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• Day 1 (Tuesday):

B Lecture 1: Introduction, history, selected examples.

B Lecture 2: Some basic inequalities and Glivenko-Cantelli

theorems.

B Lecture 3: Using the Glivenko-Cantelli theorems: first

applications.

Based on Courses given at Torgnon, Cortona,

and Delft (2003-2005). Notes available at:

http://www.stat.washington.edu/jaw/

RESEARCH/TALKS/talks.html
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• Day 2 (Wednesday):

B Lecture 4: Donsker theorems and some inequalities

B Lecture 5: Peeling methods and rates of convergence

B Lecture 6: Some useful preservation theorems.

Short Course, Louvain-la-Neuve; 29-30 May 2012 2.2



Lecture 4: Donsker theorems and some

inequalities

• 1. Donsker theorems

B Donsker theorem equivalences

B Uniform entropy Donsker theorem

B Bracketing entropy Donsker theorem

• 2. Bracketing Inequalities for expectations of suprema

• 3. Uniform entropy inequalities for expectations of suprema
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1. (a) Donsker theorem equivalences

Reminder: the setting

• X1, . . . , Xn are i.i.d. with probability measure P on (X ,A).

• Pn = n−1∑n
i=1 δXi, the empirical measure; here

δx(A) = 1A(x) =

{
1, x ∈ A,
0, x ∈ Ac for A ∈ A.

Hence we have

Pn(A) = n−1
n∑
i=1

1A(Xi), and Pn(f) = n−1
n∑
i=1

f(Xi).

• {Gn(f) ≡
√
n(Pn(f) − P (f)) : f ∈ F ⊂ L2(P )}, the empirical

process indexed by F
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Recall that: if F is a class of functions satisfying

Gn ⇒ G in `∞(F), (1)

where G is a tight, mean 0 Gaussian process with uniformly
continuous sample paths with respect to ρP , then we say that
F is a P−Donsker class of functions. Here G is a 0−mean
P−Brownian bridge process with uniformly-continuous sample
paths with respect to the semi-metric ρP (f, g) defined by

ρ2
P (f, g) = V arP (f(X)− g(X)),

`∞(F) is the space of all bounded, real-valued functions from F
to R:

`∞(F) =

{
x : F 7→ R

∣∣∣∣∣ ‖x‖F ≡ sup
f∈F
|x(f)| <∞

}
,

and

E{G(f)G(g)} = P (fg)− P (f)P (g)
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Here Gn ⇒ G means that

E∗h(Gn)→ Eh(G)

for all bounded, continuous functions h : `∞(F)→ R, where

E∗h(Gn) ≡ inf {EU : U measurable U ≥ h(Gn)}
= the “outer expectation”

(Hoffmann-Jørgensen theory)

Consequence:

Gn ⇒ G implies that h(Gn)→d h(G)

for continuous functions h.
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In general, a sequence {Xn(t) : t ∈ T} of sample-bounded

stochastic processes (i.e. with values in `∞(T )) satisfies

Xn ⇒ X in `∞(T )

where X has a tight Borel probability distribution in `∞(T ) if and

only the following two conditions hold:

• All the finite-dimensional distributions of Xn converge in

distribution to those of X.

• There exists a pseudo-metric ρ on T such that:

B (T, ρ) is totally bounded.

B The processes Xn are asymptotically ρ−equicontinuous in

probability: i.e. for every ε > 0

lim
δ→0

lim sup
n→∞

Pr( sup
ρ(s,t)<δ

|Xn(s)− Xn(t)| > ε) = 0.
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For the empirical processes Gn indexed by F this (together with

the Hoffmann-Jørgensen inequality) yields:

Corollary: Let F be a class of measurable functions. Then the

following are equivalent:

(i) F is P−Donsker.

(ii) (F , ρP ) is totally bounded and Gn is asymptotically

equicontinuous in probability: for every ε > 0

lim
δ→0

lim sup
n→∞

Pr∗( sup
ρP (f,g)<δ

|Gn(f)− Gn(g)| > ε) = 0.

