
IMS Le Cam Lecture

Maximum Likelihood in modern times:

the ugly, the bad, and the good

Jon A. Wellner

University of Washington, Seattle

Joint Statistical Meetings, Seattle, August 10, 2015



IMS Meeting, Seattle

Based (in part) on joint work with:

• Qiyang (Roy) Han

• Charles Doss

• Hanna Jankowski

• Marloes Maathuis

• Kaspar Rufibach

• Arseni Seregin



Some photos of Lucien Le Cam:

IMS Le Cam Lecture, Seattle, August 10, 2015 1.2
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Oberwolfach, 1980, with daughter Linda

(Oberwolfach photo collection)
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Oberwolfach, 1980, with daughter Linda

(from Günther Sawitzki, Heidelberg)
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1. Starting points: Two Papers

• L. Le Cam (1990): Maximum likelihood: An Introduction.

Lots can go wrong, even in parametric models:

B Contaminated normal mixture model; Kiefer and Wol-

fowitz (1956): MLE does not exist.

B Shifted log-normal; Hill (1963); MLE does not exist;

likelihood blows up.

B Spiked Gaussians; Kemperman (noted in Le Cam (1970);

MLE does not exist; likelihood blows up.

B Neyman Scott models, Ferguson and Bahadur examples;

MLE exists but is inconsistent.

B MLE does not always have minimum risk: Stein’s inad-

missibility theorem!

B Dose - binary response model: Berkson says “minimum

chi-square, not maximum likelihood”.
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• S. Stigler (2007): The Epic Story of Maximum Likelihood.

B History of ML from “well before Fisher” (earliest reference

is Lambert (1760)) to “Le Cam’s dissertation” (1953).

B Nasty ugly fact due to Joe Hodges (1951): super-

efficient estimators, with asymptotically smaller variance

than MLE’s exist even for the simplest parametric models,

contradicting Fisher’s (1922) claims of asymptotic opti-

mality of MLE’s.

B Stigler closes his paper with:

“We now understand the limitations of maximum

likelihood better than Fisher did, but far from well

enough to guarantee safety in its application in

complex situations where it is most needed. Maximum

Likelihood remains a truly beautiful theory, even

though tragedy may lurk around a corner.”
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Ugly fact of super efficiency:

• Context: X1, . . . , Xn i.i.d. N(θ,1).

• MLE of θ is θ̂n = Xn.

• Hodges estimator Tn: for 0 < a < 1,

Tn =

{
Xn, if |Xn| ≥ n−1/4,

(1− a) · 0 + aXn, if |Xn| < n−1/4

•
√
n(X − θ)

d
= N(0,1) under Pθ for all θ, n ≥ 1.

•
√
n(Tn − θ)→d

{
N(0,1), if θ 6= 0,
N(0, a2), if θ = 0.

• Under θn = t/
√
n,

√
n(Tn − θn)→d aZ + t(a− 1) ∼ N(t(a− 1), a2).
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Risk (MSE) of Hodges estimator:

Rn(θ) = Eθ{n(Tn − θ)2}

with a = .5 and n ∈ {5,25,100,250,500}.
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Local Risk of Hodges estimator:

Rlocn (t) = Rn(t/
√
n) = Et/

√
n{n(Tn − t/

√
n)2}

and limiting risk Rasymp(t) = a2+(1−a)2t2 with a = .5, θ = t/
√
n,

and n ∈ {5,25,100,250,500}.
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2. Maximum Likelihood in the modern age:

1953 - present

� Two (rough) periods:
N “Completion” of the parametric story: 1953 - 1972.
• parametric MLE: Le Cam (1970).
• Hájek - Le Cam convolution and

(local) asymptotic minimax theorems (1970 - 1972)
N Infinite dim. parameter spaces: 1972 - 1993
• Semiparametric models:

Cox proportional hazards model (1972); Efron (1977);
Breslow estimator (1972);
efficient estimators for the symmetric location model.

• General rate theory:
Le Cam (1973, 1975), Birgé (1983).

• Developing interaction between rate theory
and empirical process methods:
Strassen & Dudley (1969),
Vapnik and Chervonenkis (1971), Dudley (1978)
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� Questions:

N What about nonparametric and semiparametric models?

N What about models with dimension of the parameter space

increasing with sample size?

N When are parameter spaces “too large” for MLE’s

(or any minimum contrast estimator)?

N What properties do we want to require of our procedures?

• Existence and uniqueness?

• Consistency?

• Efficiency or rate efficiency?

• Stability under model misspecification?

• Easily (or efficiently) computable?

• “Objectivity” or “reproducibility”

(Not too many tuning parameters!)
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Good or desirable properties of the MLE for a given model P:

• Existence (or existence for n ≥ N0).

• Consistent: θ̂n →p θ0 as n→∞.

• Efficient (finite-dimensional parameters), or . . .

• Rate efficient (infinite-dimensional parameters):
MLE converges at the “optimal” (global) rate.

