Empirical Process Theory for Statistics

Jon A. Wellner

University of Washington, Seattle, visiting Heidelberg

Short Course to be given at
Institut de Statistique, Biostatistique, et Sciences Actuarielles
Louvain-la-Neuve
29-30 May 2012

Short Course, Louvain-Ia-Neuve

- Day 1 (Tuesday):
\triangleright Lecture 1: Introduction, history, selected examples.
\triangleright Lecture 2: Some basic inequalities and Glivenko-Cantelli theorems.
\triangleright Lecture 3: Using the Glivenko-Cantelli theorems: first applications.

Based on Courses given at Torgnon, Cortona, and Delft (2003-2005). Notes available at:
http://www.stat.washington.edu/jaw/
RESEARCH/TALKS/talks.html

- Day 2 (Wednesday):
\triangleright Donsker theorems and some inequalities
\triangleright Peeling methods and rates of convergence
\triangleright Some useful preservation theorems.

Lecture 1: Introduction, history, selected examples

- 1. Classical empirical processes
- 2. Modern empirical processes
- 3. Some examples

1. Classical empirical processes. Suppose that:

- X_{1}, \ldots, X_{n} are i.i.d. with d.f. F on \mathbb{R}.
- $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1_{\left[X_{i} \leq x\right]}$, the empirical distribution function.
- $\left\{\mathbb{Z}_{n}(x) \equiv \sqrt{n}\left(\mathbb{F}_{n}(x)-F(x)\right): x \in \mathbb{R}\right\}$, the empirical process.

Two classical theorems:
Theorem 1. (Glivenko-Cantelli, 1933).

$$
\left\|\mathbb{F}_{n}-F\right\|_{\infty} \equiv \sup _{-\infty<x<\infty}\left|\mathbb{F}_{n}(x)-F(x)\right| \rightarrow \text { a.s. } 0
$$

Theorem 2. (Donsker, 1952).

$$
\mathbb{Z}_{n} \Rightarrow \mathbb{Z} \equiv \mathbb{U}(F) \quad \text { in } \quad D\left(R,\|\cdot\|_{\infty}\right)
$$

where \mathbb{U} is a standard Brownian bridge process on [0,1]; i.e. \mathbb{U} is a zero-mean Gaussian process with covariance

$$
E(\mathbb{U}(s) \mathbb{U}(t))=s \wedge t-s t, \quad s, t \in[0,1]
$$

This means that we have

$$
E g\left(\mathbb{Z}_{n}\right) \rightarrow E g(\mathbb{Z})
$$

for any bounded, continuous function $g: D\left(\mathbb{R},\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ and

$$
g\left(\mathbb{Z}_{n}\right) \rightarrow_{d} g(\mathbb{Z})
$$

for any continuous function $g: D\left(\mathbb{R},\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ (ignoring measurability issues).

2. General empirical processes (indexed by functions)

Suppose that:

- X_{1}, \ldots, X_{n} are i.i.d. with probability measure P on $(\mathcal{X}, \mathcal{A})$.
- $\mathbb{P}_{n}=n^{-1} \sum_{i=1}^{n} \delta_{X_{i}}$, the empirical measure; here

$$
\delta_{x}(A)=1_{A}(x)=\left\{\begin{array}{ll}
1, & x \in A, \\
0, & x \in A^{c}
\end{array} \quad \text { for } \quad A \in \mathcal{A} .\right.
$$

Hence we have

$$
\mathbb{P}_{n}(A)=n^{-1} \sum_{i=1}^{n} 1_{A}\left(X_{i}\right), \quad \text { and } \quad \mathbb{P}_{n}(f)=n^{-1} \sum_{i=1}^{n} f\left(X_{i}\right) .
$$

- $\left\{\mathbb{G}_{n}(f) \equiv \sqrt{n}\left(\mathbb{P}_{n}(f)-P(f)\right): f \in \mathcal{F} \subset L_{2}(P)\right\}$, the empirical process indexed by \mathcal{F}

Note that the classical case corresponds to:

- $(\mathcal{X}, \mathcal{A})=(\mathbb{R}, \mathcal{B})$.
- $\mathcal{F}=\left\{1_{(-\infty, t]}(\cdot): \quad t \in \mathbb{R}\right\}$.

Then

$$
\begin{aligned}
& \mathbb{P}_{n}\left(1_{(-\infty, t]}\right)=n^{-1} \sum_{i=1}^{n} 1_{(-\infty, t]}\left(X_{i}\right)=\mathbb{F}_{n}(t) \\
& P\left(1_{(-\infty, t]}\right)=F(t) \\
& \mathbb{G}_{n}\left(1_{(-\infty, t]}\right)=\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left(1_{(-\infty, t]}=\sqrt{n}\left(\mathbb{F}_{n}(t)-F(t)\right)\right. \\
& \mathbb{G}\left(1_{(-\infty, t]}\right)=\mathbb{U}(F(t))
\end{aligned}
$$

Two central questions for the general theory:
A. For what classes of functions \mathcal{F} does a natural generalization of the Glivenko-Cantelli theorem hold? That is, for what classes \mathcal{F} do we have

$$
\left\|\mathbb{P}_{n}-P\right\|_{\mathcal{F}}^{*} \rightarrow_{\text {a.s. }} 0
$$

If this convergence holds, then we say that \mathcal{F} is a P-GlivenkoCantelli class of functions.
B. For what classes of functions \mathcal{F} does a natural generalization of Donsker's theorem hold? That is, for what classes \mathcal{F} do we have

$$
\mathbb{G}_{n} \Rightarrow \mathbb{G} \text { in } \ell^{\infty}(\mathcal{F}) ?
$$

If this convergence holds, then we say that \mathcal{F} is a P-Donsker class of functions.

Here \mathbb{G} is a 0 -mean P-Brownian bridge process with uniformlycontinuous sample paths with respect to the semi-metric $\rho_{P}(f, g)$ defined by

$$
\rho_{P}^{2}(f, g)=\operatorname{Var}_{P}(f(X)-g(X)),
$$

$\ell^{\infty}(\mathcal{F})$ is the space of all bounded, real-valued functions from \mathcal{F} to \mathbb{R} :

$$
\ell^{\infty}(\mathcal{F})=\left\{x: \mathcal{F} \mapsto \mathbb{R}\left|\|x\|_{\mathcal{F}} \equiv \sup _{f \in \mathcal{F}}\right| x(f) \mid<\infty\right\}
$$

and

$$
E\{\mathbb{G}(f) \mathbb{G}(g)\}=P(f g)-P(f) P(g) .
$$

3. Some Examples

A commonly occurring problem in statistics: we want to prove consistency or asymptotic normality of some statistic which is not a sum of independent random variables, but which can be related to some natural sum of random functions indexed by a parameter in a suitable (metric) space.
Example 1. Suppose that X_{1}, \ldots, X_{n} are i.i.d. real-valued with $E\left|X_{1}\right|<\infty$, and let $\mu=E\left(X_{1}\right)$. Consider the absolute deviations about the sample mean,

$$
D_{n}=\mathbb{P}_{n}\left|X-\bar{X}_{n}\right|=n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right|
$$

Since $\bar{X}_{n} \rightarrow$ a.s. μ, we know that for any $\delta>0$ we have $\bar{X} \in$ [$\mu-\delta, \mu+\delta$] for all sufficiently large n almost surely. Thus we see that if we define

$$
D_{n}(t) \equiv n^{-1} \mathbb{P}_{n}|x-t|=n^{-1} \sum_{i=1}^{n}\left|X_{i}-t\right|
$$

then $D_{n}=D_{n}\left(\bar{X}_{n}\right)$ and study of $D_{n}(t)$ for $t \in[\mu-\delta, \mu+\delta]$ is equivalent to study of the empirical measure \mathbb{P}_{n} indexed by the class of functions

$$
\mathcal{F}_{\delta}=\left\{x \mapsto|x-t| \equiv f_{t}(x): \quad t \in[\mu-\delta, \mu+\delta]\right\} .
$$

To show that $D_{n} \rightarrow$ a.s. $d \equiv E|X-\mu|$, we write

$$
\begin{align*}
D_{n}-d & =\mathbb{P}_{n}\left|X-\bar{X}_{n}\right|-P|X-\mu| \tag{1}\\
& =\left(\mathbb{P}_{n}-P\right)\left(\left|X-\bar{X}_{n}\right|\right)+P\left|X-\bar{X}_{n}\right|-P|X-\mu| \\
& \equiv I_{n}+I I_{n} . \tag{2}
\end{align*}
$$

Now

$$
\begin{align*}
\left|I_{n}\right| & =\left|\left(\mathbb{P}_{n}-P\right)\left(\left|X-\bar{X}_{n}\right|\right)\right| \\
& \leq \sup _{t:|t-\mu| \leq \delta}\left|\left(\mathbb{P}_{n}-P\right)\right| X-t| |=\sup _{f \in \mathcal{F}_{\delta}}\left|\left(\mathbb{P}_{n}-P\right)(f)\right| \\
& \rightarrow \text { a.s. } 0 \tag{3}
\end{align*}
$$

if \mathcal{F}_{δ} is P-Glivenko-Cantelli.