(iii) (F , ρP ) is totally bounded and Gn is asymptotically

equicontinuous in mean:

lim
δ→0

lim sup
n→∞

E∗
 sup
ρP (f,g)<δ

|Gn(f)− Gn(g)|

 = 0.
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1. (b) Uniform entropy Donsker theorem

Theorem. (Pollard, Koltchinskii) Let F be a class of measurable

functions with square-integrable envelope function F . Let the

classes Fδ = {f − g : f, g ∈ F , ‖f − g‖P,2 < δ} and F2
∞ be

P−measurable for every δ > 0. Then F is P−Donsker provided

that the following uniform entropy condition holds:∫ ∞
0

sup
Q∈Q

√
logN(ε‖F‖Q,2,F , L2(Q))dε <∞;

here Q denotes the class of all finitely discrete probability

measures on (X ,A), and

N(ε,F , ‖ · ‖) ≡ minimal number of ε− balls needed to cover F .
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Definition: The class of functions F is a P−measurable class if

the map

(X1, . . . , Xn) 7→ sup
f∈F

∣∣∣ n∑
i=1

eif(Xi)
∣∣∣

is measurable on the completion of the probability space (Xn,An, Pn)

for every n and for every vector (e1, e2, . . . , en) ∈ Rn.
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1. (c) Bracketing entropy Donsker theorem

Theorem. (Ossiander)

Suppose that F is a class of measurable functions satisfying∫ ∞
0

√
logN[ ](ε,F , L2(P ))dε <∞.

Then F is P−Donsker: Gn ⇒ G in `∞(F).

For a refinement of this theorem using a “weak L2(P ) norm”,

see van der Vaart & W (1996) Theorem 2.5.6, page 130. For

further refinements involving majorizing measures, see Andersen,

Giné, Ossiander, and Zinn (1988).

Note that in both of these theorems, the entropy integral

condition holds if the entropy (i.e. the logarithm of the covering

or bracketing number) is bounded by

Kε−r with r < 2.
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Proofs of the Donsker theorems?

• Uniform entropy CLT: (VdV & W, page 128)

B Symmetrization with Rademacher rv’s: Let G0
n(f) ≡

n−1/2∑n
i=1 εif(Xi). Then

E∗‖Gn‖Fδn ≤ 2E∗
∥∥∥G0

n‖Fδn.

B Hoeffding’s inequality:

P (|
n∑
1

aiεi| > x) ≤ 2exp(−
x2

2‖a‖2
)

B Maximal inequality for Ψ2− Orlicz norm (conditionally on
Xi’s) and chaining:

Eε
∥∥∥ 1
√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
Fδn
.
∫ ∞

0

√
logN(ε,Fδn, L2(Pn))dε

B Relate Fδn to F and integrate over Xi’s: measurability
needed for Fubini to apply!
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Proofs of the Donsker theorems?

• Bracketing entropy CLT: (VdV & W, pages 129 - 133)

B Truncation at multiples of
√
n.

B Bernstein’s inequality for a fixed bounded f :

P (|Gn(f)| > x) ≤ 2exp

(
−

1

2

x2

Pf2 + (1/3)‖f‖∞x/
√
n

)
.

B Orlicz norm type maximal inequality related to Bernstein’s

inequality: for a finite set F with |F| > 2,

E‖Gn‖F . max
f

‖f‖∞√
n

log|F|+ max
f
‖f‖P,2

√
log|F|.

B Set truncation levels so that ‖f‖∞ ≈
√
n‖f‖P,2/

√
log|F|.

B Chaining argument!
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Lecture 4:

2. Bracketing Inequalities for expectations of suprema

For a given norm ‖ · ‖, define a bracketing integral of a class of

functions F by

J[ ](δ,F , ‖ · ‖) =
∫ δ

0

√
1 + logN[ ](ε‖F‖,F , ‖ · ‖)dε.

A basic bracketing maximal inequality uses the L2(P )−norm:

Theorem: Let F be a class of measurable functions with

measurable envelope function F . For η > 0 set

a(η) ≡
η‖F‖P,2√

1 + logN[ ](η‖F‖P,2,F , L2(P ))
.

Then:

E∗‖Gn‖F . J[ ](1,F , L2(P ))‖F‖P,2. (2)

Short Course, Louvain-la-Neuve; 29-30 May 2012 2.14



• Furthermore

E∗‖Gn‖F . J[ ](η,F , L2(P ))‖F‖P,2 +
√
nPF1{F >

√
na(η)}

+ ‖‖f‖P,2‖F
√

1 + logN[ ](η‖F‖P,2,F , L2(P )).

• In particular, if ‖f‖P,2 < δ‖F‖P,2 for every f ∈ F, then

E∗‖Gn‖F . J[ ](δ,F , L2(P ))‖F‖P,2 +
√
nP (F1{F >

√
na(δ)}).

