \prime}$ satisfying

$$
\begin{equation*}
-\left(1-s^{*}\right) \frac{f^{2}}{1-F} \leq f^{\prime} \leq\left(1-s^{*}\right) \frac{f^{2}}{F} \tag{4}
\end{equation*}
$$

Corollary.

Suppose that F is bi- s^{*}-concave for $s \in(-1, \infty]$. Then

$$
\gamma(F)=\sup _{x \in J(F)} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1-s^{*}=\frac{1}{1+s},
$$

and

$$
\tilde{\gamma}(F)=\sup _{x \in J(F)} \min \{F(x), 1-F(x)\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1-s^{*}=\frac{1}{1+s} .
$$

Questions and further problems:
Q1. Application of bi-s*-concavity to construction of confidence bands for F. For $s=0$, this has been implemented by DKW (2017).

Q2. Can anything be said when f is s-concave with $s \leq-1$?
Q3. Bi-log-concave or bi-s*-concave in higher dimensions?
Q4. What are the "right" hypotheses for the study of transportation (Wasserstein) distances for empirical measures on \mathbb{R}^{d} with $d \geq 2$?

Selected references:

- Dümbgen, L., Kolesnyk, P., and Wilke, R. (2017). Bi-logconcave distribution functions. J. Statist. Planning and Inference 184, 1-17.
- del Barrio, E., Giné, E., and Utzet, F. (2005). Asymptotics for L_{2} functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11, 131-189.
- Laha, N. and Wellner, J. A. (2017). Bi-s*-concave distributions. Submitted. Available as arXiv:1705.00252.

Fröhlichen Geburtstag Arnold!

