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1. Log-concave densities / distributions:

definitions

Suppose that a density f can be written as

f(x) ≡ fϕ(x) = exp(ϕ(x)) = exp (−(−ϕ(x)))

where ϕ is concave (and −ϕ is convex). The class of all densities

f on R, or on Rd, of this form is called the class of log-concave

densities, Plog−concave ≡ P0.

Note that f is log-concave if and only if :

• logf(λx+(1−λ)y) ≥ λlogf(x)+(1−λ)logf(y) for all 0 ≤ λ ≤ 1

and for all x, y.

• iff f(λx+ (1− λ)y) ≥ f(x)λ · f(y)1−λ

• iff f((x+ y)/2) ≥
√
f(x)f(y), (assuming f is measurable)

• iff f((x+ y)/2)2 ≥ f(x)f(y).
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1. Log-concave densities / distributions:

definitions

Examples, R

• Example 1: standard normal

f(x) = (2π)−1/2exp(−x2/2),

−logf(x) =
1

2
x2 + log

√
2π,

(−logf)′′(x) = 1.

• Example 2: Laplace

f(x) = 2−1exp(−|x|),
−logf(x) = |x|+ log2,

(−logf)′′(x) = 0 for all x 6= 0.
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1. Log-concave densities / distributions:

definitions

• Example 3: Logistic

f(x) =
ex

(1 + ex)2
,

−logf(x) = −x+ 2log(1 + ex),

(−logf)′′(x) =
ex

(1 + ex)2
= f(x).

• Example 4: Subbotin

f(x) = C−1
r exp(−|x|r/r), Cr = 2Γ(1/r)r1/r−1,

−logf(x) = r−1|x|r + logCr,

(−logf)′′(x) = (r − 1)|x|r−2, r ≥ 1, x 6= 0.
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1. Log-concave densities / distributions:

definitions

• Many univariate parametric families on R are log-concave,

for example:

B Normal (µ, σ2)

B Uniform(a, b)

B Gamma(r, λ) for r ≥ 1

B Beta(a, b) for a, b ≥ 1

B Subbotin(r) with r ≥ 1.

• tr densities with r > 0 are not log-concave

• Tails of log-concave densities are necessarily sub-exponential:

i.e. if X ∼ f ∈ PF2, then Eexp(c|X|) <∞ for some c > 0.
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1. Log-concave densities / distributions:

definitions

Log-concave densities on Rd:

• A density f on Rd is log-concave if f(x) = exp(ϕ(x)) with ϕ

concave.

• Examples

B The density f of X ∼ Nd(µ,Σ) with Σ positive definite:

f(x) = f(x;µ,Σ) =
1√

(2π)d|Σ
exp

(
−

1

2
(x− µ)TΣ−1(x− µ)

)
,

−logf(x) =
1

2
(x− µ)TΣ−1(x− µ)− (1/2)log(2π|Σ),

D2(−logf)(x) ≡
(

∂2

∂xi∂xj
(−logf)(x), i, j = 1, . . . , d

)
= Σ−1.

B If K ⊂ Rd is compact and convex, then f(x) = 1K(x)/λ(K)

is a log-concave density.
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1. Log-concave densities / distributions:

definitions

Log-concave measures:
Suppose that P is a probability measure on (Rd,Bd). P is a log-
concave measure if for all nonempty A,B ∈ Bd and λ ∈ (0,1) we
have

P (λA+ (1− λ)B) ≥ {P (A)}λ{P (B)}1−λ.

• A set A ⊂ Rd is affine if tx+(1− t)y ∈ A for all x, y ∈ A, t ∈ R.

• The affine hull of a set A ⊂ Rd is the smallest affine set
containing A.

Theorem. (Prékopa (1971, 1973), Rinott (1976)). Suppose
P is a probability measure on Bd such that the affine hull of
supp(P ) has dimension d. Then P is log-concave if and only if
there is a log-concave (density) function f on Rd such that

P (B) =
∫
B
f(x)dx for all B ∈ Bd.
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2. Properties of log-concave densities

Properties: log-concave densities on R:

• A density f on R is log-concave if and only if its convolution

with any unimodal density is again unimodal (Ibragimov,

1956).