• Stable under model misspecification: if P0 /∈ P, then

θ̂n →p argminθ∈Θd(P0, Pθ)

for some metric or divergence on probability measures, e.g.
d(P,Q) = K(P,Q), the Kullback-Leibler divergence.

•When these desirable properties hold, then we describe the pair
(MLE, P) or the situation as “good”.

IMS Le Cam Lecture, Seattle, August 10, 2015 1.14



• When these desirable properties hold, then we describe the

pair (MLE, P), or the situation as “good”.

• When these various properties fail, then we describe them as

follows:

• If the MLE θ̂n does not exist, then the situation is “bad”:

i.e. the pair (MLE, P) is bad.

• If the MLE θ̂n exists, but is inconsistent, then the situation

is “ugly”; i.e. the pair (MLE, P) is ugly.

• If the MLE θ̂n is consistent but rate inefficient, then the

situation is “bad”.

• If the MLE θ̂n is consistent but unstable under model

misspecification, then the situation, or the pair (MLE, P)

is “bad”.
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Setting 1: dominated families Suppose that X1, . . . , Xn are

i.i.d. with density pθ0
with respect to some dominating measure

µ where pθ0
∈ P = {pθ : θ ∈ Θ}.

The likelihood is

Ln(θ) =
n∏
i=1

pθ(Xi) .

Definition: A Maximum Likelihood Estimator (or MLE) of θ0 is

any value θ̂n ∈ Θ satisfying

Ln(θ̂) = sup
θ∈Θ

Ln(θ) .

Equivalently, the MLE θ̂n maximizes the log-likelihood

logLn(θ) =
n∑
i=1

logpθ(Xi) .
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Example 1. (A “regular” parametric model) Exponential (θ). If

X1, . . . , Xn are i.i.d. pθ0
where pθ(x) = θexp(−θx)1[0,∞)(x). Then

Ln(θ) =
n∏
i=1

pθ(Xi) = θnexp(−θ
n∑
1

Xi),

so

n−1logLn(θ) = Pnlogpθ(X) = log(θ)− θXn,

and θ̂n = 1/Xn.
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Example 2. (A “nonparametric” model) Monotone decreasing
densities on [0,∞). Suppose X1, . . . , Xn are i.i.d. p0 ∈ P where

P = { all nonincreasing densities on [0,∞)} .
This is a nonparametric model defined by a shape constraint.
Then

Ln(p) =
n∏
i=1

p(Xi)

is maximized by the Grenander estimator:

p̂n(x) = left derivative at x of the

Least Concave Majorant

Cn of Fn
where Fn(x) = n−1∑n

i=1 1{Xi ≤ x}. This is due to Grenander
(1956). Consistency, limiting distributions at points, and rates
of convergence due to Prakasa Rao, Groeneboom (1985), Birgé
(1987,1989), and van de Geer (1993).
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Fn (dark blue), empirical distribution function, n = 10

Cn (green), least concave majorant of Fn
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MLE p̂n, the Grenander estimator (green);

truth p0(x) = e−x (red)

No tuning parameter!
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Example 3. (A semiparametric model) X1, . . . , Xn are i.i.d. p0 ∈
P where

P = {pθ,G : θ > 0, G a distribution function on R+} with

pθ,G(x, y) =
∫ ∞

0
v2θ · exp(−v(x+ θy))dG(v)

This paired exponential, or frailty, mixture model is contained in
the class of semiparametric mixture models considered by Kiefer
and Wolfowitz (1956).
• The MLE (θ̂, Ĝ) of (θ,G) exists and is unique:

Lindsay (1980, 1983a,b, 1995).
• The MLE is consistent

(under compactness and envelope conditions):
Wald (1949); Kiefer and Wolfowitz (1956).

• The MLE of θ is asymptotically efficient (in certain cases):
van der Vaart (1996). In particular, efficiency holds for
Example 3.
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• In general the (K-W, 1956) class of semiparametric mixture

models is a success story for the (semiparametric) MLE!

This class of models gives a way around the inconsistency

examples of Neyman and Scott (1948).

Hence the pair (MLE, P) is GOOD, at least at the level of

consistency.

• But . . . asymptotic efficiency is known only for a few cases!

van der Vaart (1996)! (More theory needed.)

• Lack of general computational implementations and algorithms

has slowed and impeded progress.

Recent work by Koenker and Mizera (2013, 2014).
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Setting 2: non-dominated families (a slight detour) Suppose

that X1, . . . , Xn are i.i.d. P0 ∈ P where P is some collection

of probability measures on a measurable space (X ,A). If P{x}
denotes the measure under P of the one-point set {x}, the

empirical likelihood of X1, . . . , Xn is defined to be

Ln(P ) =
n∏
i=1

P{Xi} .

