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1. A Mysterious condition: quantile process

theory

• Let X1, . . . , Xn be i.i.d. F ,

absolutely continuous with density f .

• Let Fn denote the empirical distribution function of the Xi’s:

Fn(x) = n−1∑n
i=1 1{Xi ≤ x}.

• Let F−1
n denote the empirical quantile function, and let F−1

denote the population quantile function,

where F−1(t) ≡ inf{x : F (x) ≥ t}, 0 < t < 1.

• The standardized quantile process Qn is defined by

Qn(t) ≡ g(t)
√
n(F−1

n (t)− F−1(t)) for 0 < t < 1.

where

g(t) ≡ f(F−1(t)).

is the density quantile function.

Non- and Semiparametric Statistics, Dusseldorf, July 21-22, 2017 1.3



Now suppose that Xi ≡ F−1(ξi) for 1 ≤ i ≤ n where:

• ξ1, . . . , ξn are i.i.d. Uniform(0,1) random variables.

• Gn is the empirical d.f. of the ξi’s.

• G−1
n is the empirical quantile function of the ξi’s.

• Vn(t) ≡
√
n(G−1

n (t)− t) is the uniform quantile process.

Csörgő and Révész (1978) imposed the following mysterious

condition in their study of the asymptotic equivalence of Vn and

Q0
n, the version of Qn with the Xi’s constructed in terms of the

ξi’s as above.

Suppose

γ(F ) ≡ sup
x∈J(F )

F (x)(1− F (x))
|f ′(x)|
f2(x)

≤ some M <∞. (1)
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Then, for any (small) r > 0

‖Q0
n − Vn‖∞ = O

(
n−1/2(loglogn)M(logn)(1+r)(M−1)

)
a.s.

Define the CR(x) and CRm(x) functions as follows:

CR(x) ≡ F (x)(1− F (x))
|f ′(x)|
f2(x)

,

CRm(x) ≡ min{F (x),1− F (x)}
|f ′(x)|
f2(x)

.
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The condition (1) has also appeared in the study of transporta-

tion distances between the empirical measure and true measure

Pn and P on R; see e.g.

• del Barrio, E., Giné, E., and Utzet, F. (2005). Asymptotics

for L2 functionals of the empirical quantile process, with

applications to tests of fit based on weighted Wasserstein

distances. Bernoulli 11, 131 - 189.

• Bobkov, S. and Ledoux, M. (2014). One - Dimensional em-

pirical measures, order statistics, and Kantorovich transport

distances. Memoirs of the American Mathematical Society,

to appear. (especially see p. 45)
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2. Bi-log-concavity

Definition: Dümbgen, Kolesnyk, and Wilke (2017)

A distribution function F on R is bi-log-concave if both logF and

log(1− F ) are concave functions from R to [−∞,0].

• DKW (2017) noted that if F has log-concave density f = F ′,
then F is bi-log-concave.

• But ... bi-log-concavity of F is a much weaker constraint:

B While any log-concave density is unimodal,

B a bi-log-concave distribution function F may have a

density with an arbitrary number of modes; e.g.

fk,a(x) =

(
1 +

a sin(2πkx)

kπ

)
1[0,1](x)/C(k, a).

for a small, is bi-log-concave
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Let

J(F ) ≡ {x ∈ R : 0 < F (x) < 1}.

Then a distribution function F is non-degenerate if J(F ) 6= ∅.

Theorem 1. (DKW-2017).

If F is non-degenerate, the following four statements are

equivalent:

(i) F is bi-log-concave.

(ii) F is continuous on R and differentiable on J(F ) with

derivative f = F ′ such that

F (x+ t)


≤ F (x)exp

(
f(x)
F (x)t

)
,

≥ 1− (1− F (x))exp
(
− f(x)

1−F (x)t
)

for all x ∈ J(F ) and t ∈ R.
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(iii) F is continuous on R and differentiable on J(F ) with

derivative f = F ′ such that the hazard function f/(1−F ) is non-

decreasing and the reverse hazard function f/F in non-increasing

on J(F ).

