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1. Efron’s nonparametric bootstrap

.

• X1, . . . , Xn i.i.d. P on (S,S).

• Empirical measure Pn = n−1 ∑n
i=1 δXi.

• T (P ) is some functional of P .

• Natural estimator of T (P ): “plug-in” estimator T (Pn) ≡ Tn.
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1. Efron’s nonparametric bootstrap

Consider estimation of:

• A: bn(P ) ≡ n{EP (Tn)− T (P )}.

• B: nσ2
n(P ) ≡ nV arP (Tn).

• C: κ3,n(P ) ≡ EP [Tn − EP (Tn)]3/σ3
n(P ).

• D: Hn(x, P ) ≡ PrP (
√
n(Tn − T (P )) ≤ x).

• E: Kn(x, P ) ≡ PrP (
√
n‖Pn − P‖Kol ≤ x).

• F: Ln(x, P ) ≡ PrP (
√
n‖Pn − P‖F ≤ x) where F is a class of

functions for which the central limit theorem holds uniformly

over F (i.e. a Donsker class).
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1. Efron’s nonparametric bootstrap

(ideal) nonparametric bootstrap estimates: estimate P by Pn.

This yields the following nonparametric bootstrap estimates in

examples A - F: with X̂1, . . . , X̂n i.i.d. Pn, T̂n ≡ T (P̂n),

• A’: bn(Pn) ≡ n{EPn(T̂n)− T (Pn)}.

• B’: nσ2
n(Pn) ≡ nV arPn(T̂n).

• C’: κ3,n(Pn) ≡ EPn[T̂n − EPn(T̂ ∗n)]3/σ3
n(Pn).

• D’: Hn(x,Pn) ≡ PrPn(
√
n(T̂n − T (Pn)) ≤ x).

• E’: Kn(x,Pn) ≡ PrPn(
√
n‖P̂n − Pn‖Kol ≤ x). (S = R)

• F’: Ln(x,Pn) ≡ PrPn(
√
n‖P̂n−Pn‖F ≤ x), (S general) where F

is a class of real-valued functions for which the central limit

theorem holds uniformly over F (i.e. a Donsker class).
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1. Efron’s nonparametric bootstrap

For estimation of T (P ) by T (Pn) suppose that

√
n(T (Pn)− T (P ))→d N(0, V 2(P )).

Goal: show that the bootstrap estimator satisfies

√
n(T (P̂n)− T (Pn))→d N(0, V 2(P )) in probability or a.s.

conditionally on X1, . . . , Xn (i.e. conditionally on Pn).
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2. Bootstrapping the mean: limit theory

• T (P ) = EP (X) =
∫
xdP (x) ≡ µ(P ) when S = R.

• If EP (X2) <∞, then by the classical (Lindeberg) CLT

√
n(T (Pn)− T (P )) =

√
n(Xn − µ(P ))→d N(0, V arP (X)).

The corresponding statement for the bootstrap is:

Theorem. (Bickel-Freedman, 1981)

If EPX
2 <∞, then for a.e. sequence X1, X2, . . .,

√
n(T (P̂n)− T (Pn)) =

√
n(X̂n −Xn) →d N(0, V arP (X)).

Conclusion: The bootstrap “works” for estimation of the mean

if EP (X2) <∞.
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3. Bootstrapping the empirical process: limit

theory

Empirical process notation and theory:

• X1, . . . , Xn i.i.d. P on (S,S)

• Pn = n−1 ∑n
i=1 δXi = empirical measure.

• Gn ≡
√
n(Pn − P ) = empirical process.

• F = a class of real-valued (measurable) functions defined on
S

• P (f) =
∫
fdP = EPf(X),

Pn(f) =
∫
fdPn = n−1 ∑n

i=1 f(Xi),
Gn(f) =

√
n(Pn(f)− P (f)).

• If F ⊂ L1(P ), then Pn(f)→a.s. P (f) for each f ∈ F.

• If F ⊂ L2(P ), then Gn(f) =
√
n(Pn(f) − P (f)) →d GP (f) ∼

N(0, V arP (f(X))), and

Gn
f.d.→ GP .
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3. Bootstrapping the empirical process: limit

theory

Some terminology:

• F is “P−Glivenko-Cantelli”, or F ∈ GC(P ), if

‖Pn − P‖F →a.s. 0.

• F is “P−Donsker”, or F ∈ CLT (P ), if

Gn ⇒ GP in `∞(F);

where GP is a P−Brownian bridge process indexed by F i.e.

E∗H(Gn)→ EH(GP )

for all bounded and continuous functions H : `(F)→ R.
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3. Bootstrapping the empirical process: limit

theory

Bootstrapping Pn and Gn:

• X̂1, . . . , X̂n i.i.d. Pn (viewing Pn as fixed).

• P̂n = n−1 ∑n
i=1 δX̂i

= bootstrap empirical measure.

• Ĝn =
√
n(P̂n − Pn) =bootstrap empirical process.

• Question: does Ĝn mimic Gn asymptotically?

Research Day Talk: September 27, 2010 1.9



3. Bootstrapping the empirical process: limit

theory

Answer: Yes! Let F (x) ≡ supf∈F |f(x)−Pf | =centered envelope
function for F.