Then a (Nonparametric) Maximum Likelihood Estimator (or

MLE) of P0 can be defined as a measure P̂n ∈ P that maximizes

Ln(P ); thus

Ln(P̂ ) = sup
P∈P

Ln(P )

if it exists. A more sophisticated version of this definition is

given by Kiefer and Wolfowitz (1956); see also Barlow (1968)

and Scholz (1980).
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Example 4. (A completely nonparametric model) If P =all

probability measures on (X ,A), then the NonParametric MLE is

P̂n = Pn =
1

n

n∑
i=1

δXi

where δx(A) = 1A(x), so Pn(A) = n−1#{i ≤ n : Xi ∈ A}.
Further examples where this approach “works”:

• Right censored survival data: the nonparametric MLE is the

Kaplan-Meier estimator.

• The Cox (1972) proportional hazards model:

partial likelihood = profile likelihood, and the maximum profile

likelihood estimator is asymptotically efficient: Efron (1977),

Begun, Hall, Huang, and W (1983),

Bickel, Klaassen, Ritov, and W (1993).

• Significant theory via Gill (1989), Gill and van der Vaart (1993),

and van der Vaart (1995)
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3. Existence and Nonexistence of MLE’s

Existence and uniqueness:
• Cramér (1946)
• Mäkeläinen, Schmidt, Styan (1981).
• Lindsay (1983a, 1983b, 1995), Lindsay and Roeder (1993)
• log-concave densities: Dümbgen and Rufibach (2009);

Cule, Samworth, and Stewart (2010)

Nonexistence or non-uniqueness: examples
• Kiefer and Wolfowitz (1956)
• Kraft and Le Cam (1956)
• Hill (1963)
• Barnett (1966)
• Reeds (1985): (multiple roots of Cauchy likelihood equations)
• Drton and Richardson (2004); Drton (2006)
• Unimodal densities, unknown mode: MLE does not exist

Thus (MLE, Punimodal) is bad.
Wegman (1968, 1969, 1970a,b), Reiss (1973, 1976),
Bickel and Fan (1996), Birgé (1997)

• s−concave densities? Existence OK, but uniqueness not clear.
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4. Consistency and Inconsistency of MLE’s

Consistency:

• Wald (1949)

• Kiefer and Wolfowitz (1956)

• Huber (1967); Pollard (1985, 1989)

• Perlman (1972)

• Reiss (1973, 1978); Pfanzagl (1988)

• Wang (1985)

• van de Geer (1993)

Inconsistency: counterexamples

• Neyman and Scott (1948)

• Bahadur (1958), Ferguson (1982)

• Le Cam (1975), (1990)

• Barlow, Bartholomew, Bremner, and Brunk (1972)

• Boyles, Marshall, and Proschan (1985)

• Pan and Chappell (1999)

• Maathuis and Wellner (2008)
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Inconsistency Example 1

• A distribution function F on [0, b) is star-shaped if F (x)/x is

non-decreasing on [0, b).

If X1, . . . , Xn are i.i.d. F ∈ Fstar then Barlow, Bartholomew,

Bremner, and Brunk (1972) show that the (nonparametric) MLE

F̂n of F ∈ Fstar is

F̂n(x) =

Fn(x) ·
x

X(n)
∧ 1


where Fn is the empirical distribution function of the sample and

X(n) = maxi≤nXi. Thus

F̂n(x)→a.s. F (x) ·
x

F−1(1)
6= F (x).
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• True F: F (x) = x3/2 (magenta); Empirical Fn (blue); n = 100

• Fasymp(x) = xF (x) = x5/2 (green); MLE F̂n (red).

• Thus the pair (MLE,Pstarshaped) is ugly .

• Repairs and alternatives:

Jongbloed (2009); Groeneboom and Jongbloed (2014).
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Inconsistency Example 2

• Λ(x) ≡ −log(1− F (x)) =
∫ x
0 (1− F (y))−1dF (y)

= cumulative hazard function of F .

• A distribution function F on [0, b) has

Increasing Failure Rate Average if λ(x) ≡ x−1Λ(x) is non-

decreasing. If X1, . . . , Xn are i.i.d. F ∈ FIFRA then Boyles,

Marshall, and Proschan (1985) show that the (nonparametric)

MLE F̂n of F ∈ FIFRA is given by

λ̂n(x) =

{
λ̂j, X(j) ≤ x < X(j+1), j = 0, . . . , n− 1,
∞, x ≥ X(n),

where

λ̂j =
j∑

i=1

X−1
(i) log

 ∑n
k=iX(k)∑n

k=i+1X(k)

 .
Furthermore, BMP (1985) show that ...
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λ̂n(x) →a.s.

∫ x
0

(∫ ∞
y

zdF (z)

)−1

dF (y)

6= x−1
∫ x

0

(∫ ∞
y

dF (z)

)−1

dF (y) = x−1Λ(x).

For example, if 1− F (x) = e−x (so Xj ∼ exp(1)), then

x−1Λ̂n(x)→a.s. log(1 + x) 6= 1, or

1− F̂n(x)→a.s. (1 + x)−x 6= exp(−x).

