
Nemirovski’s inequality revisited

Jon A. Wellner

University of Washington

Nemirovski’s inequality revisited – p. 1/31



• joint work with Lutz Dümbgen and Sara van de Geer,
• Faculty talk at

Graduate Student Orientation,
Department of Statistics, University of Washington
22 September, 2008

• Email: jaw@stat.washington.edu
http: //www.stat.washington.edu/jaw/jaw.research.html

Nemirovski’s inequality revisited – p. 2/31



Nemirovski’s inequality revisited – p. 3/31



Nemirovski’s inequality revisited – p. 4/31



Outline

1. A problem from statistics: persistence

2. The theorem of Greenshtein and Ritov

3. First Proof – via Nemirovski’s inequality

4. Second Proof – via bracketing entropy bounds

5. Proof of Nemirovski’s inequality

6. Extensions and comparisons

Nemirovski’s inequality revisited – p. 5/31



1. A problem from statistics: persistence

Setting:

• Data: n i.i.d. copies Z1, . . . , Zn of
Z = (Y,X1, . . . ,Xp) ≡ (Y,X); write Zi = (Y i,Xi

1, . . . ,X
i
p),

i = 1, . . . , n.
• Dimension of X, p = pn large, pn = nα, α > 1
• Goal: Predict Y on the basis of the covariates Xj ,

j = 1, . . . , p

• Predictors Ŷ of Y of the form Ŷ =
∑p

j=1 βjXj = β′X with
β ∈ Bn ⊂ R

p for each n.

• Natural sets Bn to consider are

Bn,k ≡ {β ∈ R
p : #{j : βj �= 0} = k} = {β ∈ R

p : ‖β‖0 = k},
Bn,b ≡ {β ∈ R

p : ‖β‖1 ≤ b}.

where k = kn → ∞ and b = bn → ∞.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP

Y −
p∑

j=1

βjXj

2

.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP

Y −
p∑

j=1

βjXj

2

.

• For a given sequence of distributions {Pn} of Z and
sequence of sets {Bn} with Bn ⊂ Rp, define

β∗
n(Pn) ≡ β∗

n ≡ argminβ∈Bn
LPn

(β).

Thus β∗
n is a deterministic sequence in Rp determined by Pn

and Bn.
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• For Z = (Y,X) ∼ P on (Rp+1,Bp+1), define

LP (β) = EP

Y −
p∑

j=1

βjXj

2

.

• For a given sequence of distributions {Pn} of Z and
sequence of sets {Bn} with Bn ⊂ Rp, define

β∗
n(Pn) ≡ β∗

n ≡ argminβ∈Bn
LPn

(β).

Thus β∗
n is a deterministic sequence in Rp determined by Pn

and Bn.
• This corresponds to the unknown “ideal predictor”

Ŷ ∗ = β∗
n
X which would be available to us if we knew Pn.
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• Definition. (Greenshtein and Ritov, 2004).
Given a set of possible predictors Bn, a sequence of
procedures {β̂n} is persistent (or persistent relative to {Bn} and
{Pn}) if, for every sequence Pn ∈ Pn

LPn
(β̂n) − LPn

(β∗
n) →p 0.
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2. The theorem of Greenshtein and Ritov

Theorem. If p = pn = nα and

F (Zi) ≡ max
0≤j,k≤p

|Xi
jX

i
k − EPn

(Xi
jX

i
j)|

satisfies EPn
F 2(Z1) ≤ M < ∞ for all n ≥ 1, then for

bn = o((n/ log n)1/4) the procedures given by

β̂n ≡ argminβ∈Bn,bn
LPn

(β) (1)

are persistent with respect to

Bn,bn
≡ {β ∈ R

p : ‖β‖1 ≤ bn}.
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

• Comment 2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” Bn,k under the assumption that
k = kn = o((n/logn)1/2).
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• Comment 1. The persistent procedures β̂n in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

• Comment 2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” Bn,k under the assumption that
k = kn = o((n/logn)1/2).