Theorem 1. (Giné and Zinn, 1990)
The following are equivalent:
A. F is P−Donsker; i.e. Gn ⇒ GP in `∞(F).
B. Ĝn ⇒ GP in `∞(P) “in probability” wrt Pn.

Theorem 2. (Giné and Zinn, 1990)
The following are equivalent:
A. F is P−Donsker and PF2 <∞.
B. Ĝn ⇒ GP in `∞(P) “almost surely” wrt Pn.

Note that

P̂n
d
= n−1

n∑
i=1

Mn,iδXi

where

Mn ≡ (Mn,1, . . . ,Mn,n) ∼Multinomialn(n, (1/n, . . . ,1/n)).
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4. Exchangeably weighted bootstrapping

The representation P̂n
d
= n−1 ∑n

i=1Mn,iδXi suggests that it might

be interesting to replace the multinomial weights {Mn,i : 1 ≤
i ≤ n} in Efron’s bootstrap by other (exchangeable) weights

{Wn,i : 1 ≤ i ≤ n}. Then

P̂Wn ≡ P̂n = n−1
n∑
i=1

Wn,iδXi.

Examples:
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4. Exchangeably weighted bootstrapping

• Wn,i = Yi/Y i with Y1, . . . , Yn i.i.d. non-negative rv’s with

‖Y ‖2,1 ≡
∫ ∞

0

√
P (Y > t)dt <∞.

If Yi ∼ Exponential(1), then P̂n is called the “Bayesian

bootstrap”.

• (Wn,1, . . . ,Wn,n) =
√
n/k(Mn,1, . . . ,Mn,n) where

Mn ≡ (Mn,1, . . . ,Mn,n) ∼Multinomialn(k, (1/n, . . . ,1/n))

• wn = (wn,1, . . . , wn,n) and Wn = (wn,R1
, . . . , wn,Rn) where R =

(R1, . . . , Rn) is a random permutation of {1, . . . , n}. With

1 ≤ k ≤ n,

wn =

 n√
k(n− k)

, . . . ,
n√

k(n− k)
,0, . . . ,0


this gives random sampling without replacement from Pn.
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4. Exchangeably weighted bootstrapping

Conditions on the Wn,i’s:

W1 supn≥1 ‖Wn,1 −Wn‖2,1 <∞.

W2 n−1/2Emax1≤i≤n |Wn,i −Wn| → 0.

W3 n−1 ∑n
i=1(Wn,i −Wn)2 →p c2 > 0.

Theorem. (Praestgaard & W, 1993)

A. If F is P−Donsker and W1-W3 hold, then

ĜWn ≡
√
n(P̂Wn − Pn)⇒ cGP in `∞(F). (1)

in probability.

B. If F is P−Donsker, PF2 < ∞, and W1-W3 hold, then (??)

holds almost surely.
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4. Exchangeably weighted bootstrapping

Problem:

• The theorems of Giné and Zinn (1990) are if and only if.

• Our theorem for P̂n and Ĝn is in just one direction: F ∈
CLT (P ) implies bootstrap convergence.

• Question: Do natural converse theorems hold in the case of

P̂Wn ? If ĜWn ⇒ cGP in `∞(F) in probability with c > 0, can we

conclude that F is P−Donsker?
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Conjectures, approaches, and connections

Conjectured Theorem 1’. The following are equivalent:

A. F is P−Donsker.

B. Some {Wn} satisfying W1-W3 with c > 0, satisfies ĜWn ⇒ cGP
in `∞(F) in probability (and then the same holds for all sequences

{Wn} satisfying W1-W3).

Conjectured Theorem 2’. The following are equivalent:

A. F is P−Donsker and PF2 <∞.

B. Some {Wn} satisfying W1-W3 with c > 0 satisfies ĜWn ⇒ cGP
in `∞(F) almost surely (and then the same holds for all sequences

{Wn} satisfying W1-W3).
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Conjectures, approaches, and connections

• Q1. If for some {Wn} satisfying W1-W3 with c > 0,

ĜWn ⇒ cGP in `∞(F) in prob (2)

does the same hold for Efron’s (multinomial) bootstrap?

That is, do we have

ĜMn ≡ Ĝn ⇒ GP in `∞(F) in prob?

If so, then we’re done!

• If (??) does the same hold with weights W̃n,j = Yj/Y n for

i.i.d. Yj’s? If so, then we’re done! Via Hoeffding’s trick and

the unconditional multiplier CLT.

• If (??) does the same hold with weights W̃n,j = Yj for i.i.d.

Yj’s? If so, then we’re done!

• Obstructions? Extreme cases?
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Other research interests and projects

• Empirical process theory: tools for estimation theory.

• Shape constrained estimation:

B Estimation of smooth functionals of the Grenander esti-

mator and other shape-constrained estimators.

B Rates of convergence for shape-constrained estimators in

R and Rd.

• Semiparametric models:

B Two - phase sampling methods (with missing data by

design).

B Semiparametric theory for high-dimensional settings with

many predictor variables.
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