• If ‖f‖∞ ≤ 1 and Pf2 < δ2PF2 for every f ∈ F, then

E∗‖Gn‖F . J[ ](δ,F , L2(P ))

(
1 +

J[ ](δ,F , L2(P ))

δ2√n‖F‖P,2

)
‖F‖P,2 .
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Lecture 4:

3. Uniform entropy inequalities for expectations of suprema

Define a uniform entropy integral of a class of functions F by

J(δ,F) = sup
Q

∫ δ
0

√
1 + logN(ε‖F‖Q,2,F , L2(Q))dε.

A basic uniform entropy maximal inequality is given by:

Theorem: Let F be a P−measurable class of measurable

functions with measurable envelope function F . Then with

θn ≡ supf∈F{‖f‖n/‖F‖n}, and ‖f‖n ≡ ‖f‖Pn,2 ≡ ‖f‖L2(Pn),

E∗‖Gn‖F . E {J(θn,F)‖F‖n} . J(1,F)‖F‖P,2. (3)

Proof. See vdV & W (1996), page 239.

Problem: Note that θn and ‖F‖n are both random!
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Question: Is there a bound analogous to the “small f bound,

bracketing entropy”, but for uniform entropy?

Answer: Yes! (VdV & W, 2011, Electronic Journal of

Statistics)

Theorem: Suppose that F is a P−measurable class of mea-

surable functions with envelope function F ≤ 1 and such that

F2 is P−measurable. If Pf2 < δ2P (F2) for every f and some

δ ∈ (0,1), then

E∗P‖Gn‖F . J(δ,F)‖F‖P,2

(
1 +

J(δ,F)

δ2√n‖F‖P,2

)
.

Key notion: The perspective of a convex (or concave) function.
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Suppose that f : Rd → R. Then the perspective of f is the

function g = gf : Rd+1 → R defined by

g(x, t) = tf(x/t),

for (x, t) ∈ dom(g) = {(x, t) : x/t ∈ dom(f), t > 0}.
Then:

• If f is convex, then g is also convex.

• If f is concave, then g is also concave.

This seems to be due to Hiriart-Urruty and Lemaréchal (1990),

vol. 1, page 100; see also Boyd and Vandenberghe (2004), page

89.

Example: f(x) = x2; then g(x, t) = t(x/t)2 = x2/t.
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Suppose that h : Rp → R and gi : Rd → R for i = 1, . . . , p. Then

consider

f(x) = h(g1(x), . . . , gp(x))

as a map from Rd to R.

A preservation result:

• If h is concave and nondecreasing in each argument and

g1, . . . , gd are all concave, then f is concave. See e.g. Boyd

and Vandenberghe (2004), page 86.
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Proof of the new bound: This begins much as in the proof of

the easy bound (3); see e.g. van der Vaart and Wellner (1996),

sections 2.5.1 and 2.14.1 and especially the fourth display on

page 128, section 2.5.1: this argument yields

E∗P‖Gn‖F . E
∗
PJ

supf(Pnf2)1/2

(PnF2)1/2
,F

 (PnF2)1/2. (4)

Since δ 7→ J(δ,F) is the integral of a non-increasing nonnegative

function, it is a concave function. Hence its perspective function

(x, t) 7→ tJ(x/t,F)

is a concave function of its two arguments. Furthermore, by the

composition rule with p = 2, the function

(x, y) 7→ √yJ(
√
x/
√
y,F)

is concave.
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Note that EPPnF2 = ‖F‖2P,2. Therefore, by Jensen’s inequality

applied to the right side of (4) it follows that

E∗P‖Gn‖F . J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F

 ‖F‖P,2. (5)

Now since Pn(f2) = Pf2 + n−1/2Gnf2 and Pf2 ≤ δ2PF2 for all

f , it follows, by using symmetrization, the contraction inequality

for Rademacher random variables, de-symmetrization, and then

(5), that
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E∗P (sup
f

Pnf2) ≤ δ2‖F‖2P,2 +
1
√
n
E∗P‖Gn‖F2

≤ δ2‖F‖2P,2 +
2
√
n
E∗P‖G

0
n‖F2

≤ δ2‖F‖2P,2 +
4
√
n
E∗P‖G

0
n‖F

≤ δ2‖F‖2P,2 +
8
√
n
E∗P‖Gn‖F

. δ2‖F‖2P,2 +
8
√
n
J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F , L2

 ‖F‖P,2.
Dividing through by ‖F‖2P,2 we see that z2 ≡ E∗P (supf Pnf2)}/‖F‖2P,2
satisfies

z2 . δ2 +
J(z,F , L2)
√
n‖F‖P,2

. (6)
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Proof, part 2: inversion

Lemma. (Inversion) Let J : (0,∞) → R be a concave,

nondecreasing function with J(0) = 0. If z2 ≤ A2 + B2J(zr)

for some r ∈ (0,2) and A,B > 0, then

J(z) . J(A)

{
1 + J(Ar)

(
B

A

)2
}1/(2−r)

.

