# Nonparametric estimation of

# log-concave densities



#### Jon A. Wellner

#### University of Washington, Seattle

# Conference on Shape Restrictions in Non- and Semi-Parametric Estimation of Econometric Models

Based on joint work with:

- Fadoua Balabdaoui
- Kaspar Rufibach
- Arseni Seregin

- A: Log-concave densities on  $\mathbb{R}^1$
- B: Nonparametric estimation, log-concave on  $\mathbb R$
- C: Limit theory at a fixed point in  ${\mathbb R}$
- D: Estimation of the mode, log-concave density on  $\mathbb R$
- E: Generalizations: s-concave densities on  $\mathbb R$  and  $\mathbb R^d$
- F: Summary; problems and open questions

Suppose that

$$f(x) \equiv f_{\varphi}(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x)))$$

where  $\varphi$  is concave (and  $-\varphi$  is convex). The class of all densities f on  $\mathbb{R}$  of this form is called the class of *log-concave* densities,  $\mathcal{P}_{log-concave} \equiv \mathcal{P}_0$ .

#### **Properties of log-concave densities:**

- A density f on  $\mathbb{R}$  is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density *f* is unimodal (but need not be symmetric).
- $\mathcal{P}_0$  is closed under convolution.

# A. Log-concave densities on $\mathbb{R}^1$

- Many parametric families are log-concave, for example:
  - $\triangleright$  Normal ( $\mu, \sigma^2$ )
  - $\triangleright$  Uniform(a, b)
  - $\triangleright$  Gamma $(r, \lambda)$  for  $r \geq 1$
  - $\triangleright$  Beta(a, b) for  $a, b \ge 1$
- $t_r$  densities with r > 0 are not log-concave
- Tails of log-concave densities are necessarily sub-exponential
- $\mathcal{P}_{log-concave}$  = the class of "Polyá frequency functions of order 2",  $PFF_2$ , in the terminology of Schoenberg (1951) and Karlin (1968). See Marshall and Olkin (1979), chapter 18, and Dharmadhikari and Joag-Dev (1988), page 150. for nice introductions.

- The (nonparametric) MLE  $\hat{f}_n$  exists (Rufibach, Dümbgen and Rufibach).
- $\hat{f}_n$  can be computed: R-package "logcondens" (Dümbgen and Rufibach)
- In contrast, the (nonparametric) MLE for the class of unimodal densities on  $\mathbb{R}^1$  does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.
- Consistency and rates of convergence for  $\hat{f}_n$ : Dümbgen and Rufibach, (2009); Pal, Woodroofe and Meyer (2007).
- Pointwise limit theory? Yes! Balabdaoui, Rufibach, and W (2009).

**MLE of** f and  $\varphi$ : Let  $\mathcal{C}$  denote the class of all concave function  $\varphi : \mathbb{R} \to [-\infty, \infty)$ . The estimator  $\widehat{\varphi}_n$  based on  $X_1, \ldots, X_n$  i.i.d. as  $f_0$  is the maximizer of the "adjusted criterion function"

$$\ell_n(\varphi) = \int \log f_{\varphi}(x) d\mathbb{F}_n(x) - \int f_{\varphi}(x) dx$$
$$= \int \varphi(x) d\mathbb{F}_n(x) - \int e^{\varphi(x)} dx$$

over  $\varphi \in \mathcal{C}$ .

**Properties of**  $\hat{f}_n$ ,  $\hat{\varphi}_n$ : (Dümbgen & Rufibach, 2009)

- $\hat{\varphi}_n$  is piecewise linear.
- $\widehat{\varphi}_n = -\infty$  on  $\mathbb{R} \setminus [X_{(1)}, X_{(n)}].$
- The knots (or kinks) of  $\hat{\varphi}_n$  occur at a subset of the order statistics  $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ .
- Characterized by ...

