Log-concave distributions:

definitions, properties, and
consequences

Jon A. Wellner

University of Washington, Seattle; visiting Heidelberg
Seminaire Point de vue, Université Paris-Diderot Paris 7
23 January 2012

Seminaire Point de vue, Paris

Part 1

Based on joint work with:

- Fadoua Balabdaoui
- Kaspar Rufibach
- Arseni Seregin

Outline, Part 1

- 1: Log-concave densities / distributions: definitions
- 2: Properties of the class
- 3: Some consequences (statistics and probability)
- 4: Strong log-concavity: definitions
- 5: Examples \& counterexamples
- 6: Some consequences, strong log-concavity
- 7. Questions \& problems

1. Log-concave densities / distributions: definitions

Suppose that a density f can be written as

$$
f(x) \equiv f_{\varphi}(x)=\exp (\varphi(x))=\exp (-(-\varphi(x)))
$$

where φ is concave (and $-\varphi$ is convex). The class of all densities f on \mathbb{R}, or on \mathbb{R}^{d}, of this form is called the class of log-concave densities, $\mathcal{P}_{\text {log-concave }} \equiv \mathcal{P}_{0}$.
Note that f is log-concave if and only if :

- $\log f(\lambda x+(1-\lambda) y) \geq \lambda \log f(x)+(1-\lambda) \log f(y)$ for all $0 \leq \lambda \leq 1$ and for all x, y.
- iff $f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} \cdot f(y)^{1-\lambda}$
- iff $f((x+y) / 2) \geq \sqrt{f(x) f(y)}$, (assuming f is measurable)
- iff $f((x+y) / 2)^{2} \geq f(x) f(y)$.

1. Log-concave densities / distributions: definitions

Examples, \mathbb{R}

- Example 1: standard normal

$$
\begin{aligned}
& f(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right), \\
& -\log f(x)=\frac{1}{2} x^{2}+\log \sqrt{2 \pi}, \\
& (-\log f)^{\prime \prime}(x)=1 .
\end{aligned}
$$

- Example 2: Laplace

$$
\begin{aligned}
& f(x)=2^{-1} \exp (-|x|), \\
& -\log f(x)=|x|+\log 2, \\
& (-\log f)^{\prime \prime}(x)=0 \quad \text { for all } x \neq 0
\end{aligned}
$$

1. Log-concave densities / distributions: definitions

- Example 3: Logistic

$$
\begin{aligned}
& f(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \\
& -\log f(x)=-x+2 \log \left(1+e^{x}\right) \\
& (-\log f)^{\prime \prime}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=f(x)
\end{aligned}
$$

- Example 4: Subbotin

$$
\begin{aligned}
& f(x)=C_{r}^{-1} \exp \left(-|x|^{r} / r\right), \quad C_{r}=2 \Gamma(1 / r) r^{1 / r-1}, \\
& -\log f(x)=r^{-1}|x|^{r}+\log C_{r}, \\
& (-\log f)^{\prime \prime}(x)=(r-1)|x|^{r-2}, \quad r \geq 1, \quad x \neq 0 .
\end{aligned}
$$

1. Log-concave densities / distributions: definitions

- Many univariate parametric families on \mathbb{R} are log-concave, for example:
\triangleright Normal $\left(\mu, \sigma^{2}\right)$
\triangleright Uniform (a, b)
$\triangleright \operatorname{Gamma}(r, \lambda)$ for $r \geq 1$
$\triangleright \operatorname{Beta}(a, b)$ for $a, b \geq 1$
$\triangleright \operatorname{Subbotin}(r)$ with $r \geq 1$.
- t_{r} densities with $r>0$ are not log-concave
- Tails of log-concave densities are necessarily sub-exponential: i.e. if $X \sim f \in P F_{2}$, then $\operatorname{Eexp}(c|X|)<\infty$ for some $c>0$.