Applying this Lemma with r = 1, A = δ and B2 = 1/(
√
n‖F‖P,2)

yields

J(z,F) . J(δ,F)

(
1 +

J(δ,F)

δ2√n‖F‖P,2

)
.
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Combining this with (5) completes the proof:

E∗P‖Gn‖F . J

{E∗P (supf Pnf2)}1/2

‖F‖P,2
,F

 ‖F‖P,2
. J(δ,F)

(
1 +

J(δ,F)

δ2√n‖F‖P,2

)
‖F‖P,2. (7)

Short Course, Louvain-la-Neuve; 29-30 May 2012 2.25



Selected References:

• Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cam-
bridge University Press.
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Lecture 5: Peeling methods and rates of

convergence

• 1. The peeling method: first rate theorem

B General theorem 1.

B Application 1: Chernoff’s “mode” estimator.

• 2. The peeling method: second rate theorem

B General theorem 2.

B Application 2: Grenander’s estimator of a monotone

decreasing density

B Application 3: ??
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The peeling method: first rate theorem:

Suppose that θ̂n maximizes

θ 7→ Mn(θ) ≡ Pnmθ

for given measurable functions mθ : X → R indexed by a

parameter θ, and that the population contrast

θ 7→ M(θ) = Pmθ

satisfies, for θ0 ∈ Θ and some metric d on Θ,

Pmθ − Pmθ0
. −d2(θ, θ0). (8)

A bound on the rate of convergence of θ̂n to θ0 can then be

derived from the modulus of continuity of the empirical process

Gnmθ indexed by the functions mθ.
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Theorem 1. Suppose that (8) holds. If φn is a function such

that δ 7→ φn(δ)/δα is decreasing for some α < 2 and

E sup
θ:d(θ,θ0)<δ

|Gn(mθ −mθ0
)| . φn(δ), (9)

then d(θ̂n, θ0) = Op(δn) for δn any solution to

φn(δn) ≤
√
nδ2
n.

The inequality (9) involves the empirical process indexed by the

class of functions Mδ = {mθ−mθ0
: d(θ, θ0) < δ}. If d dominates

the L2(P )−norm, or another norm ‖ ‖ (such as the Bernstein

norm) and the norms of the envelopes Mδ of the classes Mδ are

bounded in δ, then we can choose

φn(δ) = J(δ,Mδ, ‖ · ‖)
(

1 +
J(δ,Mδ, ‖ · ‖)

δ2√n

)
.

where J is an appropriate entropy integral.
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Proof. For simplicity, assume that θ̂n = argmax Mn(θ). For
each n, partition Θ \ {θ0} into “shells” {Sn,j : j ∈ Z} defined as
follows:

Sn,j = {θ ∈ Θ : 2j−1 < rnd(θ, θ0) ≤ 2j}, j ∈ Z .
If rnd(θ̂n, θ0) > 2M for some M , then θ̂n ∈ Sn,j for some j > M ,
and hence supθ∈Sn,j(Mn(θ)−Mn(θ0)) ≥ 0. We want to show that

lim sup
n→∞

P ∗(rnd(θ̂n, θ0) > 2M)→ 0 as M →∞ .

But

P ∗(rnd(θ̂n, θ0) > 2M)

≤ P ∗(rnd(θ̂n, θ0) > 2M , rnd(θ̂n, θ0) ≤ 2J)

+ P ∗( rnd(θ̂n, θ0) > 2J > ηrn/2)

≤
∑

M<j≤J
P ∗

 sup
θ∈Sn,j

(Mn(θ)−Mn(θ0)) ≥ 0


+ P ∗(2d(θ̂n, θ0) ≥ η) .
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Suppose that we choose η so small that the condition given by
(8) holds for d(θ, θ0) ≤ η, and the second condition (9) holds for
all δ ≤ η. Then, for every j in the sum, and all θ ∈ Sn,j

M(θ)−M(θ0) . −d2(θ, θ0) . −
22(j−1)

r2
n

.