This situation is just plain ugly!
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True λ: 1− F (x) = exp(−x2); λ(x) = x, (blue)

λ̂asymp(x) (green);

MLE λ̂n (magenta)

• Alternatives and repairs:

Rojo and Samaniego (1994); ?? .
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Inconsistency Example 3 (Maathuis & W, 2008)

• X = a survival time

(time of individual becoming HIV positive.)

• Y = a real-valued “mark variable”

(measure of genetic distance between infecting HIV virus

& virus in vaccine.)

• (X,Y ) ∼ F on (0,∞)× R.

• T = (T1, . . . , Tk) = a vector of “observation times”,

0 < T1 < T2 < · · · < Tk, independent of (X,Y ).

• Observations (per individual): W = (T,∆, Z) where

∆j = 1{Tj−1 < X ≤ Tj}, j = 1, . . . , k + 1,

with T0 ≡ 0, Tk+1 ≡ ∞
Z = ∆+Y , ∆+ =

∑k
j=1 ∆j.

• Estimate F0, the joint distribution of (X,Y ) based on

W1, . . . ,Wn i.i.d. as W .

IMS Le Cam Lecture, Seattle, August 10, 2015 1.32



Inconsistency Example 3, cont’d:

• Maathuis and W (2008) show that F̂n exists

and is (essentially) unique.

• F̂n(x, y)→a.s. F∞(x, y) 6=F (x, y). ugly!

• Alternatives and repairs: (via sieves or smoothing)

Hudgens, Maathuis, and Gilbert (2007);

Groeneboom, Jongbloed and Witte (2010, 2012a,b)

More Inconsistency Examples:

• Left truncated and interval censored data:

Pan and Chappell (1999).

• Bivariate right censoring: Tsai, Leurgans, and Crowley (1986);

van de Laan (1996);

repair by Prentice (2014)?!

• . . .
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5. Convergence Rates:

Optimal and Sub-optimal

• Le Cam (1973, 1975)
• Birgé (1983, 1986)
• Birgé and Massart (1993)

Covering numbers & bracketing numbers: (T, ρ) a metric space
Kolmogorov and Tikhomirov (1959), . . ..

N(ε, T, ρ) = min{k ∈ N : T ⊂ ∪kj=1B(tj, ε)}
= minimum number of ρ− balls of radius ε needed to cover T.

Proposition. For B(0, R) ⊂ Rd, ρ = ‖ · ‖ = Euclidean distance,

N(ε, B(0, R), ‖ · ‖) ≤
(

6R
ε

)d
Theorem. (Kolmogorov 1955) If X is a bounded convex subset
of Rd and Cα1 (X ) is the subset of the collection of all α−smooth
functions Cα(X ) on X with ‖f‖α ≤ 1, then

logN(ε, Cα1 (X ), ‖ · ‖∞) ≤
K

εd/α

for every ε > 0 where K = Kα,d,X .
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An ε = 5/32 covering of the unit square, T = [0,1]2;

N(ε, T, ‖ · ‖) = 23.
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From Le Cam (1973,1975) and Birgé (1983):

Minimax optimal rate of convergence δn = δ
opt
n is determined by

nδ2
n = logN[ ](δn,P, d). (1)

If

logN[ ](ε,P, d) �
K

ε1/γ
, (2)

then (1) leads to the optimal rate of convergence

δoptn = n−γ/(2γ+1).

Thus

d(Tn, θ) = Op(δ
opt
n ) or Eθd(Tn, θ) = O(δoptn );
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On the other hand, the bounds from Birgé and Massart (1993)

yield achieved rates of convergence for MLE’s (and other

minimum contrast estimators) δn = δachn determined by

√
nδ2
n =

∫ δn
cδ2
n

√
logN[ ](ε,P, d)dε,

so that

d(θ̂n, θ) = Op(δ
ach
n ) or Eθd(θ̂n, θ) = O(δachn ).

Note that since N[ ](ε,P, d) is a decreasing function of ε,∫ δn
cδ2
n

√
logN[ ](ε,P, d)dε ≥ δn ·

√
logN[ ](δn,P, d),

where
√
nδ2
n = δn

√
logN[ ](δn,P, d)

leads to (1).
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. . . and if (2) holds, this leads to the rate of convergence

δachn =

{
n−γ/(2γ+1), if γ > 1/2,
n−γ/2, if γ < 1/2,

}
6= δoptn

if

{
1/γ < 2, the “Donsker” domain,
1/γ > 2, the “trans-Donsker” domain

}
.

See van der Vaart & W (1996), sections 3.2 and 3.4; van de Geer

(2000), chapter 7. Thus there is the possibility that Maximum

Likelihood is not (rate-)optimal when γ < 1/2. Thus when

γ−1 =
d

α
,

{
γ−1 < 2 if α > d/2, MLE is rate optimal, (good!),
γ−1 > 2 if α < d/2, MLE is rate sub-optimal, (bad!)