1. Log-concave densities / distributions: definitions

Log-concave densities on \mathbb{R}^{d} :

- A density f on \mathbb{R}^{d} is log-concave if $f(x)=\exp (\varphi(x))$ with φ concave.
- Examples
\triangleright The density f of $X \sim N_{d}(\mu, \Sigma)$ with Σ positive definite:

$$
\begin{aligned}
& f(x)=f(x ; \mu, \Sigma)=\frac{1}{\sqrt{(2 \pi)^{d} \mid \Sigma}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right), \\
& -\log f(x)=\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)-(1 / 2) \log (2 \pi \mid \Sigma), \\
& D^{2}(-\log f)(x) \equiv\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}(-\log f)(x), i, j=1, \ldots, d\right)=\Sigma^{-1} .
\end{aligned}
$$

\triangleright If $K \subset \mathbb{R}^{d}$ is compact and convex, then $f(x)=1_{K}(x) / \lambda(K)$ is a log-concave density.

1. Log-concave densities / distributions: definitions

Log-concave measures:

Suppose that P is a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}_{d}\right) . P$ is a logconcave measure if for all nonempty $A, B \in \mathcal{B}_{d}$ and $\lambda \in(0,1)$ we have

$$
P(\lambda A+(1-\lambda) B) \geq\{P(A)\}^{\lambda}\{P(B)\}^{1-\lambda}
$$

- A set $A \subset \mathbb{R}^{d}$ is affine if $t x+(1-t) y \in A$ for all $x, y \in A, t \in \mathbb{R}$.
- The affine hull of a set $A \subset \mathbb{R}^{d}$ is the smallest affine set containing A.

Theorem. (Prékopa (1971, 1973), Rinott (1976)). Suppose P is a probability measure on \mathcal{B}_{d} such that the affine hull of $\operatorname{supp}(P)$ has dimension d. Then P is log-concave if and only if there is a log-concave (density) function f on \mathbb{R}^{d} such that

$$
P(B)=\int_{B} f(x) d x \quad \text { for all } \quad B \in \mathcal{B}_{d}
$$

2. Properties of log-concave densities

Properties: log-concave densities on \mathbb{R} :

- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density f is unimodal (but need not be symmetric).
- \mathcal{P}_{0} is closed under convolution.
- \mathcal{P}_{0} is closed under weak limits

2. Properties of log-concave densities

Properties: log-concave densities on \mathbb{R}^{d} :

- Any log-concave f is unimodal.
- The level sets of f are closed convex sets.
- Log-concave densities correspond to log-concave measures. Prékopa, Rinott.
- Marginals of log-concave distributions are log-concave: if $f(x, y)$ is a log-concave density on \mathbb{R}^{m+n}, then

$$
g(x)=\int_{\mathbb{R}^{n}} f(x, y) d y
$$

is a log-concave density on \mathbb{R}^{m}. Prékopa, Brascamp-Lieb.

- Products of log-concave densities are log-concave.
- \mathcal{P}_{0} is closed under convolution.
- \mathcal{P}_{0} is closed under weak limits.

3. Some consequences and connections (statistics and probability)

- (a) f is log-concave if and only if $\operatorname{det}\left(\left(f\left(x_{i}-y_{j}\right)\right)_{i, j \in\{1,2\}}\right) \geq 0$ for all $x_{1} \leq x_{2}, y_{1} \leq y_{2}$; i.e f is a Polya frequency density of order 2; thus

$$
\text { log-concave }=P F_{2}=\text { strongly uni-modal }
$$

- (b) The densities $p_{\theta}(x) \equiv f(x-\theta)$ for $\theta \in \mathbb{R}$ have monotone likelihood ratio (in x) if and only if f is log-concave.