• Proof, part 1: Let γ′ = (−1, β1, . . . , βp)′ ≡ (β0, . . . , βp)′ ∈ R
p+1,

and let Y ≡ X0. Then

LP (β) = EP (Y − β′X)2 = γ′ΣP γ

where ΣP ≡ (σij) = (EP (XiXj))0≤i,j≤p.
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• Proof, part 1: With β̂n ≡ argminβ∈Bn,bn
LPn

(β) it follows that

LPn
(β̂n) − LPn

(β∗
n) ≥ 0,

LPn
(β̂n) − LPn

(β∗
n) ≤ 0,

and hence

0 ≤ LPn
(β̂n) − LPn

(β∗
n)

= LPn
(β̂n) − LPn

(β̂n) + LPn
(β̂n) − LPn

(β∗
n)

+ LPn
(β∗

n) − LPn
(β∗

n)
≤ 2 sup

β∈Bn,bn

|LPn
(β) − LPn

(β)|.
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• Proof, part 1, continued: Let Pn be the empirical measure of
Z1, . . . , Zn. Then

LPn
(β) = γ′ΣPn

γ ≡ γ′(σ̂ij)γ ≡ γ′Σ̂γ.

Define εn
ij and E = (εn

ij) by

εn
ij ≡ σ̂ij − σij, E ≡ (εn

ij) ≡ Σ̂ − ΣP .

Then

|LPn
(β) − LPn

(β)| = |γ′(ΣPn
− ΣPn

)γ| ≤ ‖ΣPn
− ΣPn

‖∞‖γ‖2
1.
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• Proof, part 1, continued: Thus for
Bn,bn

= {β ∈ Rp : ‖β‖1 ≤ bn},

Pr

(
sup

β∈Bn,bn

|LPn
(β) − LPn

(β)| > ε

)
(2)

≤ Pr(‖ΣPn
− ΣPn

‖∞(1 + bn)2 > ε)

≤ ε−1(bn + 1)2E‖ΣPn
− ΣPn

‖∞. (3)

Thus if we can show that the expectation in the last display
satisfies

E‖ΣPn
− ΣPn

‖∞ ≤ C

√
log n

n
,

then the proof is complete:
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3. First proof (part 2) – via Nemirovski’s inequality

Lemma 1. (Nemirovski’s inequality)
Let X1, . . . ,Xn be independent random vectors in Rd, d ≥ 3, with
EXi = 0 and E‖Xi‖2

2 < ∞. Then for every r ∈ [2,∞]

E
∥∥ n∑

i=1

Xi

∥∥2

r
≤ C̃ min{r, log d}

n∑
i=1

E‖Xi‖2
r

where ‖ · ‖r is the �r norm, ‖x‖r ≡ {∑d
1 |xj |r}1/r and C̃ is an

absolute constant (i.e. not depending on r or d or n or the
distribution of the Xi’s).
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• First proof, part 2: To apply Nemirovski’s inequality to bound
E‖ΣPn

− ΣPn
‖∞, consider the matrix ΣPn

− ΣPn
as a

(p + 1)2−dimensional vector, and write

ΣPn
− ΣPn

=
n∑

i=1

Vi

≡
n∑

i=1

1
n

(
Xi

0X
i
0 − E(Xi

0X
i
0),X

i
0X

i
1 − E(Xi

0X
i
1), . . . ,

. . . ,Xi
pX

i
p − E(Xi

pX
i
p)
)
.
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• First proof, part 2: To apply Nemirovski’s inequality to bound
E‖ΣPn

− ΣPn
‖∞, consider the matrix ΣPn

− ΣPn
as a

(p + 1)2−dimensional vector, and write

ΣPn
− ΣPn

=
n∑

i=1

Vi

≡
n∑

i=1

1
n

(
Xi

0X
i
0 − E(Xi

0X
i
0),X

i
0X

i
1 − E(Xi

0X
i
1), . . . ,

. . . ,Xi
pX

i
p − E(Xi

pX
i
p)
)
.

• By our hypothesis

F (Zi) ≡ max
0≤j,k≤p

|Xi
jX

i
k − EPn

(Xi
jX

i
k)|

satisfies EPn
F (Zi)2 ≤ M < ∞.
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• First proof, part 2, continued: Then by Jensen’s inequality
followed by Nemirovski’s inequality with r = ∞,

{EPn
‖ΣPn

− ΣPn
‖∞}2 =

{
EPn

‖
n∑

i=1

Vi‖∞
}2

≤ EPn
‖

n∑
i=1

Vi‖2
∞

≤ C log((pn + 1)2)
n∑

i=1

EPn
‖Vi‖2

∞

≤ C ′ log(4n2α)
1
n2

n∑
i=1

EF (Zi)2

≤ C ′′ log n

n
,

so that

EPn
‖ΣPn

− ΣPn
‖∞ ≤ C ′′

√
log n

n
. �
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4. Proof (part 2) – via bracketing entropy bounds

• Let Gn ≡ √
n(Pn − Pn).
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4. Proof (part 2) – via bracketing entropy bounds

• Let Gn ≡ √
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).
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4. Proof (part 2) – via bracketing entropy bounds

• Let Gn ≡ √
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).