• Every log-concave density f is unimodal (but need not be

symmetric).

• P0 is closed under convolution.

• P0 is closed under weak limits
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2. Properties of log-concave densities

Properties: log-concave densities on Rd:

• Any log−concave f is unimodal.

• The level sets of f are closed convex sets.

• Log-concave densities correspond to log-concave measures.
Prékopa, Rinott.

• Marginals of log-concave distributions are log-concave: if
f(x, y) is a log-concave density on Rm+n, then

g(x) =
∫
Rn
f(x, y)dy

is a log-concave density on Rm. Prékopa, Brascamp-Lieb.

• Products of log-concave densities are log-concave.

• P0 is closed under convolution.

• P0 is closed under weak limits.

Seminar, Institut de Mathématiques de Toulouse; 28 February 2012 1.11



3. Some consequences and connections

(statistics and probability)

• (a) f is log-concave if and only if det((f(xi−yj))i,j∈{1,2}) ≥ 0

for all x1 ≤ x2, y1 ≤ y2; i.e f is a Polya frequency density of

order 2; thus

log-concave = PF2 = strongly uni-modal

• (b) The densities pθ(x) ≡ f(x − θ) for θ ∈ R have monotone

likelihood ratio (in x) if and only if f is log-concave.

Proof of (b): pθ(x) = f(x− θ) has MLR iff

f(x− θ′)
f(x− θ)

≤
f(x′ − θ′)
f(x′ − θ)

for all x < x′, θ < θ′

This holds if and only if

logf(x− θ′) + logf(x′ − θ) ≤ logf(x′ − θ′) + logf(x− θ). (1)

Let t = (x′ − x)/(x′ − x+ θ′ − θ) and note that

Seminar, Institut de Mathématiques de Toulouse; 28 February 2012 1.12



3. Some consequences and connections

(statistics and probability)

x− θ = t(x− θ′) + (1− t)(x′ − θ),

x′ − θ′ = (1− t)(x− θ′) + t(x′ − θ)

Hence log-concavity of f implies that

logf(x− θ) ≥ t logf(x− θ′) + (1− t)logf(x′ − θ),

logf(x′ − θ′) ≥ (1− t)logf(x− θ′) + t logf(x′ − θ).

Adding these yields (??); i.e. f log-concave implies pθ(x) has

MLR in x.

Now suppose that pθ(x) has MLR so that (??) holds. In

particular that holds if x, x′, θ, θ′ satisfy x− θ′ = a < b = x′− θ and

t = (x′−x)/(x′−x+θ′−θ) = 1/2, so that x−θ = (a+b)/2 = x′−θ′.
Then (??) becomes

logf(a) + logf(b) ≤ 2logf((a+ b)/2).

This together with measurability of f implies that f is log-

concave.

Seminar, Institut de Mathématiques de Toulouse; 28 February 2012 1.13



3. Some consequences and connections

(statistics and probability)

Proof of (a): Suppose f is PF2. Then for x < x′, y < y′,

det

(
f(x− y) f(x− y′)
f(x′ − y) f(x′ − y′)

)
= f(x− y)f(x′ − y′)− f(x− y′)f(x′ − y) ≥ 0

if and only if

f(x− y′)f(x′ − y) ≤ f(x− y)f(x′ − y′),

or, if and only if

f(x− y′)
f(x− y)

≤
f(x′ − y′)
f(x′ − y)

.

That is, py(x) has MLR in x. By (b) this is equivalent to f

log-concave.
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3. Some consequences and connections

(statistics and probability)

Theorem. (Brascamp-Lieb, 1976). Suppose X ∼ f = e−ϕ with

ϕ convex and D2ϕ > 0, and let g ∈ C1(Rd). Then

V arf(g(X)) ≤ E〈(D2ϕ)−1∇g(X),∇g(X)〉.