Thus in terms of the centered process Wn(θ) = (Mn(θ)−M(θ)),
the sum is bounded by∑

M<j≤J
P ∗

(
‖Wn(θ)−Wn(θ0)‖Sn,j ≥

22j−2

r2
n

)

≤
∑

M<j≤J

φn(2j/rn)
√
n22j−2

r2
n

≤
∑

M<j≤J

2jαφn(1/rn)r2
n√

n
2−(2j−2)

≤ 4
∑
j>M

2jα−2j → 0 as M ↗∞ ;
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where we used the definition of rn together with

φn(cδ)

(cδ)α
≤
φn(δ)

δα

for c > 1 to conclude that φn(cδ) ≤ cαφn(δ). �
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Example 1. Suppose that X1, . . . , Xn are i.i.d. P on R with
density p with respect to Lebesgue measure λ. Fix a > 0 and let

Mn(θ) = Pn1[θ−a,θ+a] = Pnmθ ,

the proportion of the sample in the interval [θ − a, θ + a].
Correspondingly,

M(θ) = Pmθ = P (|X − θ| ≤ a) = FX(θ + a)− FX((θ − a)−)

where FX(x) = P (X ≤ x) is the distribution function of X. Is this
maximized uniquely by some θ0? Since P has Lebesgue density
p, it follows that M is differentiable and

M′(θ) = p(θ + a)− p(θ − a) = 0

if p(θ+a) = p(θ−a) which clearly holds for the point of symmetry
θ0 if p is symmetric and unimodal about θ0. If p is just unimodal,
with p′(x) > 0 for x < θ0 and p′(x) < 0 for x > θ0, then θ0 ≡
argmax M(θ) might not agree with the mode, but it is “nearby”.
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Does it hold that

θ̂n = argmax Mn(θ)→p argmax M(θ) = θ0 ?

If this holds, do we have

rn(θ̂n−θ0)

{
= Op(1) for some rn →∞
→d Z for some limiting random variable Z?

Let F = {mθ : θ ∈ R}. This is a VC -subgraph class of functions
of dimension S(F) = 2. Now it is easily seen that with Mδ(θ0) =
{mθ −mθ0

: d(θ, θ0) < δ} we have

N(ε,Mδ(θ0), L2(Q)) ≤ N(ε,F∞, L2(Q))

≤ N2(ε/2,F , L2(Q)) ≤
(
K

ε

)8
,

and hence the entropy integral

J(1,Mδ) .
∫ 1

0

√
8log(K/ε)dε <∞ .
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Furthermore, Mδ(θ0) has envelope function

Mδ(x) = sup{|mθ(x)−mθ0
(x)| : |θ − θ0| < δ}

= 1[θ0+a−δ,θ0+a+δ](x) + 1[θ0−a−δ,θ0−a+δ](x)

for δ < a, and we compute

P (M2
δ ) = P (θ0 + a− δ ≤ X ≤ θ0 + a+ δ)

+ P (θ0 − a− δ ≤ X ≤ θ0 − a+ δ)

≤ 4‖p‖∞δ ,

so ‖Mδ‖P,2 ≤ 2‖p‖1/2
∞ δ1/2. Combining these calculations with

Pollard’s bound (3) yields

E∗‖Gn‖Mδ
. J(1,Mδ)‖Mδ‖P,2 . δ1/2 ≡ φ(δ) .

The only remaining ingredient to apply the rate Theorem 1 is to
verify (8). This will typically hold for unimodal densities since

M(θ)−M(θ0) =
1

2

(
p′(θ0 + a)− p′(θ0 − a)

)
(θ− θ0)2 + o(‖θ− θ0‖2)

where p′(θ0 − a) > 0 and p′(θ0 + a) < 0.
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Now with φn(δ) ≡ φ(δ) ≡ Cδ1/2 we have

Cδ
1/2
n = φn(δn) .

√
nδ2
n

if δn = n−1/3:

Cn−1/6 . n1/2n−2/3 = n−1/6.

Thus we find that rn = 1/δn = n1/3, and hence, by Theorem 1,

n1/3(θ̂n − θ0) = Op(1).

Remark: Chernoff (1964) shows that

• n1/3(θ̂n − θ0)→d

(
8p(θ0)
c

)1/3
Z where

c ≡ p′(θ0 − a)− p′(θ0 + a).

• Z = argmax{W (t) − t2} for a two-sided Brownian motion
process W ; see also VdV&W, page 295.
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Here is a simple result that handles many parametric examples.

This formulation is from Van der Vaart (1998).

Corollary. Suppose that x 7→ mθ(x) is a measurable function for

each θ ∈ Θ ⊂ Rd where Θ is open, and suppose that for all θ1, θ2

in some neighborhood of θ0 ∈ Θ there is a measurable function

ṁ ∈ L2(P ) such that

|mθ1
(x)−mθ2

(x)| ≤ ṁ(x)‖θ1 − θ2‖ . (10)

Furthermore, suppose that the function θ 7→ M(θ) = Pmθ has a

second-order Taylor expansion at the point of maximum θ0 with

nonsingular second derivative. If Mn(θ̂n) ≥ Mn(θ0) − Op(n−1),

then
√
n(θ̂n − θ0) = Op(1) provided that θ̂n →p θ0.