Proof of (b): $p_{\theta}(x)=f(x-\theta)$ has MLR iff

$$
\frac{f\left(x-\theta^{\prime}\right)}{f(x-\theta)} \leq \frac{f\left(x^{\prime}-\theta^{\prime}\right)}{f\left(x^{\prime}-\theta\right)} \text { for all } x<x^{\prime}, \theta<\theta^{\prime}
$$

This holds if and only if

$$
\begin{equation*}
\log f\left(x-\theta^{\prime}\right)+\log f\left(x^{\prime}-\theta\right) \leq \log f\left(x^{\prime}-\theta^{\prime}\right)+\log f(x-\theta) \tag{1}
\end{equation*}
$$

Let $t=\left(x^{\prime}-x\right) /\left(x^{\prime}-x+\theta^{\prime}-\theta\right)$ and note that

3. Some consequences and connections

 (statistics and probability)$$
\begin{aligned}
& x-\theta=t\left(x-\theta^{\prime}\right)+(1-t)\left(x^{\prime}-\theta\right) \\
& x^{\prime}-\theta^{\prime}=(1-t)\left(x-\theta^{\prime}\right)+t\left(x^{\prime}-\theta\right)
\end{aligned}
$$

Hence log-concavity of f implies that

$$
\begin{aligned}
& \log f(x-\theta) \geq t \log f\left(x-\theta^{\prime}\right)+(1-t) \log f\left(x^{\prime}-\theta\right) \\
& \log f\left(x^{\prime}-\theta^{\prime}\right) \geq(1-t) \log f\left(x-\theta^{\prime}\right)+t \log f\left(x^{\prime}-\theta\right)
\end{aligned}
$$

Adding these yields (1); i.e. f log-concave implies $p_{\theta}(x)$ has MLR in x.

Now suppose that $p_{\theta}(x)$ has MLR so that (1) holds. In particular that holds if $x, x^{\prime}, \theta, \theta^{\prime}$ satisfy $x-\theta^{\prime}=a<b=x^{\prime}-\theta$ and $t=$ $\left(x^{\prime}-x\right) /\left(x^{\prime}-x+\theta^{\prime}-\theta\right)=1 / 2$, so that $x-\theta=(a+b) / 2=x^{\prime}-\theta^{\prime}$. Then (1) becomes

$$
\log f(a)+\log f(b) \leq 2 \log f((a+b) / 2)
$$

This together with measurability of f implies that f is logconcave.

3. Some consequences and connections (statistics and probability)

Proof of (a): Suppose f is $P F_{2}$. Then for $x<x^{\prime}, y<y^{\prime}$,

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
f(x-y) & f\left(x-y^{\prime}\right) \\
f\left(x^{\prime}-y\right) & f\left(x^{\prime}-y^{\prime}\right)
\end{array}\right) \\
& \quad=f(x-y) f\left(x^{\prime}-y^{\prime}\right)-f\left(x-y^{\prime}\right) f\left(x^{\prime}-y\right) \geq 0
\end{aligned}
$$

if and only if

$$
f\left(x-y^{\prime}\right) f\left(x^{\prime}-y\right) \leq f(x-y) f\left(x^{\prime}-y^{\prime}\right),
$$

or, if and only if

$$
\frac{f\left(x-y^{\prime}\right)}{f(x-y)} \leq \frac{f\left(x^{\prime}-y^{\prime}\right)}{f\left(x^{\prime}-y\right)} .
$$

That is, $p_{y}(x)$ has MLR in x. By (b) this is equivalent to f log-concave.

3. Some consequences and connections (statistics and probability)

Theorem. (Brascamp-Lieb, 1976). Suppose $X \sim f=e^{-\varphi}$ with φ convex and $D^{2} \varphi>0$, and let $g \in C^{1}\left(\mathbb{R}^{d}\right)$. Then

$$
\operatorname{Var}_{f}(g(X)) \leq E\left\langle\left(D^{2} \varphi\right)^{-1} \nabla g(X), \nabla g(X)\right\rangle .
$$

(Poincaré - type inequality for log-concave densities)

3. Some consequences and connections (statistics and probability)

Further consequences: Peakedness and majorization
Theorem 1. (Proschan, 1965) Suppose that f on \mathbb{R} is logconcave and symmetric about 0 . Let X_{1}, \ldots, X_{n} be i.i.d. with density f, and suppose that $p, p^{\prime} \in \mathbb{R}_{+}^{n}$ satisfy