• For each ε > 0 let the bracketing number N[ ](ε,F , L2(P )) be
the minimal number of brackets of L2(P )−size ε needed to
cover F .
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4. Proof (part 2) – via bracketing entropy bounds

• Let Gn ≡ √
n(Pn − Pn).

• For a class of functions F = {f : Z → R} write
‖Gn‖F = supf∈F |Gn(f)|. For F with #(F) = d < ∞, note
that ‖Gn‖F = ‖Gn(f)‖∞ where
Gn(f) ≡ (Gn(f1), . . . , Gn(fd)).

• For each ε > 0 let the bracketing number N[ ](ε,F , L2(P )) be
the minimal number of brackets of L2(P )−size ε needed to
cover F .

• For δ > 0, let

J[ ](δ,F , L2(P )) ≡
∫ δ

0

√
log(1 + N[ ](ε,F , L2(P ))dε.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F � J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. �

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F � J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. �

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.

• Hence N[ ](ε,F , L2(Pn)) ≤ (pn + 1)2 by choosing ε−brackets
[lj,k, uj,k] given by lj,k(z) = fj,k(z) − ε/2 and
uj,k(z) = fj,k(z) + ε/2.
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Lemma. (Empirical process theory bracketing entropy bound)

E∗‖Gn‖F � J[ ](1,F , L2(Pn))‖F‖Pn,2.

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. �

• In the current application take
F = {fj,k(z) = xjxk, 0 ≤ j, k ≤ p}, a finite list of functions of
cardinality #(F) = (pn + 1)2.

• Hence N[ ](ε,F , L2(Pn)) ≤ (pn + 1)2 by choosing ε−brackets
[lj,k, uj,k] given by lj,k(z) = fj,k(z) − ε/2 and
uj,k(z) = fj,k(z) + ε/2.

• Thus the bound in the lemma becomes

E‖Gn‖F �
√

1 + log [(pn + 1)2]‖F‖Pn,2 �
√

log n,
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• Or, equivalently

E‖ΣPn
− ΣPn

‖∞ = E‖Pn − Pn‖F �
√

n−1 log n,

in agreement with the bound given by Nemirovski’s
inequality. �
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5. Proof of Nemirovski’s inequality

Proof: For given r ∈ [2,∞) consider the map Vr from Rd to R

defined by
Vr(x) ≡ ‖x‖2

r .

Then Vr is continuously differentiable with Lipschitz continuous
derivative ∇Vr. Furthermore

Vr(x + y) ≤ Vr(x) + y′∇Vr(x) + CrVr(y) (4)

for an absolute constant C. Thus, writing∑n+1
i=1 Xi =

∑n
i=1 Xi + Xn+1, it follows from (4) that

Vr(
n+1∑
i=1

Xi) ≤ Vr(
n∑

i=1

Xi) + X ′
n+1∇Vr(

n∑
i=1

Xi) + CrVr(Xn+1).
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Taking expectations across this inequality and using
independence of Xn+1 and

∑n
i=1 Xi together with E(Xn+1) = 0

yields

EVr

(
n+1∑
i=1

Xi

)
≤ E

{
Vr

(
n∑

i=1

Xi

)
+ X ′

n+1∇Vr

(
n∑

i=1

Xi

)}
+ CrEVr(Xn+1)

= EVr

(
n∑

i=1

Xi

)
+ CrE‖Xn+1‖2

r .