Proof. The hypothesis (8) holds with the metric d replaced by

the Euclidean distance. To verify (9), we apply the bracketing

moment bound (2) to the class of functions Mδ = {mθ −mθ0
:

‖θ − θ0‖ < δ}. This class has envelope Mδ = ṁδ, so that
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(PM2
δ )1/2 = δ‖ṁ‖P,2. By Lemma 1.6.2 and Exercise 1.3.18 it

follows that

N[ ](2ε‖ṁ‖P,2,Mδ, L2(P )) ≤ N(ε, B(θ0, δ), ‖ · ‖)

≤
(

6δ

ε

)d
,

or

N[ ](εδ‖ṁ‖P,2,Mδ, L2(P )) = N[ ](ε‖Mδ‖P,2,Mδ, L2(P ))

≤
(

12

ε

)d
,

and hence,

J[ ](1,Mδ, L2(P )) .
√
d
∫ 1

0

√
log

(
12

ε

)
dε

= 12
√
d
∫ ∞
log(12)

v1/2e−vdv <∞ .

Thus we conclude that (9) holds with φn(δ) . δ. Thus Theorem
1 yields the rate of convergence rn =

√
n if θ̂n is consistent. �
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The peeling method: second rate theorem:

Theorem 2. (Birgé and Massart, 1993).
Suppose that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P. Let
h be the Hellinger distance between densities, and let mp be
defined, for p ∈ P, by

mp(x) = log

(
p(x) + p0(x)

2p0(x)

)
.

Then M(p) −M(p0) = P0(mp −mp0) . −h2(p, p0). Furthermore,
with Mδ = {mp −mp0 : h(p, p0) ≤ δ}, we also have

E∗P0
‖Gn‖Mδ

. J̃[ ](δ,P, h)

1 +
J̃[ ](δ,P, h)

δ2√n

 ≡ φn(δ) . (11)

Thus if δn = 1/rn satisfies φn(δn) .
√
nδ2
n, then

rnh(p̂n, p0) = Op(1).
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Proof of the last part of the Theorem statement: Note that

the Hellinger equivalence noted in Proposition 1.3 (Lecture 2)

followed by Proposition 1.3 yields

h2(p̂n, p0) ≤ 24h2((p̂n + p0)/2, p0)

≤ 24(Pn − P0)

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)
= 12(Pn − P0)(mp̂n −mp0)

≤ 12n−1/2‖Gn‖Mδ

on the event {h(p̂n, p0) ≤ δ}. Thus for x > 0 and δ > 0
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P (rnh(p̂n, p0) > x)

= P (rnh(p̂n, p0) > x, h(p̂n, p0) ≤ δ)
+ P (rnh(p̂n, p0) > x, h(p̂n, p0) > δ)

≤ P (rnh(p̂n, p0) > x, h(p̂n, p0) ≤ δ) + P (h(p̂n, p0) > δ)

≤
E∗[r2

nh
2(p̂n, p0)1{h(p̂n, p0) ≤ δ}]

x2
+ P (h(p̂n, p0) > δ)

≤
12n−1/2r2

nE
∗‖Gn‖Mδ

x2
+ P (h(p̂n, p0) > δ)

Choosing x = 2j, δ = 2j+1/rn and assuming that E∗‖Gn‖Mδ
≤

φn(δ), this yields

P (rnh(p̂n, p0) > 2j)

≤
12n−1/2r2

nφn(2j+1/rn)

22j
+ P (h(p̂n, p0) > 2j+1/rn)

for all j. But then by recursion, the bound φn(cδ) ≤ cαφn(δ) used
in the proof of Theorem 3.1, and choosing
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J so large that 2J+1/rn > η, we find that

P (rnh(p̂n, p0) > 2M)

≤ 12
J∑

j=M

n−1/2r2
nφn(2j+1/rn)

22j
+ P (h(p̂n, p0) > 2J+1/rn)

≤ 12
J∑

j=M

r2
n2jαφn(1/rn)

√
n

2−2j + P (h(p̂n, p0) > η)

≤ 12
∞∑

j=M

2jα−2j + P (h(p̂n, p0) > η) .