- p, p^{\prime} are not identical,
- $p_{1} \geq p_{2} \geq \cdots \geq p_{n}, p_{1}^{\prime} \geq p_{2}^{\prime} \geq \cdots \geq p_{n}^{\prime}$,
- $\sum_{1}^{k} p_{j}^{\prime} \leq \sum_{1}^{k} p_{j}, k \in\{1, \ldots, n\}$,
- $\sum_{1}^{n} p_{j}=\sum_{1}^{n} p_{j}^{\prime}=1$.
(That is, $\underline{p}^{\prime} \prec \underline{p}$.) Then $\sum_{1}^{n} p_{j}^{\prime} X_{j}$ is strictly more peaked than $\sum_{1}^{n} p_{j} X_{j}:$

$$
P\left(\left|\sum_{1}^{n} p_{j}^{\prime} X_{j}\right| \geq t\right)<P\left(\left|\sum_{1}^{n} p_{j} X_{j}\right| \geq t\right) \quad \text { for all } t \geq 0
$$

3. Some consequences and connections (statistics and probability)

Example: $p_{1}=\cdots=p_{n-1}=1 /(n-1)$, $p_{n}=0$, while $p_{1}^{\prime}=\cdots=p_{n}^{\prime}=1 / n$. Then $\underline{p} \succ \underline{p}^{\prime}$ (since $\sum_{1}^{n} p_{j}=\sum_{1}^{n} p_{j}^{\prime}=1$ and $\left.\sum_{1}^{k} p_{j}=k /(n-1) \geq k / n=\sum_{1}^{k} p_{j}^{\prime}\right)$, and hence if X_{1}, \ldots, X_{n} are i.i.d. f symmetric and log-concave,
$P\left(\left|\bar{X}_{n}\right| \geq t\right)<P\left(\left|\bar{X}_{n-1}\right| \geq t\right)<\cdots<P\left(\left|X_{1}\right| \geq t\right)$ for all $t \geq 0$.
Definition: A d-dimensional random variable X is said to be more peaked than a random variable Y if both X and Y have densities and

$$
P(Y \in A) \geq P(X \in A) \text { for all } A \in \mathcal{A}_{d},
$$

the class of subsets of \mathbb{R}^{d} which are compact, convex, and symmetric about the origin.

3. Some consequences and connections (statistics and probability)

Theorem 2. (Olkin and Tong, 1988) Suppose that f on \mathbb{R}^{d} is log-concave and symmetric about 0 . Let X_{1}, \ldots, X_{n} be i.i.d. with density f, and suppose that $a, b \in \mathbb{R}^{n}$ satisfy

- $a_{1} \geq a_{2} \geq \cdots \geq a_{n}, b_{1} \geq b_{2} \geq \cdots \geq b_{n}$,
- $\sum_{1}^{k} a_{j} \leq \sum_{1}^{k} b_{j}, k \in\{1, \ldots, n\}$,
- $\sum_{1}^{n} a_{j}=\sum_{1}^{n} b_{j}$.
(That is, $\underline{a} \prec \underline{b}$.)
Then $\sum_{1}^{n} a_{j} X_{j}$ is more peaked than $\sum_{1}^{n} b_{j} X_{j}$:

$$
P\left(\sum_{1}^{n} a_{j} X_{j} \in A\right) \geq P\left(\sum_{1}^{n} b_{j} X_{j} \in A\right) \quad \text { for all } A \in \mathcal{A}_{d}
$$

In particular,

$$
P\left(\left\|\sum_{1}^{n} a_{j} X_{j}\right\| \geq t\right) \leq P\left(\left\|\sum_{1}^{n} b_{j} X_{j}\right\| \geq t\right) \quad \text { for all } t \geq 0
$$

3. Some consequences and connections (statistics and probability)

Corollary: If g is non-decreasing on \mathbb{R}^{+}with $g(0)=0$, then

$$
E g\left(\left\|\sum_{1}^{n} a_{j} X_{j}\right\|\right) \leq E g\left(\left\|\sum_{1}^{n} b_{j} X_{j}\right\|\right) .
$$