By recursion this yields

EVr

(
n+1∑
i=1

Xi

)
≤ Cr

n+1∑
i=1

EVr(Xi) (5)

and hence the desired result with r rather than min{r, log d}.
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To show that we can replace r by min{r, log d} up to an absolute
constant, first note that this follows immediately for
r ≤ r(d) ≡ 2 log d with C replaced by 2C. Now suppose
r > r(d) = 2 log d. Recall that for 1 ≤ r′ ≤ r we have

‖x‖r ≤ ‖x‖r′ ≤ d(1/r′)−(1/r)‖x‖r

for all x ∈ Rd (by Hölder’s inequality).
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Thus with r′ = r(d) < r

E‖
n∑

i=1

Xi‖2
r ≤ E‖

n∑
i=1

Xi‖2
r(d)

≤ Cr(d)
n∑

i=1

E‖Xi‖2
r(d) by (5)

≤ Cr(d)
n∑

i=1

E
{
d

2
r(d)

− 2
r ‖Xi‖2

r

}
≤ Cr(d)d2/r(d)

n∑
i=1

E‖Xi‖2
r

= 2Ce log d

n∑
i=1

E‖Xi‖2
r .

Thus Nemirovski’s inequality is proved for r ∈ [2,∞) with
constant C̃ given by 2eC and C the constant of (4).
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6. Extensions and comparisons

Nemirovski’s inequality yields bounds of order comparable to
those achieved by bracketing methods from empirical process
theory. Since the proofs are very different, it may be worthwhile
to explore the exact constants achieved by the two methods in
more detail.

• In fact Nemirovski’s basic deterministic inequality

Vr(x + y) ≤ Vr(x) + y′∇Vr(x) + CrVr(y) (6)

holds in the following more precise form:

Vr(x + y) ≤ Vr(x) + y′∇Vr(x) + (r − 1)Vr(y) (7)

where Vr(x) = ‖x‖2
r .
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• Thus Nemirovski’s inequality for sums of independent Xi’s
holds in the form

E
∥∥ n∑

i=1

Xi

∥∥2

r
≤ C(r, d)

n∑
i=1

E‖Xi‖2
r (8)

where C(r, d) = min{r − 1, e(2 log(d) − 1)}. In particular,
when r = ∞,

E
∥∥ n∑

i=1

Xi

∥∥2

∞ ≤ e(2 log(d) − 1)
n∑

i=1

E‖Xi‖2
∞.
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Two alternative methods for deriving similar bounds:
• By “type and co-type” theory together with symmetrization,

(8) holds with

C(r, d) =

{
8
(

Γ((r+1)/2)
π

)
, 2 ≤ r < ∞

2πc2
d, r = ∞.

where c2
d = E max1≤j≤d Z2

j ≤ 2 log(d) for d ≥ 3.
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Two alternative methods for deriving similar bounds:
• By “type and co-type” theory together with symmetrization,

(8) holds with

C(r, d) =

{
8
(

Γ((r+1)/2)
π

)
, 2 ≤ r < ∞

2πc2
d, r = ∞.

where c2
d = E max1≤j≤d Z2

j ≤ 2 log(d) for d ≥ 3.

• By truncation and Bernstein’s inequality (8) holds with

C(∞, d) = {1 + 3.46
√

log(2d)}2.
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Figure 1: Comparison of C(∞, d) obtained via the

three proof methods: Blue (bottom) = Nemirovski;

Red and Black (middle) = type-inequalities / prob-

ability in Banach spaces; Green (top) = truncation

and Bernstein inequality
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• - What sort of skill set(s) does a successful researcher in
that area usually have?
strong math background; interest in statistical theory
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• - What sort of skill set(s) does a successful researcher in
that area usually have?
strong math background; interest in statistical theory

• - Why/How did you get involved in this subfield/area?
Became interested in statistical theory as a grad student;
wrote a book or two on empirical process theory.

Nemirovski’s inequality revisited – p. 29/31



• - What sort of skill set(s) does a successful researcher in
that area usually have?
strong math background; interest in statistical theory

• - Why/How did you get involved in this subfield/area?
Became interested in statistical theory as a grad student;
wrote a book or two on empirical process theory.

• - Who else in the department works on similar things?
Galen Shorack and I have worked together on empirical
process theory. Most other colleagues work on some
aspects of theory / methodology.
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• - What sort of skill set(s) does a successful researcher in
that area usually have?
strong math background; interest in statistical theory

• - Why/How did you get involved in this subfield/area?
Became interested in statistical theory as a grad student;
wrote a book or two on empirical process theory.

• - Who else in the department works on similar things?
Galen Shorack and I have worked together on empirical
process theory. Most other colleagues work on some
aspects of theory / methodology.

• - If your project is interdisciplinary, how did you connect with
people from other departments? Interdisciplinary in the
sense of interactions between math (probability theory) and
statistics. Connections made by attending national and
international meetings + (random ?) contacts via internet.
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