(Note that we could have summed out to J so large that
2J+1/rn > 1, and then the second term on the ride side is zero
since h(p, q) ≤ 1; thus consistency of p̂n is not needed in this
case.) By consistency of p̂n this yields

lim
M→∞

lim sup
n→∞

P (rnh(p̂n, p0) > 2M) = 0 .
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Application 2. The Grenander estimator of a monotone
decreasing density. Let

P ≡ {p : [0, B]→ [0,M ]
∣∣∣ p is nonincreasing}.

Let Q denote the uniform distribution on [0,M ]. Then

logN[ ](ε,P, L2(Q)) . ε−1,

and

logN[ ](ε,P, H) . ε−1.

Thus

J[ ](δ,P, H) .
∫ δ

0
ε−1/2dε = 2δ1/2.

Then we have

φn(δ) . δ1/2
(

1 +
δ1/2

δ2√n

)
= δ1/2 +

1

δ
√
n
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So we have φn(δn) .
√
nδ2
n if δn = n−1/3:

φn(δn) = n−1/6 +
1

n−1/3n1/2
= 2n−1/6

. n1/2n−2/3 = n−1/6.

From Theorem 2 we conclude that

n1/3h(p̂n, p0) = Op(1).
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Lecture 6: Some Useful Preservation Theorems

• Preservation of the VC property.

• Preservation of Euclidean classes.

• Preservation of Bracketing properties.

• Preservation of the Glivenko-Cantelli property.

• Preservation of the Donsker property.

• Preservation of the Donsker property under ... ??? .
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Preservation of the VC property:
Proposition 6.1. (Operations preserving the VC property for
sets). Suppose that C and D are VC-classes of subsets of a set
X , and that φ : X 7→ Y and ψ : Z 7→ X are fixed functions. Then:

• Cc = {Cc : C ∈ C} is VC and S(Cc) = S(C).

• C u D = {C ∩D : C ∈ C, D ∈ D} is VC.

• C t D = {C ∪D : C ∈ C, D ∈ D} is VC.

• C ×D = {C ×D : C ∈ C, D ∈ D} is VC for VC-classes C and D
in sets X and Y.

• φ(C) is VC if φ is one-to-one.

• ψ−1(C) is VC and S(ψ−1(C)) ≤ S(C) with equality if ψ is onto.

• The sequential closure of C for pointwise convergence of
indicator functions is VC.
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Can we quantify or bound S(C uD), S(C uD), S(C ×D) in terms

of S(C) and S(D)? Yes! Even more generally:

Proposition. Let S ≡
∑m
j=1 Sj. Then the following bounds hold:

S(tmj=1Cj)
S(umj=1Cj)
S(�m1 Dj)

 ≤ c1Slog
(

c2m

eEnt(S)/S̄

)
≤ c1Slog(c2m). (12)

where V ≡ (S1, . . . , Sm), c1 ≡ e
(e−1)log(2)

.
= 2.28231..., c2 ≡

e
log2

.
= 3.92165...,

Ent(S) ≡ m−1
m∑
j=1

SjlogSj − SlogS

is the “entropy” of the Sj’s under the discrete uniform distribu-

tion with weights 1/m and S = m−1∑m
j=1 Sj.

Proof: VdV&W, 2009, HD Prob V.
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Proposition 6.2. (Operations preserving the VC-subgraph

property for functions). Suppose that F and G are VC-subgraph

classes of functions on a set X , and g : X 7→ R, φ : R 7→ R, and

ψ : Z 7→ X fixed functions. Then:

• F ∧ G = {f ∧ g : f ∈ F , g ∈ G} is VC subgraph;

• F ∨ G = {f ∨ g : f ∈ F , g ∈ G} is VC subgraph;

• {F > 0} = {{f > 0} : f ∈ F} is VC;

• −F is VC-subgraph;

• g + F = {g + f : f ∈ F} is VC subgraph;

• g · F = {g · f : f ∈ F} is VC subgraph;

• F ◦ ψ = {f(ψ) : f ∈ F} is VC subgraph;

• φ ◦ F = {φ(f) : f ∈ F} is VC subgraph for monotone φ.
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Euclidean classes: It is sometimes easier to work with the

following notion: a class of real functions on a set X is said

to be a Euclidean class for the envelope function F if there

exist constants A and V such that

N(ε‖F‖Q,1,F , L1(Q)) ≤ Aε−V , 0 < ε ≤ 1

whenever 0 < ‖F‖Q,1 = QF <∞. Note that the constants A and

V may not depend on Q.