(iv) F is continuous on R and differentiable on J(F ) with bounded

and strictly positive derivative f = F ′. Furthermore, f is

locally Lipschitz continuous on J(F ) with L1−derivative f ′ = F ′′

satisfying

−f2

1− F
≤ f ′ ≤

f2

F
,

or, equivalently,

−f
1− F

≤
f ′

f
≤
f

F
.
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Corollary. If F is bi-log-concave

γ̃(F ) ≡ sup
x∈R
{F (x) ∧ (1− F (x))}

|f ′(x)|
f2(x)

≤ 1,

γ(F ) ≡ sup
x∈R

F (x)(1− F (x))
|f ′(x)|
f2(x)

≤ 1.

Non- and Semiparametric Statistics, Dusseldorf, July 21-22, 2017 1.16



3. Questions and some examples

If a density f on Rd is of the form

f(x) ≡ fϕ(x) =


(ϕ(x))1/s, ϕ convex, if s < 0
exp(−ϕ(x)), ϕ convex, if s = 0
(ϕ(x))1/s, ϕ concave, if s > 0,

then f is s-concave.

The classes of all densities f on Rd of these forms are called

the classes of s−concave densities, Ps. The following inclusions

hold: if −∞ < s < 0 < r <∞, then

P∞ ⊂ Pr ⊂ P0 ⊂ Ps ⊂ P−∞
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Questions:

• Q1: What if the density f is s−concave with s 6= 0. In

particular, what if f ∈ Ps with s < 0 where we know (Borell,

Brascamp & Lieb, Rinott, . . .)

P−∞ ⊃ Ps ⊃ P0 ⊃ Pr ⊃ P∞

for −∞ < s < 0 < r <∞?

• Q2: If f ∈ Ps, is there a class of bi-s∗-concave distribution

functions F with the property that F and 1 − F are s∗-
concave?

• Q3: Is there an analogue of Theorem 1 including an analogue

of Theorem 1(iv) with the corollary that γ(F ) is bounded by

some function of s?
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From Borell, Brascamp, & Lieb, Rinott, we know that if f ∈ Ps
for s > −1, then the measure Pf(A) =

∫
A fdλ for Borel sets A is

t−concave with t = s/(1 + s) ≡ s∗ for s > −1. Thus by taking
A = (−∞, x], it follows that x 7→ F (x) is s∗−concave; similarly,
taking A = [x,∞) it follows that x 7→ 1− F (x) is s∗−concave.

Example 1. tr densities: s = −1/(1 + r); s∗ = s/(1 + s) = −1/r.
Suppose that

fr(x) =
Cr(

1 + x2

r

)(r+1)/2

where Cr = Γ((r + 1)/2)/(
√
πΓ(r/2)). Then fr is s−concave

for all s ≤ −(1 + r)−1. By the Borell-Brascamp-Lieb-Rinott
correspondence between s−concave densities we know that

x 7→ Fr(x)s
∗

and x 7→ (1− Fr(x))s
∗

are convex.
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Here are some plots, for r ∈ {1/8,1/4,1/2,1,4,16},
and hence s ∈ {−8/9,−4/5,−2/3,−1/2,−1/3,−1/5}:

• fr,

• fsr , s = −1/(1 + r).

• fr/(1− Fr)1−s∗, s∗ = s/(1 + s) = −1/r.

• CRm(x, f) ≡ min{F (x),1− F (x)}f ′(x)/f(x)2 for f = fr.

CR(x, f) ≡ F (x)(1− F (x))f ′(x)/f(x)2.
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Example 2. (Mixtures of tr) Suppose that

f(x) = f(x; r, δ) ≡
1

2
gr(x− δ) +

1

2
gr(x+ δ)

where gr is the tr−density in Example 1 and where δ > 0 is not

too large. For example here are Figures 2 - 5 of Laha & W

(2017). Showing gr with r = 1 and δ = 1.3
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Example 3. (symmetric beta densities). Now consider the

family of s−concave densities with s > 0 given for any r ∈ (0,∞)

by

fr(x) =
√
rCr(1− x2)r/21[−1,1](x)

where Cr ≡ Γ((3 + r)/2)/(
√
πrΓ(1 + r/2)). Then fr ∈ Ps. with

s = 2/r. Here are some plots, for r ∈ {1/8,1/2,2,4,8,16},
and hence s ∈ {16,4,1,1/2,1/4,1/8}:

• fr,

• fsr , s = 2/r.