But convergence of the second term in (2) is easy: by the triangle inequality

$$
\begin{aligned}
I I_{n}=|P| X-\bar{X}_{n}|-P| X-\mu| | & \leq P\left|\bar{X}_{n}-\mu\right|=\left|\bar{X}_{n}-\mu\right| \\
\rightarrow \text { a.s. } & 0
\end{aligned}
$$

How to prove (3)? Consider the functions $f_{1}, \ldots, f_{m} \in \mathcal{F}_{\delta}$ given by

$$
f_{j}(x)=\mid x-(\mu-\delta(1-j / m) \mid, \quad j=0, \ldots, 2 m
$$

For this finite set of functions we have

$$
\max _{0 \leq j \leq 2 m}\left|\left(\mathbb{P}_{n}-P\right)\left(f_{j}\right)\right| \rightarrow_{a . s .} 0
$$

by the strong law of large numbers applied $2 m+1$ times. Furthermore ...
it follows that for $t \in[\mu-\delta(1-j / m), \mu-\delta(1-(j+1) / m)]$ the functions $f_{t}(x)=|x-t|$ satisfy (picture!)
$L_{j}(x) \equiv f_{j / m}(x) \wedge f_{(j+1) / m}(x) \leq f_{t}(x) \leq f_{j / m}(x) \vee f_{(j+1) / m}(x) \equiv U_{j}(x)$
where

$$
U_{j}(x)-f_{t}(x) \leq \frac{1}{m}, \quad f_{t}(x)-L_{j}(x) \leq \frac{1}{m}, \quad U_{j}(x)-L_{j}(x) \leq \frac{1}{m} .
$$

Thus for each m

$$
\begin{aligned}
& \left\|\mathbb{P}_{n}-P\right\|_{\mathcal{F}_{\delta}} \\
& \quad \equiv \sup _{f \in \mathcal{F}_{\delta}}\left|\left(\mathbb{P}_{n}-P\right)(f)\right| \\
& \quad \leq \quad \max \left\{\max _{0 \leq j \leq 2 m}\left|\left(\mathbb{P}_{n}-P\right)\left(U_{j}\right)\right|, \max _{0 \leq j \leq 2 m}\left|\left(\mathbb{P}_{n}-P\right)\left(L_{j}\right)\right|\right\}+1 / m \\
& \rightarrow a . s . \\
& \quad 0+1 / m
\end{aligned}
$$

Taking m large shows that (3) holds.

This is a bracketing argument, and generalizes easily to yield a quite general bracketing Glivenko-Cantelli theorem.
How to prove $\sqrt{n}\left(D_{n}-d\right) \rightarrow_{d}$? We write

$$
\begin{aligned}
\sqrt{n}\left(D_{n}-d\right)= & \sqrt{n}\left(\mathbb{P}_{n}\left|X-\bar{X}_{n}\right|-P|X-\mu|\right) \\
= & \sqrt{n}\left(\mathbb{P}_{n}|X-\mu|-P|X-\mu|\right) \\
& \quad+\sqrt{n}\left(P\left|X-\bar{X}_{n}\right|-P|X-\mu|\right) \\
& \quad+\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left(\left|X-\bar{X}_{n}\right|\right)-\sqrt{n}\left(\mathbb{P}_{n}-P\right)(|X-\mu|) \\
= & \mathbb{G}_{n}(|X-\mu|)+\sqrt{n}\left(H\left(\bar{X}_{n}\right)-H(\mu)\right) \\
& \quad+\mathbb{G}_{n}\left(\left|X-\bar{X}_{n}\right|-|X-\mu|\right) \\
= & \mathbb{G}_{n}(|X-\mu|)+H^{\prime}(\mu)\left(\bar{X}_{n}-\mu\right) \\
& +\sqrt{n}\left(H\left(\bar{X}_{n}\right)-H(\mu)-H^{\prime}(\mu)\left(\bar{X}_{n}-\mu\right)\right) \\
& +\mathbb{G}_{n}\left(\left|X-\bar{X}_{n}\right|-|X-\mu|\right) \\
\equiv & \mathbb{G}_{n}\left(|X-\mu|+H^{\prime}(\mu)(X-\mu)\right)+I_{n}+I I_{n}
\end{aligned}
$$

where ...

$$
\begin{aligned}
H(t) & \equiv P|X-t| \\
I_{n} & \equiv \sqrt{n}\left(H\left(\bar{X}_{n}\right)-H(\mu)-H^{\prime}(\mu)\left(\bar{X}_{n}-\mu\right)\right) \\
I I_{n} & \equiv \mathbb{G}_{n}\left(\left|X-\bar{X}_{n}\right|\right)-\mathbb{G}_{n}(|X-\mu|) \\
& =\mathbb{G}_{n}\left(\left|X-\bar{X}_{n}\right|-|X-\mu|\right) \\
& =\mathbb{G}_{n}\left(f_{\bar{X}_{n}}-f_{\mu}\right)
\end{aligned}
$$

Here $I_{n} \rightarrow p 0$ if $H(t) \equiv P|X-t|$ is differentiable at μ, and

$$
I I_{n} \rightarrow_{p} 0
$$

if \mathcal{F}_{δ} is a Donsker class of functions! This is a consequence of asymptotic equicontinuity of \mathbb{G}_{n} over the class \mathcal{F} : for every $\epsilon>0$

$$
\lim _{\delta \searrow 0} \limsup _{n \rightarrow \infty} \operatorname{Pr}^{*}\left(\sup _{f, g: \rho_{P}(f, g) \leq \delta}\left|\mathbb{G}_{n}(f)-\mathbb{G}_{n}(g)\right|>\epsilon\right)=0 .
$$

Example 2. Copula models: the pseudo-MLE.
Let $c_{\theta}\left(u_{1}, \ldots, u_{p}\right)$ be a copula density with $\theta \subset \Theta \subset R^{q}$. Suppose that X_{1}, \ldots, X_{n} are i.i.d. with density

$$
f\left(x_{1}, \ldots, x_{p}\right)=c_{\theta}\left(F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right) \cdot f_{1}\left(x_{1}\right) \cdots f_{p}\left(x_{p}\right)
$$

where F_{1}, \ldots, F_{p} are absolutely continuous d.f.'s with densities f_{1}, \ldots, f_{p}.
Let

$$
\mathbb{F}_{n, j}\left(x_{j}\right) \equiv n^{-1} \sum_{i=1}^{n} 1\left\{X_{i, j} \leq x_{j}\right\}, \quad j=1, \ldots, p
$$

be the marginal empirical d.f.'s of the data. Then a natural pseudo-likelihood function is given by

$$
l_{n}(\theta) \equiv \mathbb{P}_{n} \log _{c_{\theta}}\left(\mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right)
$$

Thus it seems reasonable to define the pseudo-likelihood estimator $\hat{\theta}_{n}$ of θ by the q-dimensional system of equations

$$
\Psi_{n}\left(\hat{\theta}_{n}\right)=0
$$

where

$$
\Psi_{n}(\theta) \equiv \mathbb{P}_{n}\left(\dot{\ell}_{\theta}\left(\theta ; \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right)\right.
$$

and where

$$
\dot{\ell}_{\theta}\left(\theta ; u_{1}, \ldots, u_{p}\right) \equiv \nabla_{\theta} \log c_{\theta}\left(u_{1}, \ldots, u_{p}\right)
$$