Another peakedness result:
Suppose that $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ where $Y_{j} \sim N\left(\mu_{j}, \sigma^{2}\right)$ are independent and $\mu_{1} \leq \ldots \leq \mu_{n}$; i.e. $\underline{\mu} \in K_{n}$ where $K_{n} \equiv\{\underline{x} \in$ $\left.\mathbb{R}^{n}: x_{1} \leq \cdots \leq x_{n}\right\}$. Let

$$
\underline{\hat{\underline{u}}}_{n}=\Pi\left(\underline{Y} \mid K_{n}\right),
$$

the least squares projection of \underline{Y} onto K_{n}. It is well-known that

$$
\underline{\widehat{\mu}}_{n}=\left(\min _{s \geq i} \max _{r \leq i} \frac{\sum_{j=r}^{s} Y_{j}}{s-r+1}, i=1, \ldots, n\right) .
$$

3. Some consequences and connections (statistics and probability)

Theorem 3. (Kelly) If $\underline{Y} \sim N_{n}\left(\underline{\mu}, \sigma^{2} I\right)$ and $\underline{\mu} \in K_{n}$, then $\widehat{\mu}_{k}-\mu_{k}$ is more peaked than $Y_{k}-\mu_{k}$ for each $k \in\{1, \ldots, n\}$; that is $P\left(\left|\widehat{\mu}_{k}-\mu_{k}\right| \leq t\right) \geq P\left(\left|Y_{k}-\mu_{k}\right| \leq t\right) \quad$ for all $t>0, \quad k \in\{1, \ldots, n\}$.

Question: Does Kelly's theorem continue to hold if the normal distribution is replaced by an arbitrary log-concave joint density symmetric about $\underline{\mu}$?

4. Strong log-concavity: definitions

Definition 1. A density f on \mathbb{R} is strongly log-concave if

$$
f(x)=h(x) c \phi(c x) \text { for some } c>0
$$

where h is log-concave and $\phi(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$.
Sufficient condition: $\log f \in C^{2}(\mathbb{R})$ with $(-\log f)^{\prime \prime}(x) \geq c^{2}>0$ for all x.

Definition 2. A density f on \mathbb{R}^{d} is strongly log-concave if

$$
f(x)=h(x) c \gamma(c x) \text { for some } c>0
$$

where h is log-concave and γ is the $N_{d}\left(0, c I_{d}\right)$ density.
Sufficient condition: $\log f \in C^{2}\left(\mathbb{R}^{d}\right)$ with $D^{2}(-\log f)(x) \geq c^{2} I_{d}$ for some $c>0$ for all $x \in \mathbb{R}^{d}$.

These agree with strong convexity as defined by Rockafellar \& Wets (1998), p. 565.

5. Examples \& conterexamples

Examples

Example 1. $f(x)=h(x) \phi(x) / \int h \phi d x$ where h is the logistic density, $h(x)=e^{x} /\left(1+e^{x}\right)^{2}$.
Example 2. $f(x)=h(x) \phi(x) / \int h \phi d x$ where h is the Gumbel density. $h(x)=\exp \left(x-e^{x}\right)$.
Example 3. $f(x)=h(x) h(-x) / \int h(y) h(-y) d y$ where h is the Gumbel density.

Counterexamples
Counterexample 1. f logistic: $f(x)=e^{x} /\left(1+e^{x}\right)^{2}$;
$(-\log f)^{\prime \prime}(x)=f(x)$.
Counterexample 2. f Subbotin, $r \in[1,2) \cup(2, \infty)$;
$f(x)=C_{r}^{-1} \exp \left(-|x|^{r} / r\right) ;(-\log f)^{\prime \prime}(x)=(r-2)|x|^{r-2}$.