If F is Euclidean, then for each r > 1

N(ε‖F‖Q,r,F , Lr(Q)) ≤ A2rV ε−rV , 0 < ε ≤ 1

whenever 0 < QF r < ∞, as follows from the definition of

N(2(ε/2)r‖F‖µ,1,F , L1(µ)) for the measure µ(·) = Q(·(2F )r−1).

Here is an example of a preservation or stability result for

Euclidean classes:
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Proposition 6.3. Suppose that F and G are Euclidean classes

of functions with envelopes F and G respectively, and suppose

that Q is a measure with QF r <∞ and QGr <∞ for some r ≥ 1.

Then the class of functions

F + G = {f + g : f ∈ F , g ∈ G}

is Euclidean for the envelope F +G; moreover,

N((2ε+ 2δ)‖F +G‖Q,r,F + G, L2(Q))

≤ N(ε‖F‖Q,r,F , Lr(Q))N(δ‖G‖Q,r,G, Lr(Q)) .

Here are two specific results concerning affine transformations

of Rd and then composition with a fixed function of bounded

variation.
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Lemma 6.1.

• Suppose that ψ : R+ 7→ R is of bounded variation. For A

an m × d matrix and b ∈ Rm, let fA,b : Rd 7→ R be defined by

fA,b(x) = ψ(|Ax+ b|). Then the collection

F = {fA,b : A an m× dmatrix, b ∈ Rm}

is Euclidean for a constant envelope F = ‖ψ‖∞.

• Suppose that ψ : R 7→ R is of bounded variation. For a ∈ Rd,
b ∈ R, let ga,b : Rd 7→ R be defined by fa,b(x) = ψ(a′x + b).

Then the collection G = {ga,b : a ∈ Rd, b ∈ R} is Euclidean for

a constant envelope F = ‖ψ‖∞.
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Preservation of bracketing entropy:

Proposition 6.4. Suppose that for every θ a compact subset Θ

of Rd, the class Fθ = {fθ,γ : γ ∈ Γ} satisfies

logN[ ](ε,Fθ, L2(P )) ≤ K
(

1

ε

)W
for a constant W < 2 and K not depending on θ. Suppose,

moreover, that

|fθ1,γ − fθ2,γ| ≤ F |θ1 − θ2|

for a function F with PF2 <∞. Then F ≡ ∪θ∈ΘFθ satisfies

logN[ ](ε,F , L2(P )) . dlog(1/ε) +K

(
1

ε

)W
.
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Preservation of the Glivenko-Cantelli property:

Proposition 6.5. (Operations preserving the Glivenko-Cantelli-

subgraph property).

• If F1, . . . ,Fk are P−Glivenko-Cantelli classes, and ϕ : Rk → R
is continuous, then H ≡ ϕ(F1, . . . ,Fk) is Glivenko-Cantelli

provided it has a P−integrable envelope.

• If {Xj}∞j=1 is a partition of X and Fj ≡ {f1Xj : f ∈ F}
is P−Glivenko-Cantelli for each j and F has an integrable

envelope function F , then F is P−Glivenko-Cantelli.

• ??
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Preservation of the Donsker property:

Proposition 6.6. (Operations preserving the Donsker property).

• If F is Donsker and G ⊂ F is Donsker, then G is Donsker.

• If F is Donsker, then F is Donsker where

F denotes the set of all f : X → R for which there exists

a sequence {fm} ⊂ F with fm → f both pointwise and in

L2(P ).

• If F is Donsker then sconv(F) is Donsker where

sconv(F) denotes the set of convex combinations
∑∞
i=1 λifi

of functions fi in F where
∑
|λi| ≤ 1 and the series converges

both pointwise and in L2(P ).
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• Let F1, . . . ,Fk be Donsker classes with ‖P‖Fi <∞ for each i.

Let φ : Rk → R satisfy

|φ(f(x))− φ(g(x))|2 ≤
k∑
l=1

(fi(x)− gi(x))2

for every f, g ∈ F1, . . . ,Fk and x. (This holds if φ is Lips-

chitz.) Then the class φ(F1, . . . ,Fk) is Donsker provided that

φ(f1, . . . , fk) is square integrable for at least one (f1, . . . , fk).

• If F and G are Donsker classes with ‖P‖F∪G <∞, then F ∧G,

F ∨ G, F + G, and F ∪ G are all Donsker.
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Useful things not covered

• Multiplier central limit theorems.

• Bootstrap central limit theorems.

• M− and Z−theorems.

• Concentration inequalities

(with applications to model selection).

See van der Vaart and Wellner (1996) ...

and

VdV & W Second Edition (2013?)
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Thank You!
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