We also define $\Psi(\theta)$ by

$$
\Psi(\theta) \equiv P_{0}\left(\dot{\ell}_{\theta}\left(\theta, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right.
$$

Then we expect that

$$
\begin{equation*}
0=\Psi_{n}\left(\hat{\theta}_{n}\right)=\Psi_{n}\left(\theta_{0}\right)-\left\{-\dot{\Psi}_{n}\left(\theta_{n}^{*}\right)\right\}\left(\hat{\theta}_{n}-\theta_{0}\right) \tag{4}
\end{equation*}
$$

where

$$
\Psi_{n}\left(\theta_{0}\right)=\mathbb{P}_{n} \dot{\dot{\theta}}_{\theta}\left(\theta_{0}, \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right),
$$

and

$$
\begin{align*}
-\dot{\Psi}_{n}\left(\theta_{n}^{*}\right) & =-\mathbb{P}_{n} \ddot{\ell}_{\theta, \theta}\left(\theta_{n}^{*}, \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right) \\
& \rightarrow p-P_{0}\left(\ddot{\ell}_{\theta, \theta}\left(\theta_{0}, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right. \tag{5}\\
& \equiv B \equiv I_{\theta \theta}, \tag{6}
\end{align*}
$$

a $q \times q$ matrix. On the other hand...

$$
\sqrt{n} \Psi_{n}\left(\theta_{0}\right)=\sqrt{n} \mathbb{P}_{n} \dot{\ell}_{\theta}\left(\theta_{0}, \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right)
$$

where

$$
\begin{aligned}
& \dot{\ell}_{\theta}\left(\theta_{0}, \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right) \\
& =\dot{\ell}_{\theta}\left(\theta_{0}, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right) \\
& \quad+\sum_{j=1}^{p} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}, \ldots, u_{p}^{*}\right) \cdot\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right) \\
& \quad \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}, \ldots, u_{p}\right) \equiv \frac{\partial}{\partial u_{j}} \dot{\ell}_{\theta}\left(\theta_{0}, u_{1}, \ldots, u_{p}\right)
\end{aligned}
$$

$$
\text { and where }\left|u_{j}^{*}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right| \leq\left|\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right| \text { for } j=1, \ldots, p
$$

Thus we expect that

$$
\begin{aligned}
& \sqrt{n} \Psi_{n}\left(\theta_{0}\right) \\
& =\sqrt{n} \mathbb{P}_{n}\left(\dot{\ell}_{\theta}\left(\theta_{0}, \mathbb{F}_{n, 1}\left(x_{1}\right), \ldots, \mathbb{F}_{n, p}\left(x_{p}\right)\right)\right. \\
& =\mathbb{G}_{n}\left(\dot{\ell}_{\theta}\left(\theta_{0}, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right) \\
& \quad \quad+\mathbb{P}_{n}\left(\sum_{j=1}^{p} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}, \ldots, u_{p}^{*}\right) \cdot \sqrt{n}\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right)\right) \\
& \quad=\mathbb{G}_{n}\left(\dot{\ell}_{\theta}\left(\theta_{0}, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right) \\
& \quad
\end{aligned} \quad \begin{aligned}
& \quad P_{0}\left(\sum_{j=1}^{p} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}, \ldots, u_{p}^{*}\right) \cdot \sqrt{n}\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right)\right) \\
& \quad \\
& \quad+\left(\mathbb{P}_{n}-P_{0}\right)\left(\sum_{j=1}^{p} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}, \ldots, u_{p}^{*}\right) \cdot \sqrt{n}\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right)\right)
\end{aligned}
$$

In this last display the third term will be negligible (via asymptotic equicontinuity!) and the second term can be rewritten as

$$
\begin{aligned}
& P_{0}\left(\sum_{j=1}^{p} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}, \ldots, u_{p}^{*}\right) \cdot \sqrt{n}\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right)\right) \\
&= \sum_{j=1}^{p} P_{0} \ddot{\ell}_{\theta, j}\left(\theta_{0}, u_{1}^{*}\left(x_{1}\right), \ldots, u_{p}^{*}\left(x_{p}\right)\right) \cdot \sqrt{n}\left(\mathbb{F}_{n, j}\left(x_{j}\right)-F_{j}\left(x_{j}\right)\right) \\
&=\mathbb{G}_{n}\left(\sum_{j=1}^{p} \int_{R^{p}} \ddot{\ell}_{\theta, j}\left(\theta_{0}, F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right. \\
&\left.\quad \cdot\left(1\left\{X_{j} \leq x_{j}\right\}-F_{j}\left(x_{j}\right)\right) d C_{\theta}\left(F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)\right) \\
&= \mathbb{G}_{n}\left(\sum_{j=1}^{p} \int_{[0,1]^{p}} \ddot{p}_{\theta, j}\left(\theta_{0}, u_{1}, \ldots, u_{p}\right)\right. \\
&=\mathbb{G}_{n}\left(\sum_{j=1}^{p} W_{j}\left(X_{j}\right)\right)
\end{aligned}
$$

Example 3. Kendall's function.
Suppose that $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right), \ldots$ are i.i.d. F_{0} on \mathbb{R}^{2}, and let \mathbb{F}_{n} denote their (classical) empirical distribution function

$$
\mathbb{F}_{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} 1_{(-\infty, x] \times(-\infty, y]}\left(X_{i}, Y_{i}\right)
$$

Consider the empirical distribution function of the random variables $\mathbb{F}_{n}\left(X_{i}, Y_{i}\right), i=1, \ldots, n$:

$$
\mathbb{K}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left[\mathbb{F}_{n}\left(X_{i}, Y_{i}\right) \leq t\right]}, \quad t \in[0,1]
$$

As in example 1 , the random variables $\left\{\mathbb{F}_{n}\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ are dependent, and we are already studying a stochastic process indexed by $t \in[0,1]$. The empirical process method leads to study of the process \mathbb{K}_{n} indexed by both $t \in[0,1]$ and $F \in \mathcal{F}_{2}$, the class of all distribution functions F on \mathbb{R}^{2} :

$$
\mathbb{K}_{n}(t, F) \equiv \frac{1}{n} \sum_{i=1}^{n} 1_{\left[F\left(X_{i}, Y_{i}\right) \leq t\right]}=\mathbb{P}_{n} 1_{[F(X, Y) \leq t]}
$$

with $t \in[0,1]$ and $F \in \mathcal{F}_{2} \ldots$ or the smaller set

$$
\mathcal{F}_{2, \delta}=\left\{F \in \mathcal{F}_{2}:\left\|F-F_{0}\right\|_{\infty} \leq \delta\right\} .
$$

Example 4. Completely monotone densities.
Consider the class \mathcal{P} of completely monotone densities p_{G} given by

$$
p_{G}(x)=\int_{0}^{\infty} z \exp (-z x) d G(z)
$$

where G is an arbitrary distribution function on \mathbb{R}^{+}. Consider the maximum likelihood estimator \hat{p} of $p \in \mathcal{P}$: i.e.

$$
\widehat{p} \equiv \operatorname{argmax}_{p \in \mathcal{P}} \mathbb{P}_{n} \log (p)
$$

Question: Is \hat{p} Hellinger consistent? That is, do we have

$$
h\left(\widehat{p}_{n}, p_{0}\right) \rightarrow_{a . s .} 0 ?
$$

Lecture 2: Some basic inequalities and Glivenko-Cantelli theorems

- 1. Tools for consistency: a first inequality for convex \mathcal{P}.
- 2. Tools for consistency: two more basic inequalities.
- 3. More basic inequalities:
least squares estimators; penalized ML.
- 4. Glivenko-Cantelli theorems.