Ex. 1: Logistic (red) perturbation of $N(0,1)$ (green): f (blue)

Ex. 1: $(-\log f)^{\prime \prime}$, Logistic perturbation of $N(0,1)$

Ex. 2: Gumbel (red) perturbation of $N(0,1)$ (green): f (blue)

Ex. 2: $(-\log f)^{\prime \prime}$, Gumbel perturbation of $N(0,1)$

Ex. 3: Gumbel (.) \times Gumbel(-.) (purple); $N\left(0, V_{f}\right)$ (blue)

Ex. 3: $-\log \operatorname{Gumbel}(\cdot) \times \operatorname{Gumbel}(-\cdot)$ (purple); $-\log N\left(0, V_{f}\right)$ (blue)

Ex. 3: $D^{2}(-\log G u m b e l(\cdot) \times \operatorname{Gumbel}(-\cdot))\left(\right.$ purple) $; D^{2}\left(-\log N\left(0, V_{f}\right)\right)$ (blue)

Subbotin $f_{r} r=1$ (blue), $r=1.5$ (red), $r=2$ (green), $r=3$ (purple)

$-\log f_{r}: r=1$ (blue), $r=1.5$ (red), $r=2$ (green), $r=3$ (purple)

$\left(-\log f_{r}\right)^{\prime \prime}: r=1$ (blue), $r=1.5$ (red), $r=2$ (green), $r=3$ (purple)

6. Some consequences, strong log-concavity

First consequence
Theorem. (Hargé, 2004). Suppose $X \sim N_{n}(\mu, \Sigma)$ with density γ and Y has density $h \cdot \gamma$ with h log-concave, and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Then

$$
E g(Y-E(Y)) \leq E g(X-E X))
$$

Equivalently, with $\mu=E X, \nu=E Y=E(X h(X)) / E h(X)$, and $\tilde{g} \equiv g(\cdot+\mu)$

$$
E\{\tilde{g}(X-\nu+\mu) h(X)\} \leq E \tilde{g}(X) \cdot E h(X)
$$

6. Some consequences, strong log-concavity

More consequences
Corollary. (Brascamp-Lieb, 1976). Suppose $X \sim f=\exp (-\varphi)$ with $D^{2} \varphi \geq \lambda I_{d}, \lambda>0$, and let $g \in C^{1}\left(\mathbb{R}^{d}\right)$. Then

$$
\operatorname{Var}_{f}(g(X)) \leq E\left\langle\left(D^{2} \varphi\right)^{-1} \nabla g(X), \nabla g(X)\right\rangle \leq \frac{1}{\lambda} E|\nabla g(X)|^{2} .
$$

(Poincaré inequality for strongly log-concave densities; improvements by Hargé (2008))
Theorem. (Caffarelli, 2002). Suppose $X \sim N_{d}(0, I)$ with density γ_{d} and Y has density $e^{-v} \cdot \gamma_{d}$ with v convex. Let $T=\nabla \varphi$ be the unique gradient of a convex map φ such that $\nabla \varphi(X) \stackrel{d}{=} Y$. Then

$$
0 \leq D^{2} \varphi \leq I_{d}
$$

(cf. Villani (2003), pages 290-291)

7. Questions \& problems

- Does strong log-concavity occur naturally? Are there natural examples?
- Are there large classes of strongly log-concave densities in connection with other known classes such as $P F_{\infty}$ (Pólya frequency functions of order infinity) or L. Bondesson's class $H M_{\infty}$ of completely hyperbolically monotone densities?
- Does Kelly's peakedness result for projection onto the ordered cone K_{n} continue to hold with Gaussian replaced by log-concave (or symmetric log concave)?

Selected references:

- Villani, C. (2002). Topics in Optimal Transportation. Amer. Math Soc., Providence.
- Dharmadhikari, S. and Joag-dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press.
- Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press.
- Marshall, A. W., Olkin, I., and Arnold, B. C. (2011). Inequalities: Theory of Majorization and Its Applications. Second edition, Springer.
- Rockfellar, R. T. and Wets, R. (1998). Variational Analysis. Springer.
- Hargé, G. (2004). A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces. Probab. Theory Related Fields 130, 415-440.
- Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the BrunnMinkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22, 366-389.
- Hargé, G. (2008). Reinforcement of an inequality due to Brascamp and Lieb. J. Funct. Anal., 254, 267-300.