...  $\hat{\varphi}_n$  is the MLE of  $\log f_0 = \varphi_0$  if and only if

$$\widehat{H}_n(x) \left\{ \begin{array}{l} \leq \mathbb{H}_n(x), & \text{for all } x > X_{(1)}, \\ = \mathbb{H}_n(x), & \text{if } x & \text{is a knot.} \end{array} \right.$$

where

$$\widehat{F}_n(x) = \int_{X_{(1)}}^x \widehat{f}_n(y) dy, \qquad \widehat{H}_n(x) = \int_{X_{(1)}}^x \widehat{F}_n(y) dy,$$
$$\mathbb{H}_n(x) = \int_{-\infty}^x \mathbb{F}_n(y) dy.$$

Furthermore, for every function  $\Delta$  such that  $\hat{\varphi}_n + t\Delta$  is concave for t small enough,

$$\int_{\mathbb{R}} \Delta(x) d\mathbb{F}_n(x) \leq \int_{\mathbb{R}} \Delta(x) d\widehat{F}_n(x).$$

Consistency of  $\widehat{f}_n$  and  $\widehat{\varphi}_n$ :

- (Pal, Woodroofe, & Meyer, 2007): If  $f_0 \in \mathcal{P}_0$ , then  $H(\hat{f}_n, f_0) \rightarrow_{a.s.} 0$ .
- (Dümbgen & Rufibach, 2009): If  $f_0 \in \mathcal{P}_0$  and  $\varphi_0 \in \mathcal{H}^{\beta,L}(T)$  for some compact  $T = [A, B] \subset \{x : f_0(x) > 0\}^\circ$ ,  $M < \infty$ , and  $1 \le \beta \le 2$ . Then

$$\sup_{t \in T} (\widehat{\varphi}_n(t) - \varphi_0(t)) = O_p\left(\left(\frac{\log n}{n}\right)^{\beta/(2\beta+1)}\right), \text{ and}$$
$$\sup_{t \in T_n} (\varphi_0(t) - \widehat{\varphi}_n(t)) = O_p\left(\left(\frac{\log n}{n}\right)^{\beta/(2\beta+1)}\right)$$

where  $T_n \equiv [A + (\log n/n)^{\beta/(2\beta+1)}, B - (\log n/n)^{\beta/(2\beta+1)}]$  and  $\beta/(2\beta+1) \in [1/3, 2/5]$  for  $1 \le \beta \le 2$ .

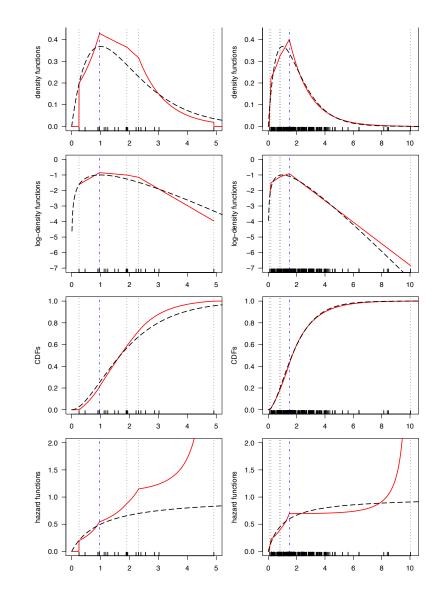
• The same remains true if  $\widehat{\varphi}_n$ ,  $\varphi_0$  are replaced by  $\widehat{f}_n$ ,  $f_0$ .

• If  $\varphi_0 \in \mathcal{H}^{\beta,L}(T)$  as above and, with  $\varphi'_0 = \varphi_0(\cdot -)$  or  $\varphi'_0(\cdot +)$ ,  $\varphi'_0(x) - \varphi'_0(y) \ge C(y-x)$  for some C > 0 and all  $A \le x < y \le B$ , then

$$\sup_{t \in T_n} |\widehat{F}_n(t) - \mathbb{F}_n(t)| = O_p\left(\left(\frac{\log n}{n}\right)^{3\beta/(4\beta+2)}\right).$$

where  $3\beta/(2\beta + 4) \in [1/2, 3/5] = [.5, .6]$  for  $1 \le \beta \le 2$ .

• If  $\beta > 1$ , this implies  $\sup_{t \in T_n} |\widehat{F}_n(t) - \mathbb{F}_n(t)| = o_p(n^{-1/2})$ .