1. Tools for consistency: a first inequality. Suppose that:

- \mathcal{P} is a class of densities with respect to a fixed σ-finite measure μ on a measurable space $(\mathcal{X}, \mathcal{A})$.
- Suppose that X_{1}, \ldots, X_{n} are i.i.d. P_{0} with density $p_{0} \in \mathcal{P}$.
- Let

$$
\widehat{p}_{n} \equiv \operatorname{argmax}_{p \in \mathcal{P}} \mathbb{P}_{n} \log (p)
$$

- For $0<\alpha \leq 1$, let $\varphi_{\alpha}(t)=\left(t^{\alpha}-1\right) /\left(t^{\alpha}+1\right)$ for $t \geq 0$, $\varphi(t)=-1$ for $t<0$. Thus φ_{α} is bounded and continuous for each $\alpha \in(0,1]$.

For $0<\beta<1$ define

$$
h_{\beta}^{2}(p, q) \equiv 1-\int p^{\beta} q^{1-\beta} d \mu .
$$

Note that

$$
h_{1 / 2}^{2}(p, q) \equiv h^{2}(p, q)=\frac{1}{2} \int\{\sqrt{p}-\sqrt{q}\}^{2} d \mu
$$

yields the Hellinger distance between p and q. By Hölder's inequality, $h_{\beta}(p, q) \geq 0$ with equality if and only if $p=q$ a.e. μ.
Proposition 1.1. Suppose that \mathcal{P} is convex. Then

$$
h_{1-\alpha / 2}^{2}\left(\widehat{p}_{n}, p_{0}\right) \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\varphi_{\alpha}\left(\frac{\widehat{p}_{n}}{p_{0}}\right)\right) .
$$

In particular, when $\alpha=1$ we have, with $\varphi \equiv \varphi_{1}$,

$$
\begin{aligned}
h^{2}\left(\hat{p}_{n}, p_{0}\right)=h_{1 / 2}^{2}\left(\widehat{p}_{n}, p_{0}\right) & \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\varphi\left(\frac{\widehat{p}_{n}}{p_{0}}\right)\right) \\
& =\left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{2 \widehat{p}_{n}}{\widehat{p}_{n}+p_{0}}\right) .
\end{aligned}
$$

Proof. Since \mathcal{P} is convex and \widehat{p}_{n} maximizes $\mathbb{P}_{n} \log p$ over \mathcal{P}, it follows that

$$
\mathbb{P}_{n} \log \frac{\hat{p}_{n}}{(1-t) \hat{p}_{n}+t p_{1}} \geq 0
$$

for all $0 \leq t \leq 1$ and every $p_{1} \in \mathcal{P}$; this holds in particular for $p_{1}=p_{0}$. Note that equality holds if $t=0$. Differentiation of the left side with respect to t at $t=0$ yields

$$
\mathbb{P}_{n} \frac{p_{1}}{\widehat{p}_{n}} \leq 1 \quad \text { for every } \quad p_{1} \in \mathcal{P}
$$

If $L:(0, \infty) \mapsto R$ is increasing and $t \mapsto L(1 / t)$ is convex, then

Jensen's inequality yields

$$
\mathbb{P}_{n} L\left(\frac{\widehat{p}_{n}}{p_{1}}\right) \geq L\left(\frac{1}{\mathbb{P}_{n}\left(p_{1} / \widehat{p}_{n}\right)}\right) \geq L(1)=\mathbb{P}_{n} L\left(\frac{p_{1}}{p_{1}}\right) .
$$

Choosing $L=\varphi_{\alpha}$ and $p_{1}=p_{0}$ in this last inequality and noting that $L(1)=0$, it follows that

$$
\begin{align*}
0 & \leq \mathbb{P}_{n} \varphi_{\alpha}\left(\hat{p}_{n} / p_{0}\right) \\
& =\left(\mathbb{P}_{n}-P_{0}\right) \varphi_{\alpha}\left(\hat{p}_{n} / p_{0}\right)+P_{0} \varphi_{\alpha}\left(\hat{p}_{n} / p_{0}\right) \tag{7}
\end{align*}
$$

see van der Vaart and Wellner (1996) page 330, and Pfanzagl (1988), pages 141-143. Now we show that

$$
\begin{equation*}
P_{0} \varphi_{\alpha}\left(p / p_{0}\right)=\int \frac{p^{\alpha}-p_{0}^{\alpha}}{p^{\alpha}+p_{0}^{\alpha}} d P_{0} \leq-\left(1-\int p_{0}^{\beta} p^{1-\beta} d \mu\right) \tag{8}
\end{equation*}
$$

for $\beta=1-\alpha / 2$. Note that this holds if and only if

$$
-1+2 \int \frac{p^{\alpha}}{p_{0}^{\alpha}+p^{\alpha}} p_{0} d \mu \leq-1+\int p_{0}^{\beta} p^{1-\beta} d \mu,
$$

or

$$
\int p_{0}^{\beta} p^{1-\beta} d \mu \geq 2 \int \frac{p^{\alpha}}{p_{0}^{\alpha}+p^{\alpha}} p_{0} d \mu
$$

But his holds if

$$
p_{0}^{\beta} p^{1-\beta} \geq 2 \frac{p^{\alpha} p_{0}}{p_{0}^{\alpha}+p^{\alpha}}
$$

With $\beta=1-\alpha / 2$, this becomes

$$
\frac{1}{2}\left(p_{0}^{\alpha}+p^{\alpha}\right) \geq p_{0}^{\alpha / 2} p^{\alpha / 2}=\sqrt{p_{0}^{\alpha} p^{\alpha}}
$$

and this holds by the arithmetic mean - geometric mean inequality. Thus (8) holds. Combining (8) with (7) yields the claim of the proposition. The corollary follows by noting that $\varphi(t)=(t-1) /(t+1)=2 t /(t+1)-1$.

The bound given in Proposition 1.1 is one of a family of results of this type. Here two further inequalities which do not require that the family \mathcal{P} be convex.

Proposition 1.2.- (Van de Geer). Suppose that \widehat{p}_{n} maximizes $\mathbb{P}_{n} \log (p)$ over \mathcal{P}. then

$$
h^{2}\left(\widehat{p}_{n}, p_{0}\right) \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\sqrt{\frac{\widehat{p}_{n}}{p_{0}}}-1\right) 1\left\{p_{0}>0\right\}
$$

Proposition 1.3. (Birgé and Massart). If \hat{p}_{n} maxmizes $\mathbb{P}_{n} \log (p)$ over \mathcal{P}, then

$$
\begin{aligned}
& h^{2}\left(\left(\hat{p}_{n}+p_{0}\right) / 2, p_{0}\right) \\
& \quad \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{1}{2} \log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right)
\end{aligned}
$$

and

$$
h^{2}\left(\hat{p}_{n}, p_{0}\right) \leq 24 h^{2}\left(\frac{\hat{p}_{n}+p_{0}}{2}, p_{0}\right)
$$

Proof, proposition 1.2: Since \widehat{p}_{n} maximizes $\mathbb{P}_{n} \log p$,

$$
\begin{aligned}
0 \leq & \frac{1}{2} \int_{\left[p_{0}>0\right]} \log \left(\frac{\widehat{p}_{n}}{p_{0}}\right) d \mathbb{P}_{n} \\
\leq & \int_{\left[p_{0}>0\right]}\left(\sqrt{\frac{\widehat{p}_{n}}{p_{0}}}-1\right) d \mathbb{P}_{n} \\
= & \int_{\left[p_{0}>0\right]}\left(\sqrt{\sqrt{p_{n}}}-1\right) d\left(\mathbb{P}_{n}-P_{0}\right) \\
& \quad+P_{0}\left(\sqrt{\frac{\widehat{p}_{n}}{p_{0}}}-1\right) 1\left\{p_{0}>0\right\} \\
= & \int_{\left[p_{0}>0\right]}\left(\sqrt{\frac{\widehat{\widehat{p}_{n}}}{p_{0}}}-1\right) d\left(\mathbb{P}_{n}-P_{0}\right)-h^{2}\left(\widehat{p}_{n}, p_{0}\right)
\end{aligned}
$$

where the last equality follows by direct calculation and the definition of the Hellinger metric h.