(Poincaré - type inequality for log-concave densities)
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3. Some consequences and connections

(statistics and probability)

Further consequences: Peakedness and majorization

Theorem 1. (Proschan, 1965) Suppose that f on R is log-

concave and symmetric about 0. Let X1, . . . , Xn be i.i.d. with

density f , and suppose that p, p′ ∈ Rn+ satisfy

• p1 ≥ p2 ≥ · · · ≥ pn, p′1 ≥ p
′
2 ≥ · · · ≥ p

′
n,

•
∑k

1 p
′
j ≤

∑k
1 pj, k ∈ {1, . . . , n},

•
∑n

1 pj =
∑n

1 p
′
j = 1.

(That is, p′ ≺ p.) Then
∑n

1 p
′
jXj is strictly more peaked than∑n

1 pjXj:

P

| n∑
1

p′jXj| ≥ t

 < P

| n∑
1

pjXj| ≥ t

 for all t ≥ 0.
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3. Some consequences and connections

(statistics and probability)

Example: p1 = · · · = pn−1 = 1/(n− 1), pn = 0, while

p′1 = · · · = p′n = 1/n. Then p � p′ (since
∑n

1 pj =
∑n

1 p
′
j = 1 and∑k

1 pj = k/(n − 1) ≥ k/n =
∑k

1 p
′
j), and hence if X1, . . . , Xn are

i.i.d. f symmetric and log-concave,

P (|Xn| ≥ t) < P (|Xn−1| ≥ t) < · · · < P (|X1| ≥ t) for all t ≥ 0.

Definition: A d−dimensional random variable X is said to be

more peaked than a random variable Y if both X and Y have

densities and

P (Y ∈ A) ≥ P (X ∈ A) for all A ∈ Ad,

the class of subsets of Rd which are compact, convex, and

symmetric about the origin.
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3. Some consequences and connections

(statistics and probability)

Theorem 2. (Olkin and Tong, 1988) Suppose that f on Rd

is log-concave and symmetric about 0. Let X1, . . . , Xn be i.i.d.

with density f , and suppose that a, b ∈ Rn satisfy

• a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn,

•
∑k

1 aj ≤
∑k

1 bj, k ∈ {1, . . . , n},
•
∑n

1 aj =
∑n

1 bj.

(That is, a ≺ b.)
Then

∑n
1 ajXj is more peaked than

∑n
1 bjXj:

P

 n∑
1

ajXj ∈ A

 ≥ P
 n∑

1

bjXj ∈ A

 for all A ∈ Ad

In particular,

P

‖ n∑
1

ajXj‖ ≥ t

 ≤ P
‖ n∑

1

bjXj‖ ≥ t

 for all t ≥ 0.
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3. Some consequences and connections

(statistics and probability)

Corollary: If g is non-decreasing on R+ with g(0) = 0, then

Eg

‖ n∑
1

ajXj‖

 ≤ Eg
‖ n∑

1

bjXj‖

 .
Another peakedness result:

Suppose that Y = (Y1, . . . , Yn) where Yj ∼ N(µj, σ
2) are

independent and µ1 ≤ . . . ≤ µn; i.e. µ ∈ Kn where Kn ≡ {x ∈
Rn : x1 ≤ · · · ≤ xn}. Let

µ̂
n

= Π(Y |Kn),

the least squares projection of Y onto Kn. It is well-known that

µ̂
n

=

(
min
s≥i

max
r≤i

∑s
j=r Yj

s− r + 1
, i = 1, . . . , n

)
.
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3. Some consequences and connections

(statistics and probability)

Theorem 3. (Kelly) If Y ∼ Nn(µ, σ2I) and µ ∈ Kn, then µ̂k − µk
is more peaked than Yk − µk for each k ∈ {1, . . . , n}; that is

P (|µ̂k − µk| ≤ t) ≥ P (|Yk − µk| ≤ t) for all t > 0, k ∈ {1, . . . , n}.

Question: Does Kelly’s theorem continue to hold if the normal

distribution is replaced by an arbitrary log-concave joint density

symmetric about µ?
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4. Strong log-concavity: definitions

Definition 1. A density f on R is strongly log-concave if

f(x) = h(x)cφ(cx) for some c > 0

where h is log-concave and φ(x) = (2π)−1/2exp(−x2/2).

Sufficient condition: logf ∈ C2(R) with (−logf)′′(x) ≥ c2 > 0 for

all x.