}
.
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van de Geer (2000), page 122:
“Because there do exist other estimators with better conver-
gence rates (see . . .), one should not use the maximum likelihood
estimator when the entropy integral diverges.”

• Many interesting models with γ−1 = d/α < 2:
. Monotone functions on R: α = 1, d = 1, so γ−1 = 1.
. Convex functions on R or R2: α = 2, d ∈ {1,2,3},

so γ−1 ∈ {1/2,1,3/2}.
• Some interesting models with smoothness increasing

“naturally” with dimension:
. Functions of bounded variation on Rd.
α = d, γ = d, so γ−1 = d/d = 1 (but (logn)τ factors

appear! Gao and W, 2013)
• Many interesting models with γ−1 = d/α > 2:

. Coordinatewise monotone functions on (R+)d:
α = 1, d ≥ 3, so γ−1 = d/α > 2

. Convex functions on Rd: α = 2, d > 4, so γ−1 = d/α > 2.
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Rate exponents: optimal (blue); achieved (magenta)
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γ

2 γ + 1
-
γ

2
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Difference of rate exponents: γ
2γ+1 −

γ
2 = γ(1−2γ)

2(2γ+1),

maximum difference = (3/4)− 1/
√

2 =̇ .043 . . .,

achieved at γ = (
√

2− 1)/2 =̇ .207 . . ..
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• Example: Birgé (unpublished?), S. Chatterjee (2014)

Suppose we observe Y = θ + Z with Z ∼ Nn+1(0, I),

where θ = (θ0, θ
′) ∈ Θ where

Θ = {θ ∈ Rn+1 : |θ0| ≤ n1/4, ‖θ′‖ ≤ 2(1− n−1/4|θ0|)}.

Then for n ≥ 128, θ̂n = LSE = MLE =
∏

(Y |Θ),

sup
θ∈Θ

Eθ‖θ̂n − θ‖2 ≥ (3/4)
√
n+ 3.

On the other hand, if θ̃n ≡ (Y0,0, . . . ,0), then

sup
θ∈Θ

Eθ‖θ̃n − θ‖2 ≤ 5.

Hence the MLE is rate suboptimal for this model.
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A section of the set Θ for Birgé’s example, n = 8000.
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6. Stability or instability

under Model misspecification

• Stability or Instablility

Le Cam (1990), page 168, writes:
“. . . if possible the method or procedure, or optimality principle
used to select the estimation procedure should preferably have
some sort of stability . . .”.

Examples from shape constrained estimation:

• ML estimation of a decreasing density on R+: (Good; Patilea
2001, Jankowski 2014)

• ML estimation of a log-concave density on Rd. (Good; Cule-
Samworth 2010)

• ML estimation of s− concave densities on Rd. (Bad, Seregin
& W 2010)

• Rényi - divergence estimation of an s−
concave density on Rd. (Good; Han & W, 2015)
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6. Outline

• A: The Grenander estimator off the model.

• B: Log-concave and s−concave densities on R and Rd

• C: s−concave densities on R and Rd

• D: Maximum Likelihood for log-concave and s−concave

densities

B 1: Basics

B 2: On the model

B 3: Off the model

• E. An alternative to ML: Rényi divergence estimators

B 1. Basics

B 2. On the model

B 3. Off the model
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6A. The Grenander estimator off the model

• Suppose that X1, . . . , Xn are i.i.d. Q where the distribution
function FQ(x) = Q(−∞, x] is not concave, and hence Q /∈ Pmon.
• Under very mild conditions, it has been shown by Patilea
(2001) that the Grenander estimator, i.e. MLE p̂n for Pmon
satisfies: ∫

R+
|p̂n(x)− p∗(x)|dx→a.s. 0

where, for the Kullback-Leibler divergence

K(Q,P ) =
∫

log(dQ/dP )(x)dQ(x),

p∗ ≡ p∗Q = argminp∈Pmon(R+)K(Q,P )

is the “pseudo-true” density in Pmon(R+) corresponding to Q.
Patilea (2001) also shows that

p∗(x) = left derivative at x of the

Least Concave Majorant

C of FQ(x) ≡
∫ x

0
dQ(y).
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The Gamma(3,1) density q(x) = 2−1x2exp(−x)1(0,∞)(x).

IMS Le Cam Lecture, Seattle, August 10, 2015 1.47



2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

The Gamma(3,1) distribution function,

FQ(x) = 1− exp(−x)
(
1 + x+ (1/2)x2

)
1(0,∞)(x).
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The Gamma(3,1) distribution function and its Least Concave

Majorant.
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The pseudo true density p∗Q for the Grenander estimator at the

Gamma(3,1) distribution.