Proof, Proposition 1.3: By concavity of log,

$$
\log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]} \geq \frac{1}{2} \log \left(\frac{\widehat{p}_{n}}{p_{0}}\right) 1_{\left[p_{0}>0\right]}
$$

Thus

$$
\begin{aligned}
0 \leq & \mathbb{P}_{n}\left(\frac{1}{4} \log \left(\frac{\hat{p}_{n}}{p_{0}}\right) 1_{\left[p_{0}>0\right]}\right) \leq \mathbb{P}_{n}\left(\frac{1}{2} \log \left(\frac{\hat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right) \\
= & \left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{1}{2} \log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right) \\
& +P_{0}\left(\frac{1}{2} \log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right) \\
= & \left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{1}{2} \log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right)-\frac{1}{2} K\left(P_{0},\left(\widehat{P}_{n}+P_{0}\right) / 2\right) \\
\leq & \left(\mathbb{P}_{n}-P_{0}\right)\left(\frac{1}{2} \log \left(\frac{\hat{p}_{n}+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right)-h^{2}\left(P_{0},\left(\hat{P}_{n}+P_{0}\right) / 2\right) .
\end{aligned}
$$

where we used Exercise 1.2 at the last step. The second claim
follows from Exercise 1.4.

Exercise 1.4:

$$
2 h^{2}(P,(P+Q) / 2) \leq h^{2}(P, Q) \leq 12 h^{2}(P,(P+Q) / 2)
$$

Corollary 1.1. Suppose that $\left\{\varphi\left(p / p_{0}\right): p \in \mathcal{P}\right\}$ is a P_{0}-GlivenkoCantelli class. Then for each $0<\alpha \leq 1, h_{1-\alpha / 2}\left(\hat{p}_{n}, p_{0}\right) \rightarrow$ a.s. 0 .

Corollary 1.2. (Hellinger consistency of MLE). Suppose that either $\left\{\left(\sqrt{p / p_{0}}-1\right) 1\left\{p_{0}>0\right\}: p \in \mathcal{P}\right\}$ or $\left\{\frac{1}{2} \log \left(\frac{p+p_{0}}{2 p_{0}}\right) 1_{\left[p_{0}>0\right]}\right.$: $p \in \mathcal{P}\}$ is a P_{0}-Glivenko-Cantelli class. Then $h\left(\widehat{p}_{n}, p_{0}\right) \rightarrow$ a.s. 0 .
3. More basic inequalities: penalized ML \& LS

Penalized ML:

- Suppose that \mathcal{P} is a collection of densities described by a "penalty functional" $I(p)$:

$$
\mathcal{P}=\left\{p: \mathbb{R} \rightarrow[0, \infty): \int p(x) d x=1, I^{2}(p)<\infty\right\}
$$

For example, $I^{2}(p)=\int\left(p^{\prime \prime}(x)\right)^{2} d x$.

- Suppose that

$$
\widehat{p}_{n}=\operatorname{argmax}_{p \in \mathcal{P}}\left(\mathbb{P}_{n} \log (p)-\lambda_{n}^{2} I^{2}(p)\right) ;
$$

here λ_{n} is a smoothing parameter.
Basic inequality: (van de Geer, 2000, page 175): For $p_{0} \in \mathcal{P}$
$h^{2}\left(\hat{p}_{n}, p_{0}\right)+4 \lambda_{n}^{2} I^{2}\left(\widehat{p}_{n}\right) \leq 16\left(\mathbb{P}_{n}-P_{0}\right) \frac{1}{2} \log \left(\frac{\widehat{p}_{n}+p_{0}}{2 p_{0}}\right)+4 \lambda_{n}^{2} I^{2}\left(p_{0}\right)$.

Least squares:

- Suppose that $Y_{i}=g_{0}\left(z_{i}\right)+W_{i}$, where $E W_{i}=0, \operatorname{Var}\left(W_{i}\right) \leq \sigma_{0}^{2}$.
- $Q_{n}=n^{-1} \sum_{i=1}^{n} \delta_{z_{i}},\|g\|_{n}^{2} \equiv n^{-1} \sum_{i=1}^{n} g\left(z_{i}\right)^{2}$.
- $\|y-g\|_{n}^{2}=n^{-1} \sum_{1}^{n}\left(Y_{i}-g\left(z_{i}\right)\right)^{2}$.
- $\langle w, g\rangle_{n}=n^{-1} \sum_{1}^{n} W_{i} g\left(z_{i}\right)$.
- $\widehat{g}_{n} \equiv \operatorname{argmin}_{g \in \mathcal{G}}\|y-g\|_{n}^{2}$.

Basic inequality: (van de Geer, 2000, page 55).

$$
\begin{aligned}
\left\|\widehat{g}_{n}-g_{0}\right\|_{n}^{2} & \leq 2\left\langle w, \widehat{g}_{n}-g_{0}\right\rangle_{n} \\
& =2 n^{-1} \sum_{i=1}^{n} W_{i}\left(\widehat{g}_{n}\left(z_{i}\right)-g_{0}\left(z_{i}\right)\right)
\end{aligned}
$$

4. Glivenko-Cantelli Theorems:

Bracketing:

Given two functions l and u on \mathcal{X}, the bracket $[l, u]$ is the set of all functions $f \in \mathcal{F}$ with $l \leq f \leq u$. The functions l and u need not belong to \mathcal{F}, but are assumed to have finite norms. An ϵ-bracket is a bracket $[l, u]$ with $\|u-l\| \leq \epsilon$. The bracketing number $N_{[]}(\epsilon, \mathcal{F},\|\cdot\|)$ is the minimum number of ϵ-brackets needed to cover \mathcal{F}. The entropy with bracketing is the logarithm of the bracketing number.

Theorem 1. Let \mathcal{F} be a class of measurable functions such that $N_{[]}\left(\epsilon, \mathcal{F}, L_{1}(P)\right)<\infty$ for every $\epsilon>0$. Then \mathcal{F} is P-GlivenkoCantelli; that is

$$
\left\|\mathbb{P}_{n}-P\right\|_{\mathcal{F}}^{*}=\left(\sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-P f\right|\right)^{*} \rightarrow \text { a.s. } 0
$$

Proof. Fix $\epsilon>0$. Choose finitely many ϵ-brackets $\left[l_{i}, u_{i}\right], i=$ $1, \ldots, m=N\left(\epsilon, \mathcal{F}, L_{1}(P)\right)$, whose union contains \mathcal{F} and such that $P\left(u_{i}-l_{i}\right)<\epsilon$ for all $1 \leq i \leq m$. Thus, for every $f \in \mathcal{F}$ there is a bracket $\left[l_{i}, u_{i}\right]$ such that

$$
\left(\mathbb{P}_{n}-P\right) f \leq\left(\mathbb{P}_{n}-P\right) u_{i}+P\left(u_{i}-f\right) \leq\left(\mathbb{P}_{n}-P\right) u_{i}+\epsilon
$$

Similarly,

$$
\left(P-\mathbb{P}_{n}\right) f \leq\left(P-\mathbb{P}_{n}\right) l_{i}+P\left(f-l_{i}\right) \leq\left(P-\mathbb{P}_{n}\right) l_{i}+\epsilon
$$

It is not hard to see that bracketing condition of Theorem 1 is sufficient but not necessary.

In contrast, our second Glivenko-Cantelli theorem gives conditions which are both necessary and sufficient.

A simple setting in which this theorem applies involves a collection of functions $f=f(\cdot, t)$ indexed or parametrized by $t \in T$, a compact subset of a metric space (\mathbb{D}, d). Here is the basic lemma; it goes back to Wald (1949) and Le Cam (1953).

Lemma 1. Suppose that $\mathcal{F}=\{f(\cdot, t): \quad t \in T\}$ where the functions $f: \mathcal{X} \times T \mapsto R$, are continuous in t for P - almost all $x \in \mathcal{X}$. Suppose that T is compact and that the envelope function F defined by $F(x)=\sup _{t \in T}|f(x, t)|$ satisfies $P^{*} F<\infty$. Then

$$
N_{[]}\left(\epsilon, \mathcal{F}, L_{1}(P)\right)<\infty
$$

for every $\epsilon>0$, and hence \mathcal{F} is P-Glivenko-Cantelli.