• fr/(1− Fr)1−s∗, s∗ = s/(1 + s) =.

• CRm(x, f) ≡ min{F (x),1− F (x)}f ′(x)/f(x)2 for f = fr.

CR(x, f) ≡ F (x)(1− F (x))f ′(x)/f(x)2.
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3. Bi-s∗-concave distributions

Definition.

• For s ∈ (−1,∞), let s∗ ≡ s/(1 + s) ∈ (−∞,1].

• For s ∈ (−1,0), a distribution function F on R is bi-s∗-concave

if both x 7→ F s
∗
(x) and x 7→ (1− F )s

∗
(x) are convex functions

of x ∈ J(F ).

• For s ∈ (0,∞), F on R is bi-s∗-concave if x 7→ F s
∗
(x) is concave

for x ∈ (inf J(F ),∞) and and x 7→ (1− F )s
∗
(x) is concave

for x ∈ (−∞, sup J(F )).

• For s = 0, F on R is bi-0-concave or bi-log-concave if both

x 7→ logF (x) and x 7→ log(1− F (x)) are concave functions of

x ∈ J(F ).
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Theorem 2. (Bi-s∗-characterization theorem) Let s ∈ (−1,∞].
For a non-degenerate distribution function F the following four
statements are equivalent:
(i) F is bi-s∗-concave.
(ii) F is continuous on R and differentiable on J(F ) with
derivative f = F ′. Moreover when s ≤ 0,

F (x+ t)


≤ F (x) ·

(
1 + s∗ f(x)

F (x)t
)1/s∗

+

≥ 1− (1− F (x)) ·
(
1− s∗ f(x)

1−F (x)t
)1/s∗

+

(2)

for all x ∈ R and t ∈ R. When s > 0,

F (x+ t)


≤ F (x) ·

(
1 + s∗ f(x)

F (x)t
)1/s∗

+
, for t ∈ (a− x,∞)

≥ 1− (1− F (x)) ·
(
1− s∗ f(x)

1−F (x)t
)1/s∗

+
, for t ∈ (−∞, b− x)

(3)

for all x ∈ J(F ) .
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(iii) F is continuous on R and differentiable on J(F ) with

derivative f = F ′ such that the s∗−hazard function f/(1−F )1−s∗

is non-decreasing, and the reverse s∗−hazard function f/F1−s∗ is

non-increasing on J(F ).

(iv) F is continuous on R and differentiable on J(F ) with

bounded and strictly positive derivative f = F ′. Furthermore, f is

locally Lipschitz-continuous on J(F ) with L1−derivative f ′ = F ′′

satisfying

−(1− s∗)
f2

1− F
≤ f ′ ≤ (1− s∗)

f2

F
. (4)
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Corollary.

Suppose that F is bi-s∗-concave for s ∈ (−1,∞]. Then

γ(F ) = sup
x∈J(F )

F (x)(1− F (x))
|f ′(x)|
f2(x)

≤ 1− s∗ =
1

1 + s
,

and

γ̃(F ) = sup
x∈J(F )

min{F (x),1− F (x)}
|f ′(x)|
f2(x)

≤ 1− s∗ =
1

1 + s
.
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Questions and further problems:

Q1. Application of bi-s∗-concavity to construction of confidence

bands for F . For s = 0, this has been implemented by DKW

(2017).

Q2. Can anything be said when f is s−concave with s ≤ −1?

Q3. Bi-log-concave or bi-s∗-concave in higher dimensions?

Q4. What are the “right” hypotheses for the study of

transportation (Wasserstein) distances for empirical

measures on Rd with d ≥ 2?
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Fröhlichen Geburtstag Arnold!
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