This stability property under model misspecification is (very)

good! Further results for smooth functionals by Jankowski

(2014).
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6B. Log-concave densities on R and Rd

If a density p on Rd is of the form

p(x) ≡ pϕ(x) = exp(ϕ(x)) = exp (−(−ϕ(x)))

where ϕ is concave (so −ϕ is convex), then f is log-concave.
The class of all densities p on Rd of this form is called the class
of log-concave densities, Plog−concave ≡ P0.

Properties of log-concave densities:

• Every log-concave density p is unimodal (quasi concave).

• P0 is closed under convolution.

• P0 is closed under marginalization.

• P0 is closed under weak limits.

• A density p on R is log-concave if and only if its convolution
with any unimodal density is again unimodal (Ibragimov,
1956).
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• Many parametric families are log-concave, for example:

B Normal (µ, σ2)

B Uniform(a, b)

B Gamma(r, λ) for r ≥ 1

B Beta(a, b) for a, b ≥ 1

• tr densities with r > 0 are not log-concave.

• Tails of log-concave densities are necessarily sub-exponential.

• Plog−concave = the class of “Polyá frequency functions of

order 2”, PF2, in the terminology of Schoenberg (1951) and

Karlin (1968). See Marshall and Olkin (1979), chapter 18,

and Dharmadhikari and Joag-Dev (1988), page 150. for nice

introductions.
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6C. s− concave densities on R and Rd

Let s ∈ R. If a density p on Rd is of the form

p(x) ≡ pϕ(x) =


(ϕ(x))1/s, ϕ convex, if s < 0
exp(−ϕ(x)), ϕ convex, if s = 0
(ϕ(x))1/s, ϕ concave, if s > 0,

then f is s-concave.

The classes Ps of all densities p on Rd of these forms are the

classes of s−concave densities.

The following inclusions hold: if −∞ < s < 0 < r <∞, then

Pr ⊂ P0 ⊂ Ps ⊂ P−∞
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Properties of s-concave densities:

• Every s−concave density p is quasi-concave: Ps ⊂ P−∞.

• The Student tν density, tν ∈ Ps for s ≤ −1/(1 + ν). Thus the
Cauchy density (= t1) is in P−1/2 ⊂ Ps for s ≤ −1/2.

• The classes Ps have interesting closure properties under
convolution and marginalization which follow from the Borell-
Brascamp-Lieb inequality: let 0 < λ < 1, −1/d ≤ s ≤ ∞, and
let p, q, h : Rd → [0,∞) be integrable functions such that

h((1− λ)x+ λy) ≥Ms(p(x), q(x), λ) for all x, y ∈ Rd

where

Ms(a, b, λ) = ((1− λ)as + λbs)1/s, M0(a, b, λ) = a1−λbλ.

Then∫
Rd
h(x)dx ≥Ms/(sd+1)

(∫
Rd
p(x)dx,

∫
Rd
q(x)dx, λ

)
.
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D. Maximum Likelihood:

0-concave and s-concave densities

MLE of p and ϕ: Let C denote the class of all concave functions

ϕ : Rd → [−∞,∞). The estimator ϕ̂n based on X1, . . . , Xn i.i.d.

as p0 is the maximizer of the “adjusted criterion function”

`n(ϕ) =
∫

logpϕ(x)dPn(x)−
∫
pϕ(x)dx

=


∫
ϕ(x)dPn(x)−

∫
eϕ(x)dx, s = 0,∫

(1/s)log(−ϕ(x))+dPn(x)−
∫

(−ϕ(x))
1/s
+ dx, s < 0,

over ϕ ∈ C.
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1. Basics

• The MLE’s for P0 exist and are unique when n ≥ d+ 1.

Dümbgen and Rufibach (2009);

Cule, Samworth, and Stewart (2010)

• The MLE for Ps does not exist if s < −1/d. (Doss & W

(2013), well known for s = −∞ and d = 1.)

• The MLE’s for Ps exist for s ∈ (−1/d,0) when

n ≥ d
(

r

r − d

)
where r = −1/s. Thus the MLE exists only if n → ∞ as

−1/s = r ↘ d. (Seregin & W (2010))

• MLE ϕ̂n is piecewise affine for −1/d < s ≤ 0.

• Uniqueness of MLE’s for Ps?
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2. On the model

• The MLE’s are Hellinger and L1− consistent.

• The log-concave MLE’s p̂n,0 satisfy∫
ea|x||p̂n,0(x)− p0(x)|dx→a.s. 0.

for a < a0 where p0(x) ≤ exp(−a0|x|+ b0).

• The s−concave MLE’s are computationally awkward; log is
“too aggressive” a transform for s−concave densities. [Note
that ML has difficulties even for location t− families: multiple
roots of the likelihood equations.]

• Global rates? H(p̂n,s, p0) = Op(n−2/5) for −1 < s ≤ 0, d = 1.
(Doss & W 2013, 2015).