The qualitative statement of the preceding lemma can be quantified as follows:

Lemma 2. Suppose that $\{f(\cdot, t): t \in T\}$ is a class of functions satisfying

$$
|f(x, t)-f(x, s)| \leq d(s, t) F(x)
$$

for all $s, t \in T, x \in \mathcal{X}$ for some metric d on the index set, and a function F on the sample space \mathcal{X}. Then, for any norm $\|\cdot\|$,

$$
N_{[]}(2 \epsilon\|F\|, \mathcal{F},\|\cdot\|) \leq N(\epsilon, T, d) .
$$

For our second Glivenko-Cantelli theorem, we need:

- An envelope function F for a class of functions \mathcal{F} is any function satisfying

$$
|f(x)| \leq F(x) \quad \text { for all } \quad x \in \mathcal{X} \text { and for all } f \in \mathcal{F} .
$$

- A class of functions \mathcal{F} is $L_{1}(P)$ bounded if $\sup _{f \in \mathcal{F}} P|f|<\infty$.

Theorem 2.. (Vapnik and Chervonenkis (1981), Pollard (1981), Giné and Zinn (1984)). Let \mathcal{F} be a P-measurable class of measurable functions that is $L_{1}(P)$-bounded. Then \mathcal{F} is P-Glivenko-Cantelli if and only if both (i) $P^{*} F<\infty$.
(ii)

$$
\lim _{n \rightarrow \infty} \frac{E^{*} \log N\left(\epsilon, \mathcal{F}_{M}, L_{2}\left(\mathbb{P}_{n}\right)\right)}{n}=0
$$

for all $M<\infty$ and $\epsilon>0$ where \mathcal{F}_{M} is the class of functions $\{f 1\{F \leq M\}: f \in \mathcal{F}\}$.

For n points x_{1}, \ldots, x_{n} in \mathcal{X} and a class of \mathcal{C} of subsets of \mathcal{X}, set

$$
\Delta_{n}^{\mathcal{C}}\left(x_{1}, \ldots, x_{n}\right) \equiv \#\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\} .
$$

Corollary. (Vapnik-Chervonenkis-Steele GC theorem) If \mathcal{C} is a P-measurable class of sets, then the following are equivalent:
(i) $\left\|\mathbb{P}_{n}-P\right\|_{\mathcal{C}}^{*} \rightarrow$ a.s. 0
(ii) $n^{-1} E \log \Delta^{\mathcal{C}}\left(X_{1}, \ldots, X_{n}\right) \rightarrow 0$; where,

The second hypothesis is often verified by applying the theory of VC (or Vapnik-Chervonenkis) classes of sets and functions. Let

$$
m^{\mathcal{C}}(n) \equiv \max _{x_{1}, \ldots, x_{n}} \Delta_{n}^{\mathcal{C}}\left(x_{1}, \ldots, x_{n}\right)
$$

and let

$$
\begin{aligned}
& V(\mathcal{C}) \equiv \inf \left\{n: m^{\mathcal{C}}(n)<2^{n}\right\}, \\
& S(\mathcal{C}) \equiv \sup \left\{n: m^{\mathcal{C}}(n)=2^{n}\right\} .
\end{aligned}
$$

Examples:

(1) $\mathcal{X}=\mathbb{R}, \mathcal{C}=\{(-\infty, t]: t \in \mathbb{R}\}: S(\mathcal{C})=1$.
(2) $\mathcal{X}=\mathbb{R}, \mathcal{C}=\{(s, t]: s<t, s, t \in \mathbb{R}\}: S(\mathcal{C})=2$.
(3) $\mathcal{X}=\mathbb{R}^{d}, \mathcal{C}=\left\{(s, t]: s<t, s, t \in \mathbb{R}^{d}\right\}: S(\mathcal{C})=2 d$.
(4) $\mathcal{X}=\mathbb{R}^{d}, H_{u, c} \equiv\left\{x \in \mathbb{R}^{d}:\langle x, u\rangle \leq c\right\}$,

$$
\mathcal{C}=\left\{H_{u, c}: u \in \mathbb{R}^{d}, c \in \mathbb{R}\right\}: S(\mathcal{C})=d+1 .
$$

(5) $\mathcal{X}=\mathbb{R}^{d}, B_{u, r} \equiv\left\{x \in R^{d}:\|x-u\| \leq r\right\}$;

$$
\mathcal{C}=\left\{B_{u, r}: u \in \mathbb{R}^{d}, r \in \mathbb{R}^{+}\right\}: S(\mathcal{C})=d+1 .
$$

Definition. The subgraph of $f: \mathcal{X} \rightarrow \mathbb{R}$ is the subset of $\mathcal{X} \times \mathbb{R}$ given by $\{(x, t) \in \mathcal{X} \times R: t<f(x)\}$. A collection of functions \mathcal{F} from \mathcal{X} to \mathbb{R} is called a VC -subgraph class if the collection of subgraphs in $\mathcal{X} \times \mathbb{R}$ is a VC - class of sets. For a VC-subgraph class \mathcal{F}, let $V(\mathcal{F}) \equiv V(\operatorname{subgraph}(\mathcal{F}))$.

Theorem. For a VC-subgraph class with envelope function F and $r \geq 1$, and for any probability measure Q with $\|F\|_{L_{r}(Q)}>0$,

$$
N\left(2 \epsilon\|F\|_{Q, r}, \mathcal{F}, L_{r}(Q)\right) \leq K V(\mathcal{F})\left(\frac{16 e}{\epsilon^{r}}\right)^{S(\mathcal{F})} .
$$

Here is a specific result for monotone functions on \mathbb{R} :
Theorem. Let \mathcal{F} be the class of all monotone functions $f: \mathbb{R} \rightarrow$ [0,1]. Then:
(i) (Birman and Solomojak (1967), van de Geer (1991)):

$$
\log N_{[]}\left(\epsilon, \mathcal{F}, L_{r}(Q)\right) \leq \frac{K}{\epsilon}
$$

for every probability measure Q, every $r \geq 1$, and a constant K depending on r only.
(ii) (via convex hull theory):

$$
\sup _{Q} \log N\left(\epsilon, \mathcal{F}, L_{2}(Q)\right) \leq \frac{K}{\epsilon}
$$

Lecture 3: Using the Glivenko-Cantelli theorems: first applications

- 1. Preservation of Glivenko-Cantelli theorems.
\triangleright Preservation under continuous functions.
\triangleright Preservation under partitions of the sample space.
- 2. First applications
\triangleright Example 1: current status data
\triangleright Example 2: Mixed case interval censoring
\triangleright Example 3: Completely monotone densities.

1. Preservation of Glivenko-Cantelli theorems.

Theorem 1. (van der Vaart \& W, 2001). Suppose that $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ are P - Glivenko-Cantelli classes of functions, and that $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is continuous. Then $\mathcal{H} \equiv \varphi\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right)$ is P - Glivenko-Cantelli provided that it has an integrable envelope function.

Corollary 1. (Dudley, 1998). Suppose that \mathcal{F} is a GlivenkoCantelli class for P with $P F<\infty$, and g is a fixed bounded function $\left(\|g\|_{\infty}<\infty\right)$. Then the class of functions $g \cdot \mathcal{F} \equiv\{g \cdot f$: $f \in \mathcal{F}\}$ is a Glivenko-Cantelli class for P.
Corollary 2. (Giné and Zinn, 1984). Suppose that \mathcal{F} is a uniformly bounded strong Glivenko-Cantelli class for P, and $g \in \mathcal{L}_{1}(P)$ is a fixed function. Then the class of functions $g \cdot \mathcal{F} \equiv$ $\{g \cdot f: f \in \mathcal{F}\}$ is a strong Glivenko-Cantelli class for P.

Theorem 2. (Partitioning of the sample space). Suppose that \mathcal{F} is a class of functions on $(\mathcal{X}, \mathcal{A}, P)$, and $\left\{\mathcal{X}_{i}\right\}$ is a partition of $\mathcal{X}: \cup_{i=1}^{\infty} \mathcal{X}_{i}=\mathcal{X}, \mathcal{X}_{i} \cap \mathcal{X}_{j}=\emptyset$ for $i \neq j$. Suppose that $\mathcal{F}_{j} \equiv\left\{f 1_{\mathcal{X}_{j}}\right.$: $f \in \mathcal{F}\}$ is P-Glivenko-Cantelli for each j, and \mathcal{F} has an integrable envelope function F. Then \mathcal{F} is itself P-Glivenko-Cantelli.