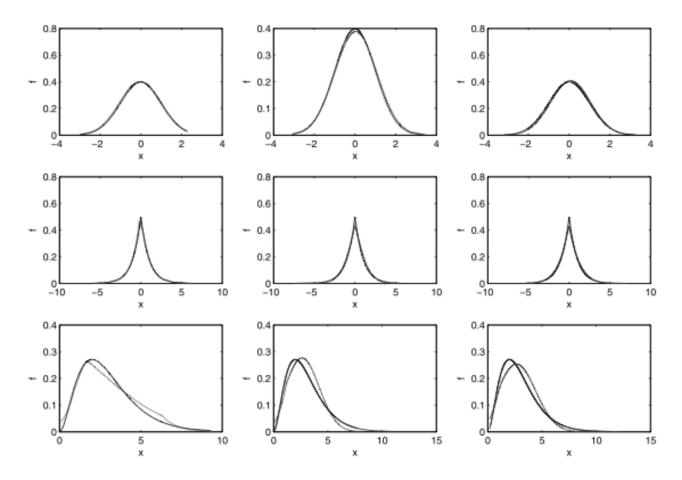


FIG 2. The estimated log-concave density for different simulation examples. The sample sizes are 50,100 and 200 respectively for first, second and third columns. The three rows correspond to simulations from a Normal(0,1), a double-exponential and a Gamma(3,2) density. The bold one corresponds to the true density and the dotted one is the estimator.

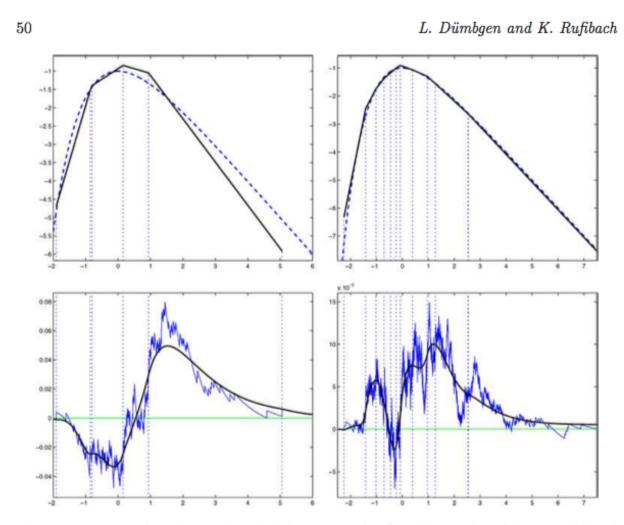


Figure 3. Density functions and empirical processes for Gumbel samples of size n = 200 and n = 2000.

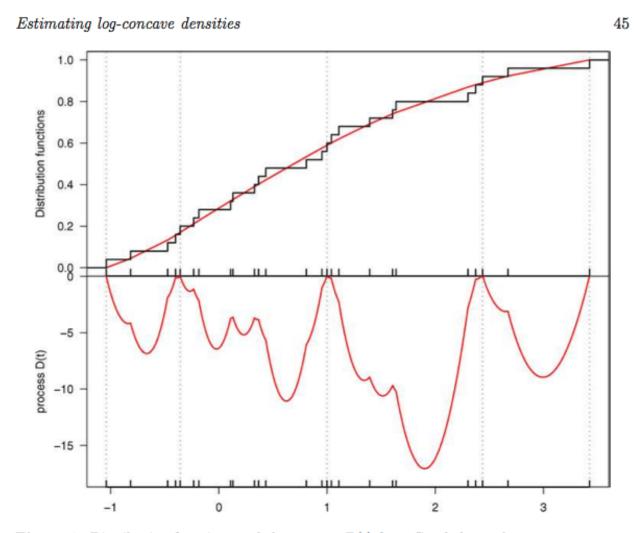


Figure 1. Distribution functions and the process D(t) for a Gumbel sample.

**Assumptions:** •  $f_0$  is log-concave,  $f_0(x_0) > 0$ .

**Example:**  $f_0(x) = C \exp(-x^4)$  with  $C = \sqrt{2}\Gamma(3/4)/\pi$ : k = 4.

**Driving process:**  $Y_k(t) = \int_0^t W(s) ds - t^{k+2}$ , W standard 2-sided Brownian motion.

**Invelope process:**  $H_k$  determined by limit Fenchel relations:

- $H_k(t) \leq Y_k(t)$  for all  $t \in \mathbb{R}$
- $\int_{\mathbb{R}} (H_k(t) Y_k(t)) dH_k^{(3)}(t) = 0.$
- $H_k^{(2)}$  is concave.