Definition 2. A density f on Rd is strongly log-concave if

f(x) = h(x)cγ(cx) for some c > 0

where h is log-concave and γ is the Nd(0, cId) density.

Sufficient condition: logf ∈ C2(Rd) with D2(−logf)(x) ≥ c2Id for

some c > 0 for all x ∈ Rd.

These agree with strong convexity as defined by Rockafellar &

Wets (1998), p. 565.
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5. Examples & conterexamples

Examples

Example 1. f(x) = h(x)φ(x)/
∫
hφdx where h is the logistic

density, h(x) = ex/(1 + ex)2.

Example 2. f(x) = h(x)φ(x)/
∫
hφdx where h is the Gumbel

density. h(x) = exp(x− ex).

Example 3. f(x) = h(x)h(−x)/
∫
h(y)h(−y)dy where h is the

Gumbel density.

Counterexamples

Counterexample 1. f logistic: f(x) = ex/(1 + ex)2;

(−logf)′′(x) = f(x).

Counterexample 2. f Subbotin, r ∈ [1,2) ∪ (2,∞);

f(x) = C−1
r exp(−|x|r/r); (−logf)′′(x) = (r − 2)|x|r−2.
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Ex. 1: Logistic (red) perturbation of N(0,1) (green): f (blue)
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Ex. 1: (−logf)′′, Logistic perturbation of N(0,1)
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Ex. 2: Gumbel (red) perturbation of N(0,1) (green): f (blue)
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Ex. 2: (−logf)′′, Gumbel perturbation of N(0,1)
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Ex. 3: Gumbel (·)×Gumbel(−·) (purple); N(0, Vf) (blue)
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Ex. 3: −logGumbel(·)×Gumbel(−·) (purple); −logN(0, Vf) (blue)
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Ex. 3: D2(−logGumbel(·)×Gumbel(−·)) (purple); D2(−logN(0, Vf)) (blue)
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Subbotin fr r = 1 (blue), r = 1.5 (red), r = 2 (green), r = 3 (purple)
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−log fr: r = 1 (blue), r = 1.5 (red), r = 2 (green), r = 3 (purple)
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(−log fr)′′: r = 1 (blue), r = 1.5 (red), r = 2 (green), r = 3 (purple)
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6. Some consequences, strong log-concavity

First consequence

Theorem. (Hargé, 2004). Suppose X ∼ Nn(µ,Σ) with density

γ and Y has density h · γ with h log-concave, and let g : Rn → R
be convex. Then

Eg(Y − E(Y )) ≤ Eg(X − EX)).

Equivalently, with µ = EX, ν = EY = E(Xh(X))/Eh(X), and

g̃ ≡ g(·+ µ)

E{g̃(X − ν + µ)h(X)} ≤ Eg̃(X) · Eh(X).

Seminar, Institut de Mathématiques de Toulouse; 28 February 2012 1.33



6. Some consequences, strong log-concavity

More consequences

Corollary. (Brascamp-Lieb, 1976). Suppose X ∼ f = exp(−ϕ)

with D2ϕ ≥ λId, λ > 0, and let g ∈ C1(Rd). Then

V arf(g(X)) ≤ E〈(D2ϕ)−1∇g(X),∇g(X)〉 ≤
1

λ
E|∇g(X)|2.

(Poincaré inequality for strongly log-concave densities; improve-

ments by Hargé (2008))

Theorem. (Caffarelli, 2002). Suppose X ∼ Nd(0, I) with density

γd and Y has density e−v · γd with v convex. Let T = ∇ϕ be the

unique gradient of a convex map ϕ such that ∇ϕ(X)
d
= Y . Then

0 ≤ D2ϕ ≤ Id.

(cf. Villani (2003), pages 290-291)
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7. Questions & problems

• Does strong log-concavity occur naturally? Are there natural

examples?

• Are there large classes of strongly log-concave densities in

connection with other known classes such as PF∞ (Pólya

frequency functions of order infinity) or L. Bondesson’s class

HM∞ of completely hyperbolically monotone densities?

• Does Kelly’s peakedness result for projection onto the

ordered cone Kn continue to hold with Gaussian replaced

by log-concave (or symmetric log concave)?
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