First Applications:

Example 2.1. (Interval censoring, case I). Suppose that $Y \sim$ F on \mathbb{R}^{+}and $T \sim G$. Here Y is the time of some event of interest, and T is an "observation time". Unfortunately, we do not observe (Y, T); instead what is observed is $X=(1\{Y \leq$ $T\}, T) \equiv(\Delta, T)$. Our goal is to estimate F, the distribution of Y. Let P_{0} be the distribution corresponding to F_{0}, and suppose that $\left(\Delta_{1}, T_{1}\right), \ldots,\left(\Delta_{n}, T_{n}\right)$ are i.i.d. as (Δ, T). Note that the conditional distribution of Δ given T is simply Bernoulli $(F(T)$), and hence the density of (Δ, T) with respect to the dominating measure $\# \times G$ (here $\#$ denotes counting measure on $\{0,1\}$) is given by

$$
p_{F}(\delta, t)=F(t)^{\delta}(1-F(t))^{1-\delta}
$$

Note that the sample space in this case is

$$
\begin{aligned}
\mathcal{X} & =\left\{(\delta, t): \delta \in\{0,1\}, t \in R^{+}\right\}=\left\{(1, t): t \in R^{+}\right\} \cup\left\{(0, t): t \in R^{+}\right\} \\
& :=\mathcal{X}_{1} \cup \mathcal{X}_{2}
\end{aligned}
$$

Now the class of functions $\left\{p_{F}: F\right.$ a d.f. on $\left.R^{+}\right\}$is a universal Glivenko-Cantelli class by an application of GC-preservation Theorem 2, since on $\mathcal{X}_{1}, p_{F}(1, t)=F(t)$, while on $\mathcal{X}_{2}, p_{F}(0, t)=$ $1-F(t)$ where F is a distribution F (and hence bounded and monotone nondecreasing). Furthermore the class of functions $\left\{p_{F} / p_{F_{0}}: F\right.$ a d.f. on $\left.R^{+}\right\}$is P_{0}-Glivenko by an application of GC-preservation Theorem 1: Take

$$
\mathcal{F}_{1}=\left\{p_{F}: F \text { a d.f. on } R^{+}\right\}, \quad \mathcal{F}_{2}=\left\{1 / p_{F_{0}}\right\}
$$

and $\varphi(u, v)=u v$. Then both \mathcal{F}_{1} and \mathcal{F}_{2} are P_{0}-GlivenkoCantelli classes, φ is continuous, and $\mathcal{H}=\varphi\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ has P_{0}-integrable envelope $1 / p_{F_{0}}$. Finally, by a further application of GC-preservation Theorem 2 with $\varphi(u)=(t-1) /(t+1)$ shows that the hypothesis of Corollary 2.1.1 holds: $\left\{\varphi\left(p_{F} / p_{F_{0}}\right)\right.$: F a d.f. on $\left.R^{+}\right\}$is P_{0}-Glivenko-Cantelli. Hence the conclusion of the corollary holds: we conclude that

$$
h^{2}\left(p_{\widehat{F}_{n}}, p_{F_{0}}\right) \rightarrow \text { a.s. } 0 \quad \text { as } \quad n \rightarrow \infty
$$

Now note that $h^{2}\left(p, p_{0}\right) \geq d_{T V}^{2}\left(p, p_{0}\right) / 2$ and we compute

$$
\begin{aligned}
d_{T V}\left(p_{\widehat{F}_{n}}, p_{F_{0}}\right)= & \int\left|\widehat{F}_{n}(t)-F_{0}(t)\right| d G(t) \\
& +\int\left|1-\widehat{F}_{n}(t)-\left(1-F_{0}(t)\right)\right| d G(t) \\
= & 2 \int\left|\widehat{F}_{n}(t)-F_{0}(t)\right| d G(t),
\end{aligned}
$$

so we conclude that

$$
\int\left|\widehat{F}_{n}(t)-F_{0}(t)\right| d G(t) \rightarrow a . s .0
$$

as $n \rightarrow \infty$. Since \widehat{F}_{n} and F_{0} are bounded (by one), we can also conclude that

$$
\int\left|\widehat{F}_{n}(t)-F_{0}(t)\right|^{r} d G(t) \rightarrow_{a . s .} 0
$$

for each $r \geq 1$, in particular for $r=2$.

Example 2. (Mixed case interval censoring)
Suppose that:

- $Y \sim F$ on $R^{+}=[0, \infty)$.
- Observe:
$\triangleright T_{K}=\left(T_{K, 1}, \ldots, T_{K, K}\right)$ where K, the number of times is itself random.
\triangleright The interval $\left(T_{K, j-1}, T_{K, j}\right.$] into which Y falls (with $T_{K, 0} \equiv$ $\left.0, T_{K, K+1} \equiv \infty\right)$.
\triangleright Here $K \in\{1,2, \ldots\}$, and $\underline{T}=\left\{T_{k, j}, j=1, \ldots, k, k=1,2, \ldots\right\}$,
$\triangleright Y$ and (K, \underline{T}) are independent.
- $X \equiv\left(\Delta_{K}, T_{K}, K\right)$, with a possible value $x=\left(\delta_{k}, t_{k}, k\right)$, where $\Delta_{k}=\left(\Delta_{k, 1}, \ldots, \Delta_{k, k}\right)$ with $\Delta_{k, j}=1_{\left(T_{k, j-1}, T_{k, j}\right]}(Y)$, $j=1,2, \ldots, k+1$.
- Suppose we observe n i.i.d. copies of $X ; X_{1}, X_{2}, \ldots, X_{n}$, where $X_{i}=\left(\Delta_{K^{(i)}}^{(i)}, T_{K^{(i)}}^{(i)}, K^{(i)}\right), \quad i=1,2, \ldots, n$. Here $\left(Y^{(i)}, \underline{T}^{(i)}, K^{(i)}\right), i=1,2, \ldots$ are the underlying i.i.d. copies of (Y, \underline{T}, K).
note that conditionally on K and T_{K}, the vector Δ_{K} has a multinomial distribution:

$$
\left(\Delta_{K} \mid K, T_{K}\right) \sim \text { Multinomial }_{K+1}\left(1, \Delta F_{K}\right)
$$

where

$$
\Delta F_{K} \equiv\left(F\left(T_{K, 1}\right), F\left(T_{K, 2}\right)-F\left(T_{K, 1}\right), \ldots, 1-F\left(T_{K, K}\right)\right) .
$$

Suppose for the moment that the distribution G_{k} of ($T_{K} \mid K=k$) has density g_{k} and $p_{k} \equiv P(K=k)$. Then a density of X is given by

$$
\begin{aligned}
p_{F}(x) & \equiv p_{F}\left(\delta, t_{k}, k\right) \\
& =\prod_{j=1}^{k+1}\left(F\left(t_{k, j}\right)-F\left(t_{k, j-1}\right)\right)^{\delta_{k, j}} g_{k}(t) p_{k}
\end{aligned}
$$

where $t_{k, 0} \equiv 0, t_{k, k+1} \equiv \infty$. In general,

$$
\begin{align*}
p_{F}(x) & \equiv p_{F}\left(\delta, t_{k}, k\right) \\
& =\prod_{j=1}^{k+1}\left(F\left(t_{k, j}\right)-F\left(t_{k, j-1}\right)\right)^{\delta_{k, j}} \\
& =\sum_{j=1}^{k+1} \delta_{k, j}\left(F\left(t_{k, j}\right)-F\left(t_{k, j-1}\right)\right) \tag{9}
\end{align*}
$$

is a density of X with respect to the dominating measure ν where ν is determined by the joint distribution of (K, \underline{T}), and it is this
version of the density of X with which we will work throughout the rest of the example. Thus the log-likelihood function for F of X_{1}, \ldots, X_{n} is given by

$$
\begin{aligned}
\frac{1}{n} l_{n}(F \mid \underline{X}) & =\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K^{(i)}+1} \Delta_{K, j}^{(i)} \log \left(F\left(T_{K^{(i)}, j}^{(i)}\right)-F\left(T_{K^{(i)}, j-1}^{(i)}\right)\right) \\
& =\mathbb{P}_{n} m_{F}
\end{aligned}
$$

where

$$
\begin{aligned}
m_{F}(X) & =\sum_{j=1}^{K+1} \Delta_{K, j} \log \left(F\left(T_{K, j}\right)-F\left(T_{K, j-1}\right)\right) \\
& \equiv \sum_{j=1}^{K+1} \Delta_{K, j} \log \left(\Delta F_{K, j}\right)
\end{aligned}
$$

and where we have ignored the terms not involving F. We also
note that

$$
P m_{F}(X)=P\left(\sum_{j=1}^{K+1} \Delta F_{0, K, j} \log \left(\Delta F_{K, j}\right)\right)
$$

The (Nonparametric) Maximum Likelihood Estimator (MLE)

$$
\widehat{F}_{n}=\operatorname{argmax}_{F} \mathbb{P}_{n} \ell_{n}(F) .
$$

\widehat{F}_{n} can be calculated via the iterative convex minorant algorithm proposed in Groeneboom and Wellner (1992) for case 2 interval censored data.