#### Theorem. (Balabdaoui, Rufibach, & W, 2009)

• Pointwise limit theorem for  $\hat{f}_n(x_0)$ :

$$\begin{pmatrix} n^{k/(2k+1)}(\widehat{f}_n(x_0) - f_0(x_0)) \\ n^{(k-1)/(2k+1)}(\widehat{f}'_n(x_0) - f'_0(x_0)) \end{pmatrix} \to_d \begin{pmatrix} c_k H_k^{(2)}(0) \\ d_k H_k^{(3)}(0) \end{pmatrix}$$

where

$$c_k \equiv \left(\frac{f_0(x_0)^{k+1}|\varphi_0^{(k)}(x_0)|}{(k+2)!}\right)^{1/(2k+1)},$$
  
$$d_k \equiv \left(\frac{f_0(x_0)^{k+2}|\varphi_0^{(k)}(x_0)|^3}{[(k+2)!]^3}\right)^{1/(2k+1)}$$

• Pointwise limit theorem for  $\hat{\varphi}_n(x_0)$ :

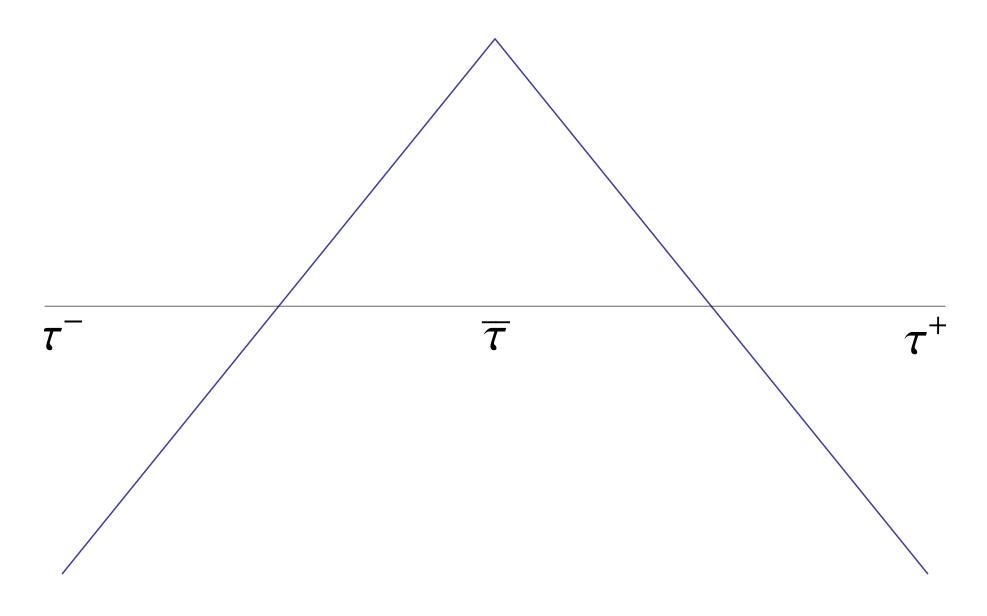
$$\begin{pmatrix} n^{k/(2k+1)}(\hat{\varphi}_n(x_0) - \varphi_0(x_0)) \\ n^{(k-1)/(2k+1)}(\hat{\varphi}'_n(x_0) - \varphi'_0(x_0)) \end{pmatrix} \to_d \begin{pmatrix} C_k H_k^{(2)}(0) \\ D_k H_k^{(3)}(0) \end{pmatrix}$$

where

$$C_k \equiv \left(\frac{|\varphi_0^{(k)}(x_0)|}{f_0(x_0)^k(k+2)!}\right)^{1/(2k+1)},$$
  
$$D_k \equiv \left(\frac{|\varphi_0^{(k)}(x_0)|^3}{f_0(x_0)^{k-1}[(k+2)!]^3}\right)^{1/(2k+1)}$$

• Proof: Use the same perturbation as for convex - decreasing density proof with perturbation version of characterization:

# C: Limit theory at a fixed point in $\ensuremath{\mathbb{R}}$



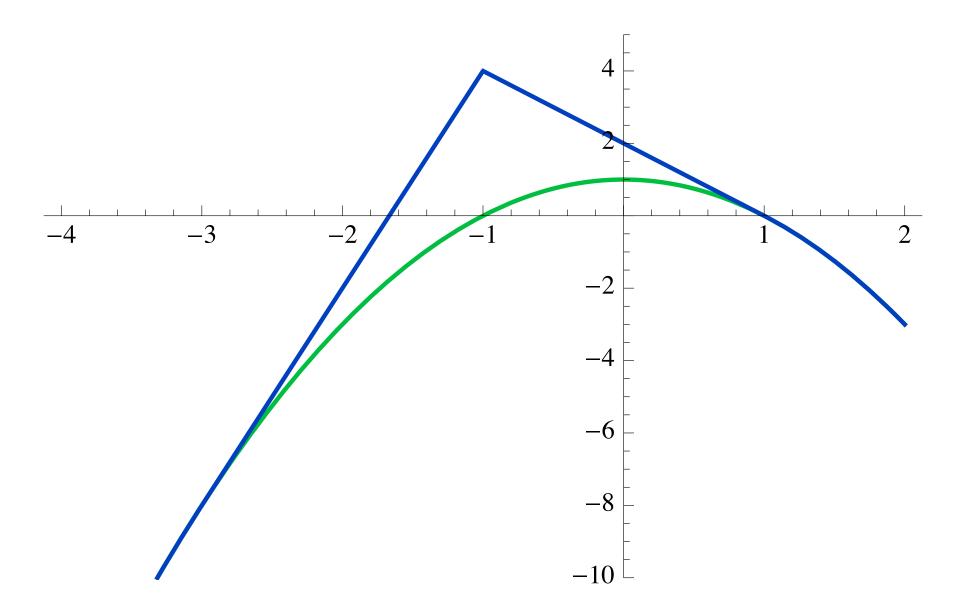
Let  $x_0 = M(f_0)$  be the *mode* of the log-concave density  $f_0$ , recalling that  $\mathcal{P}_0 \subset \mathcal{P}_{unimodal}$ . Lower bound calculations using Jongbloed's perturbation  $\varphi_{\epsilon}$  of  $\varphi_0$  yields:

**Proposition.** If  $f_0 \in \mathcal{P}_0$  satisfies  $f_0(x_0) > 0$ ,  $f''_0(x_0) < 0$ , and  $f''_0$  is continuous in a neighborhood of  $x_0$ , and  $T_n$  is any estimator of the mode  $x_0 \equiv M(f_0)$ , then  $f_n \equiv \exp(\varphi_{\epsilon_n})$  with  $\epsilon_n \equiv \nu n^{-1/5}$  and  $\nu \equiv 2f''_0(x_0)^2/(5f_0(x_0))$ ,

$$\liminf_{n \to \infty} n^{1/5} \inf_{T_n} \max \{ E_n | T_n - M(f_n) |, E_0 | T_n - M(f_0) | \}$$
$$\geq \frac{1}{4} \left( \frac{5/2}{10e} \right)^{1/5} \left( \frac{f_0(x_0)}{f_0''(x_0)^2} \right)^{1/5}.$$

Does the MLE  $M(\widehat{f}_n)$  achieve this?

### **D**: Mode estimation, log-concave density on $\mathbb R$



### **D:** Mode estimation, log-concave density on $\mathbb R$

**Proposition.** (Balabdaoui, Rufibach, & W, 2009) Suppose that  $f_0 \in \mathcal{P}_0$  satisfies:

• 
$$\varphi_0^{(j)}(x_0) = 0, \ j = 2, \dots, k-1,$$

• 
$$\varphi_0^{(k)}(x_0) \neq 0$$
, and

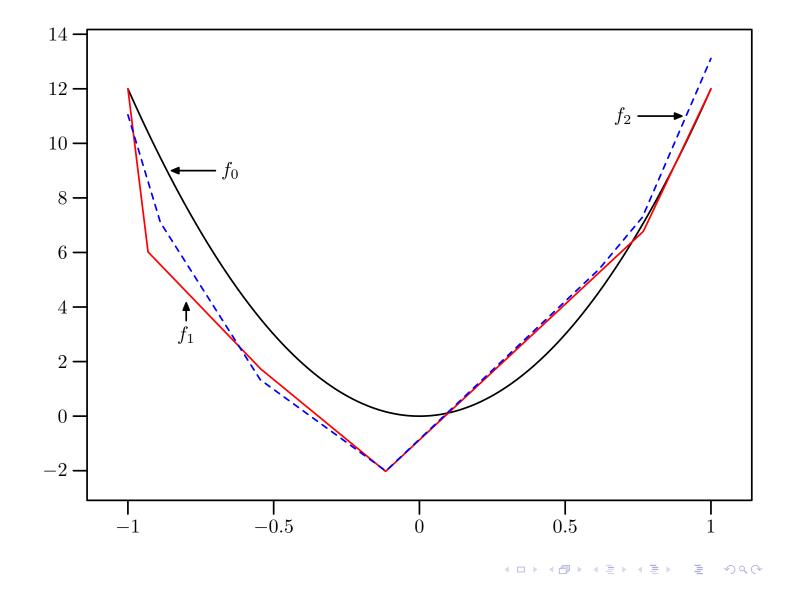
•  $\varphi_0^{(k)}$  is continuous in a neighborhood of  $x_0$ .