• Pointwise distribution theory for p̂n,0 when d = 1.
Pointwise distribution theory for MLE when s < 0? d > 1?
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3. Off the model (Cule and Samworth (2010),
Dümbgen, Samworth, and Schumacher (2011))

Now suppose that X ∼ Q is an arbitrary probability measure on
Rd with density q, EQ|X| <∞, X1, . . . , Xn are i.i.d. q.

• The MLE p̂n,0 for P0 satisfies:∫
Rd
|p̂n,0(x)− p∗0(x)|dx→a.s. 0

where, for the Kullback-Leibler divergence

K(q, p) =
∫
q(x)log(q(x)/p(x))dx,

p∗0 ≡ p
∗
Q = argminp∈P0(Rd)K(q, p)

is the “pseudo-true” density in P0(Rd) corresponding to q.
In fact: for any a < a0 where p∗0(x) ≤ exp(−a0‖x‖+ b0),∫

Rd
ea‖x‖|p̂n,0(x)− p∗0(x)|dx→a.s. 0
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• Example 1. (Dümbgen, Samworth, and Schumacher (2011)).

If

q(x) =
1

2

1

(1 + x2)3/2
, then p∗(x) =

1

2
exp(−|x|).
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• Example 2. (Dümbgen, Samworth, and Schumacher (2011)).

If

q(x) = .7 ·N(−1.5,1) + .3N(1.5,1), then p∗ is :

-4 -2 2 4
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0.10

0.15

0.20

0.25
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• This stability property of the MLE p̂n,0 for P0 is (very!) good!

• In contrast, the MLE p̂n,s for Ps does not behave well off the

model. Retracing the basic arguments of Cule and Samworth

(2010) leads to negative conclusions. (How negative remains

to be pinned down!)

Conclusion: Investigate alternative methods for estimation in

the larger classes Ps with s < 0! This leads to the proposals by

Koenker and Mizera (2010).
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E. An alternative to ML:

Rényi divergence estimators

0. Notation and Definitions

• β = 1 + 1/s < 0, α−1 + β−1 = 1.

• C(X) = all continuous functions on conv(X).

• C∗(X) = all signed Radon measures on C(X) = dual space of C(X).

• G(X) = all closed convex (lower s.c.) functions on conv(X).

• G(X)+ = all non-negative g ∈ G(X)

• G(X)◦ = {G ∈ C∗(X) :
∫
gdG ≤ 0 for all g ∈ G(X}, the polar

(or dual) cone of G(X);

• G(X)◦+
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Primal problems: P0 and Ps:

• P0: ming∈G(X)L0(g,Pn) where

L0(g,Pn) = Png +
∫
Rd

exp(−g(x))dx.

• Ps: ming∈G(X)+
Ls(g,Pn) where

Ls(g,Pn) = Png +
1

|β|

∫
Rd
g(x)βdx.
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Dual problems: P0 and Ps:

• D0: maxp {−
∫
p(y)logp(y)dy} subject to

p(y) =
d(Pn −G)

dy
for some G ∈ G(X)◦.

• Ds: maxp
∫ p(y)α

α dy subject to

p(y) =
d(Pn −G)

dy
for some G ∈ G(X)◦+.
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Why do these make sense?

• Population version of P0: ming∈G L0(g, p0) where

L0(g, p0) =
∫
{g(x)p0(x) + e−g(x)}dx.

Minimizing the integrand pointwise in g = g(x) for fixed p0(x)

yields p0(x)− e−g = 0 if e−g = e−g(x) = p0(x).

• Population version of Ps: ming∈G Ls(g, p0) where

Ls(g, p0) =
∫
{g(x)p0(x) +

1

|β|
gβ(x)}dx.

Minimizing the integrand pointwise in g = g(x) for fixed p0(x)

yields f0(x) + (β/|β|)gβ−1 = p0(x) − gβ−1 = 0, and hence

g1/s = g1/s(x) = p0(x).
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1. Basics for the Rényi divergence estimators:

• (Koenker and Mizera, 2010) If conv(X) has non-empty

interior (true a.s. if n ≥ d + 1), then strong duality between

Ps and Ds holds. The dual optimal solution exists, is unique,

and p̂n = ĝ
1/s
n .

• (Koenker and Mizera, 2010) The solution p = g1/s in the

population version of the problem when Q = P0 has density

p0 ∈ Ps is Fisher-consistent; i.e. p = p0.
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2. Off the model: Han & W (2015)

Let

Q1 ≡ {Q on (Rd,Bd) :
∫
‖x‖dQ(x) <∞},

Q0 ≡ {Q on (Rd,Bd) : int(csupp(Q)) 6= ∅}.

• Theorem (Han & W, 2015): If −1/(d + 1) < s < 0 and

Q ∈ Q0 ∩ Q1, then the primal problem Ps(Q) has a unique

solution g̃ ∈ G which satisfies p̃ = g̃1/s where g̃ is bounded

away from 0 and p̃ is a bounded density.
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• Theorem (Han & W, 2015): Suppose that:

(i) d ≥ 1,

(ii) −1/(d+ 1) < s < 0, and

(iii) Q ∈ Q0 ∩Q1.