By Proposition 1 with $\alpha=1$ and $\varphi \equiv \varphi_{1}$ as before, it follows that

$$
h^{2}\left(p_{\widehat{F}_{n}}, p_{F_{0}}\right) \leq\left(\mathbb{P}_{n}-P_{0}\right)\left(\varphi\left(p_{\widehat{F}_{n}} / p_{F_{0}}\right)\right)
$$

where φ is bounded and continuous from R to R. Now the collection of functions

$$
\mathcal{G} \equiv\left\{p_{F}: F \in \mathcal{F}\right\}
$$

is easily seen to be a Glivenko-Cantelli class of functions: this can be seen by first applying the GC-preservation theorem Theorem 1 to the collections $\mathcal{G}_{k}, k=1,2, \ldots$ obtained from \mathcal{G} by restricting to the sets $K=k$. Then for fixed k, the collections $\mathcal{G}_{k}=$ $\left\{p_{F}\left(\delta, t_{k}, k\right): F \in \mathcal{F}\right\}$ are P_{0}-Glivenko-Cantelli classes since \mathcal{F} is a uniform Glivenko-Cantelli class, and since the functions p_{F} are continuous transformations of the classes of functions $x \rightarrow \delta_{k, j}$ and $x \rightarrow F\left(t_{k, j}\right)$ for $j=1, \ldots, k+1$, and hence \mathcal{G} is P-GlivenkoCantelli by van de Geer's bracketing entropy bound for monotone
functions. Note that single function $p_{F_{0}}$ is trivially $P_{0}-$ GlivenkoCantelli since it is uniformly bounded, and the single function $\left(1 / p_{F_{0}}\right)$ is also $P_{0}-\mathrm{GC}$ since $P_{0}\left(1 / p_{F_{0}}\right)<\infty$. Thus by the Glivenko-Cantelli preservation Theorem 1 with $g=\left(1 / p_{F_{0}}\right)$ and $\mathcal{F}=\mathcal{G}=\left\{p_{F}: F \in \mathcal{F}\right\}$, it follows that $\mathcal{G}^{\prime} \equiv\left\{p_{F} / p_{F_{0}}: F \in \mathcal{F}\right\}$. Is P_{0}-Glivenko-Cantelli. Finally another application of preservation of the Glivenko-Cantelli property by continuous maps shows that the collection

$$
\mathcal{H} \equiv\left\{\varphi\left(p_{F} / p_{F_{0}}\right): F \in \mathcal{F}\right\}
$$

is also P_{0}-Glivenko-Cantelli. When combined with Corollary 1.1, we find:

Theorem. The NPMLE \widehat{F}_{n} satisfies

$$
h\left(p_{\widehat{F}_{n}}, p_{F_{0}}\right) \rightarrow a . s .0
$$

To relate this result to a result of Schick and Yu (2000), it remains only to understand the relationship between their $L_{1}(\mu)$
and the Hellinger metric h between p_{F} and $p_{F_{0}}$. Let \mathcal{B} denote the collection of Borel sets in R. On \mathcal{B} we define measures μ and $\widetilde{\mu}$, as follows: For $B \in \mathcal{B}$,

$$
\begin{equation*}
\mu(B)=\sum_{k=1}^{\infty} P(K=k) \sum_{j=1}^{k} P\left(T_{k, j} \in B \mid K=k\right), \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\mu}(B)=\sum_{k=1}^{\infty} P(K=k) \frac{1}{k} \sum_{j=1}^{k} P\left(T_{k, j} \in B \mid K=k\right) \tag{11}
\end{equation*}
$$

Let d be the $L_{1}(\mu)$ metric on the class \mathcal{F}; thus for $F_{1}, F_{2} \in \mathcal{F}$,

$$
d\left(F_{1}, F_{2}\right)=\int\left|F_{1}(t)-F_{2}(t)\right| d \mu(t)
$$

The measure μ was introduced by Schick and Yu (2000); note that μ is a finite measure if $E(K)<\infty$. Note that $d\left(F_{1}, F_{2}\right)$ can
also be written in terms of an expectation as:

$$
\begin{equation*}
d\left(F_{1}, F_{2}\right)=E_{(K, \underline{T})}\left[\sum_{j=1}^{K+1}\left|F_{1}\left(T_{K, j}\right)-F_{2}\left(T_{K, j}\right)\right|\right] \tag{12}
\end{equation*}
$$

As Schick and Yu (2000) observed, consistency of the NPMLE \widehat{F}_{n} in $L_{1}(\mu)$ holds under virtually no further hypotheses.

Theorem. (Schick and Yu). Suppose that $E(K)<\infty$. Then $d\left(\widehat{F}_{n}, F_{0}\right) \rightarrow$ a.s. 0.

Proof. We have shown that this follows from the Hellinger consistency proved above and the following lemma; see van der Vaart and Wellner (2000).

Lemma.

$$
\frac{1}{2}\left\{\int\left|\widehat{F}_{n}-F_{0}\right| d \tilde{\mu}\right\}^{2} \leq h^{2}\left(p_{\widehat{F}_{n}}, p_{F_{0}}\right)
$$

Example 3. (Completely monotone densities:)
Suppose that $\mathcal{P}=\left\{P_{G}: G\right.$ a d.f. on $\left.R\right\}$ where the measures P_{G} are scale mixtures of exponential distributions with mixing distribution G :

$$
p_{G}(x)=\int_{0}^{\infty} y e^{-y x} d G(y) .
$$

We first show that the map $G \mapsto p_{G}(x)$ is continuous with respect to the topology of vague convergence for distributions G. This follows easily since kernels for our mixing family are bounded, continuous, and satisfy $y e^{-x y} \rightarrow 0$ as $y \rightarrow \infty$ for every $x>0$. Since vague convergence of distribution functions implies that integrals of bounded continuous functions vanishing at infinity converge, it follows that $p(x ; G)$ is continuous with respect to the vague topology for every $x>0$.
This implies, moreover, that the family $\mathcal{F}=\left\{p_{G} /\left(p_{G}+p_{0}\right)\right.$: G is a d.f. on $R\}$ is pointwise, for a.e. x, continuous in G
with respect to the vague topology. Since the family of subdistribution functions G on R is compact for (a metric for) the vague topology (see e.g. Bauer (1972), page 241), and the family of functions \mathcal{F} is uniformly bounded by 1 , we conclude from the basic bracketing lemma (Wald and LeCam) that $N_{[]}\left(\epsilon, \mathcal{F}, L_{1}(P)\right)<\infty$ for every $\epsilon>0$. Thus it follows from Corollary 1.1 that the MLE \widehat{G}_{n} of G_{0} satisfies

$$
h\left(p_{\widehat{G}_{n}}, p_{G_{0}}\right) \rightarrow \text { a.s. } 0 .
$$

By uniqueness of Laplace transforms, this implies that \widehat{G}_{n} converges weakly to G_{0} with probability 1 . This method of proof is due to Pfanzagl (1988); in this case we recover a result of Jewell (1982). See also Van de Geer (1999), Example 4.2.4, page 54.