Then  $\widehat{M}_n \equiv M(\widehat{f}_n) \equiv \min\{u : \widehat{f}_n(u) = \sup_t \widehat{f}_n(t)\}$ , satisfies

$$n^{1/(2k+1)}(\widehat{M}_n - M(f_0)) \to_d \left(\frac{((k+2)!)^2 f_0(x_0)}{f_0^{(k)}(x_0)^2}\right)^{1/(2k+1)} M(H_k^{(2)})$$
  
where  $M(H_k^{(2)}) = \operatorname{argmax}(H_k^{(2)}).$ 

Note that when k = 2 this agrees with the lower bound calculation, at least up to absolute constants.

### **D**: Mode estimation, log-concave density on $\mathbb R$



Northwestern University, November 5, 2010

1.21

When 
$$f_0 = \phi$$
, the standard normal density,  $M(f_0) = 0$ ,  $f_0(0) = (2\pi)^{-1/2}$ ,  $f_0''(0) = -(2\pi)^{-1/2}$ , and hence  

$$\left(\frac{((4)!)^2 f_0(0)}{f_0^{(2)}(x_0)^2}\right)^{1/5} = \left(\frac{24^2(2\pi)^{-1/2}}{(2\pi)^{-1}}\right)^{1/5} = 4.28452\dots$$

Three generalizations:

- $\log$ -concave densities on  $\mathbb{R}^d$ (Cule, Samworth, and Stewart, 2010)
- s-concave and h- transformed convex densities on  $\mathbb{R}^d$ (Seregin, 2010)
- Hyperbolically k-monotone and completely monotone densities on  $\mathbb{R}$ ; (Bondesson, 1981, 1992)

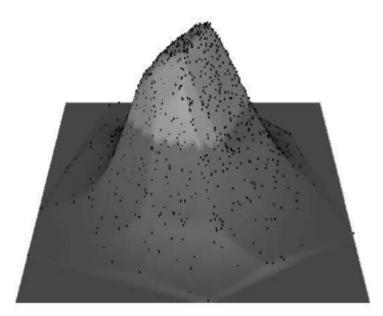
Log-concave densities on  $\mathbb{R}^d$ :

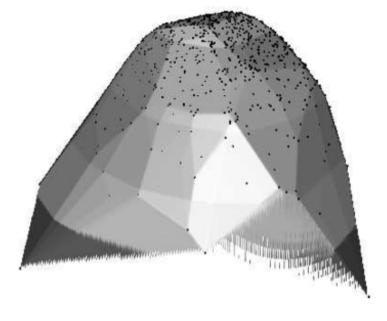
- A density f on  $\mathbb{R}^d$  is log-concave if  $f(x) = \exp(\varphi(x))$  with  $\varphi$  concave.
- Some properties:
  - $\triangleright$  Any log-concave f is unimodal
  - $\triangleright$  The level sets of f are closed convex sets
  - ▷ Convolutions of log-concave distributions are log-concave.
  - ▷ Marginals of log-concave distributions are log-concave.

### MLE of $f \in \mathcal{P}_0(\mathbb{R}^d)$ : (Cule, Samworth, Stewart, 2010)

- MLE  $\hat{f}_n = \operatorname{argmax}_{f \in \mathcal{P}_0(\mathbb{R}^d)} \mathbb{P}_n \log f$  exists and is unique if  $n \ge d+1$ .
- The estimator  $\hat{\varphi}_n$  of  $\varphi_0$  is a "taut tent" stretched over "tent poles" of certain heights at a subset of the observations.
- Computable via non-differentiable convex optimization methods: Shor's (1985) r-algorithm: R-package LogConcDEAD (Cule, Samworth, Stewart , 2008).

Log-concave density estimation 3





(a) Density

(b) Log-density

Fig. 3. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a standard bivariate normal distribution.