If pQ,s denotes the (pseudo-true) solution to the primal

problem Ps(Q), then for any κ < r − d = (−1/s)− d,∫
(1 + |x|)κ|p̂n,s(x)− pQ,s(x)|dx→a.s. 0 as n→∞.

• Theorem (Han & W, 2015): Let d = 1. If p̂n,s denotes

the solution to the primal problem Ps and p̂n,0 denotes the

solution to the primal problem P0, then for any κ > 0, p ≥ 1,∫
(1 + |x|)κ|p̂n,s(x)− p̂n,0(x)|pdx→ 0 as s↗ 0.
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3. On the model: Q has density p ∈ Ps; p = g1/s for some g

convex.

• Consistency: Suppose that: (i) d ≥ 1 and −1/(d+1) < s < 0.

Then for any κ < r − d = (−1/s)− d,∫
(1 + |x|)κ|p̂n,s(x)− p(x)|dx→a.s. 0 as n→∞.

Thus H(p̂n,s, p)→a.s. 0 as well.

• Pointwise limit theory: (paralleling the results of Balabdaoui,

Rufibach, and W (2009) for s = 0)

See Han & W (2015) and W (2015), EMS talk,

Amsterdam
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• Summary for log-concave MLE and s−concave MLE:

• For log-concave densities P0: MLE is consistent and stable

under model misspecification. Good!

• For s−concave densities Ps with s < 0:

B MLE does not exist for s < −1/d; exists for −1/d < s < 0

but only for n ≥ rd/(r − d) with r = −1/s > d. Bad!

B MLE is consistent for −1/d < s < 0, but unstable under

model misspecification. Bad!

For s−concave densities Ps with s < 0:

B Rényi divergence estimators exist for −1/(d + 1) < s < 0

and n ≥ d+ 1. Good!

B Rényi divergence estimators are stable under model mis-

specification. Good!
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7. Summary and Conclusions:

ugly, bad, and good

• Bad and ugly:
Maximum likelihood remains useful in many nonparametric and
semiparametric models, but it also has potential difficulties and
shortcomings, including:

• The MLE may not exist.

• If the MLE exists, it may only exist for sample sizes which
grow with the size of the model.

• If the MLE exists, it may be inconsistent.

• If the MLE is consistent, it may be rate - inefficient for
models which are “trans-Donsker” (i.e. with divergent en-
tropy integrals). (This behavior persists for other minimum
contrast estimators!)

• If the MLE exists and is consistent, it may be unstable with
respect to model misspecification.
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• Good: Maximum likelihood estimation and likelihood methods
more broadly have been very successful in many semiparametric
and nonparametric models, including:

• Nonparametric models: Right censoring: the Kaplan-Meier
estimator: (consistent, asymptotically efficient).

• Semiparametric models: The Cox proportional hazards
model: (consistent, asymptotically efficient).

• Semiparametric models: Kiefer-Wolfowitz semiparametric
mixture models: (consistent, asymptotically efficient in some
cases)

• Nonparametric, shape constrained: Grenander’s MLE of a
decreasing density: (consistent, stable under model misspec-
ification)

• Nonparametric, shape constrained: Log-concave densities:
(consistent, stable under model misspecification).
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• Many problems remain:

• How can we make use of likelihood methods in settings

involving high-dimensions?

• How to find alternatives to ML with desirable statistical (and

computational) properties?

• Other divergences or contrast functions may have better

behavior?

• Can we have both rate efficiency and stability under model

misspecification?
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Maximum Likelihood & variants:

current activity levels, MathSciNet

search term total hits hits 2010-2015 % recent

Maximum likelihood 13003 2782 21%
Partial likelihood 308 71 23%
Nonparametric ML 306 189 62%
Semiparametric ML 283 111 39%
Profile likelihood 255 90 35%
Pseudo likelihood 217 81 37%
Restricted ML 202 42 21%
Conditional ML 144 33 23%
Penalized ML 106 87 82%
Approximate likelihood 102 27 26%
Composite likelihood 89 73 82%
Generalized ML 79 12 15%
ML + consistency 1163 254 22%
ML + efficiency 977 198 20%
ML + computation 752 232 31%
ML + smooth 204 48 24%
ML + sieve 82 18 22%
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From van der Vaart (2002), “The statistical work of Lucien Le

Cam”.

“In Section 11 we noted that Le Cam was critical of

the method of maximum likelihood, which in his view

looks for a “peculiarity” of the likelihood function. This

did not prevent him from investigating conditions under

which the MLE does have the properties that are usually

ascribed to it.”

From Le Cam (1990), “An introduction to maximum likelihood”.

“If the hallowed principle of maximum likelihood leads us

to difficulties, maybe some other principle will save us.

There is such a principle. It is as follows:

• Basic Principle 0: Do not trust any principle.
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Thank you!
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