• If  $f_0$  is any density on  $\mathbb{R}^d$  with  $\int_{\mathbb{R}^d} ||x|| f_0(x) dx < \infty$ ,  $\int_{\mathbb{R}^d} f_0(x) \log f_0(x) dx < \infty$ , and  $\{x \in \mathbb{R}^d : f_0(x) > 0\}^\circ =$  $\operatorname{int}(\operatorname{supp}(f_0)) \neq \emptyset$ , then  $\widehat{f}_n$  satisfies:

$$\int_{\mathbb{R}^d} |\widehat{f}_n(x) - f^*(x)| dx \to_{a.s.} 0$$

where, for the Kullback-Leibler divergence

$$K(f_0, f) = \int f_0 \log(f_0/f) d\mu,$$

$$f^* = \operatorname{argmin}_{f \in \mathcal{P}_0(\mathbb{R}^d)} K(f_0, f)$$

is the "pseudo-true" density in  $\mathcal{P}_0(\mathbb{R}^d)$  corresponding to  $f_0$ . In fact:

$$\int_{\mathbb{R}^d} e^{a ||x||} |\widehat{f}_n(x) - f^*(x)| dx \to_{a.s.} 0$$

for any  $a < a_0$  where  $f^*(x) \le \exp(-a_0 ||x|| + b_0)$ .

*r*-concave and h- transformed convex densities on  $\mathbb{R}^d$ : (Seregin, 2010; Seregin &, 2010)

**Generalization to** *s*-concave densities: A density f on  $\mathbb{R}^d$  is r-concave on  $C \subset \mathbb{R}^d$  if

 $f(\lambda x + (1 - \lambda)y) \ge M_r(f(x), f(y); \lambda)$ 

for all  $x, y \in C$  and  $0 < \lambda < 1$  where

$$M_r(a,b;\lambda) = \begin{cases} ((1-\lambda)a^r + \lambda b^r)^{1/r}, & r \neq 0, a, b > 0, \\ 0, & r < 0, ab = 0 \\ a^{1-\lambda}b^{\lambda}, & r = 0. \end{cases}$$

Let  $\mathcal{P}_r$  denote the class of all r-concave densities on C. For  $r \leq 0$  it suffices to consider  $C = \mathbb{R}^d$ , and it is almost immediate from the definitions that if  $f \in \mathcal{P}_r$  for some  $r \leq 0$ , then

$$f(x) = \left\{ \begin{array}{ll} g(x)^{1/r}, & r < 0\\ \exp(-g(x)), & r = 0 \end{array} \right\} \quad \text{for } g \text{ convex.}$$

- Long history: Avriel (1972), Prékopa (1973), Borell (1975), Rinott (1976), Brascamp and Lieb (1976)
- Nice connections to t-concave measures: (Borell, 1975)
- Known now in math-analysis as the Borell, Brascamp, Lieb inequality
- One way to get heavier tails than log-concave!
   Example: Multivariate t-density with p-degrees of freedom: if

$$f(x) = f(x; p, d) = \frac{\Gamma((d+p)/2)}{\Gamma(p/2)(p\pi)^{d/2}} \frac{1}{\left(1 + \frac{\|x\|^2}{p}\right)^{(d+p)/2}}$$

then  $f \in \mathcal{P}_{-1/s}$  for  $s \in (d, d + p]$ ; i.e.  $f \in \mathcal{P}_r(\mathbb{R}^d)$  for  $-1/(d + p) \leq r < -1/d$ .

A measure  $\mu$  on  $(\mathbb{R}, \mathcal{B})$  is called t-concave if for all  $A, B \in \mathcal{B}$  and  $0 \le \lambda \le 1$ 

$$\mu(\lambda A + (1 - \lambda)B) \ge M_t(\mu(A), \mu(B), \lambda).$$

**Theorem. (Borell, 1975)** If  $f \in \mathcal{P}_r$  with  $-1/d \leq r \leq \infty$ , then the measure  $P = P_f$  defined by  $P(A) = \int_A f(x) dx$  for Borel subsets A of  $\mathbb{R}^d$  is t-concave with

$$t = \begin{cases} \frac{r}{1+dr}, & \text{if } -1/d < r < \infty, \\ -\infty, & \text{if } r = -1/d, \\ 1/d, & \text{if } r = \infty, \end{cases}$$

and conversely.

h- convex densities: Seregin (2010), Seregin & W (2010))

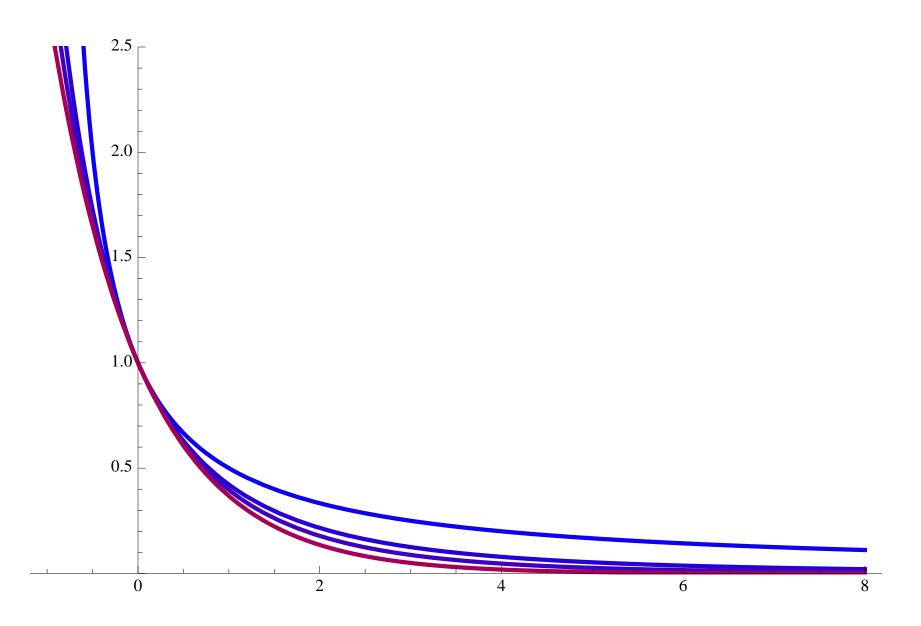
$$f(\underline{x}) = h(\varphi(\underline{x})) \tag{1}$$

where  $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$  is convex,  $h : \mathbb{R} \mapsto \mathbb{R}^+$  is decreasing and continuous; e.g.  $h_s(u) \equiv (1 + u/s)^{-s}$  with s > d.

This motivates the following definition:

**Definition.** Say that  $h : \mathbb{R} \to \mathbb{R}^+$  is a decreasing transformation if, with  $y_0 \equiv \sup\{y : h(y) > 0\}$ ,  $y_\infty \equiv \inf\{y : h(y) < \infty\}$ ,

- $h(y) = o(y^{-\alpha})$  for some  $\alpha > d$  as  $y \to \infty$ .
- If  $y_{\infty} > -\infty$ , then  $h(y) \asymp (y y_{\infty})^{-\beta}$  for some  $\beta > d$  as  $y \searrow y_{\infty}$ .
- If  $y_{\infty} = -\infty$ , then  $h(y)^{\gamma}h(-Cy) = o(1)$  as  $y \to -\infty$  for some  $\gamma, C > 0$ .
- h is continuously differentiable on  $(y_{\infty}, y_0)$ .



Let  $\mathcal{P}_h$  denote the collection of all densities on  $\mathbb{R}^d$  of the form  $f = h \circ \varphi$  for a fixed decreasing transformation h and  $\varphi$  convex, and let

$$\widehat{f}_n \equiv \operatorname{argmax}_{f \in \mathcal{P}_h} \mathbb{P}_n \log f$$
, the MLE.

**Theorem.**  $\widehat{f}_n \in \mathcal{P}_h$  exists if  $n \ge \lceil n_d \rceil$  where

$$n_d \equiv d + d\gamma \mathbb{1}\{y_{\infty} = -\infty\} + \frac{\beta d^2}{\alpha(\beta - d)} \mathbb{1}\{y_{\infty} > -\infty\}$$
$$= \begin{cases} d + 1, & \text{if } h(y) = e^{-y}, \\ d\left(\frac{s}{s - d}\right), & \text{if } h(y) = y^{-s}, \ s > d. \end{cases}$$

**Theorem.** If h is a decreasing transformation as defined above, and  $f_0 \in \mathcal{P}_h$ , then

$$H(\widehat{f}_n, f_0) \rightarrow_{a.s.} 0.$$

#### Questions:

- Rates of convergence?
- MLE (rate-) inefficient for  $d \ge 4$ ? How to penalize to get efficient rates?
- Multivariate classes with nice preservation/closure properties and smoother than log-concave?
- Can we treat  $\hat{f}_n \in \mathcal{P}_h$  with miss-specification:  $f_0 \notin \mathcal{P}_h$ ?
- Algorithms for computing  $\widehat{f}_n \in \mathcal{P}_h$ ?