Log-concave distributions:

definitions, properties, and

consequences

Jon A. Wellner

University of Washington, Seattle; visiting Heidelberg

Seminaire, Institut de Mathématiques de Toulouse

28 February 2012

Seminaire, Toulouse

Part 1, 28 February

Part 2, 28 February Chernoff's distribution is log-concave

Seminaire 2, Thursday, 1 March:

Strong log-concavity of Chernoff's density; connections and problems

Seminaire 3, Monday, 5 March:

Nonparametric estimation of log-concave densities

Seminaire 4, Thursday, 8 March:

A local maximal inequality under uniform entropy

- 1: Log-concave densities / distributions: definitions
- 2: Properties of the class
- 3: Some consequences (statistics and probability)
- 4: Strong log-concavity: definitions
- 5: Examples & counterexamples
- 6: Some consequences, strong log-concavity
- 7. Questions & problems

Suppose that a density f can be written as

$$f(x) \equiv f_{\varphi}(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x)))$$

where φ is concave (and $-\varphi$ is convex). The class of all densities f on \mathbb{R} , or on \mathbb{R}^d , of this form is called the class of *log-concave* densities, $\mathcal{P}_{log-concave} \equiv \mathcal{P}_0$.

Note that f is log-concave if and only if :

- $\log f(\lambda x + (1-\lambda)y) \ge \lambda \log f(x) + (1-\lambda) \log f(y)$ for all $0 \le \lambda \le 1$ and for all x, y.
- iff $f(\lambda x + (1 \lambda)y) \ge f(x)^{\lambda} \cdot f(y)^{1-\lambda}$
- iff $f((x+y)/2) \ge \sqrt{f(x)f(y)}$, (assuming f is measurable)
- iff $f((x+y)/2)^2 \ge f(x)f(y)$.

Examples, \mathbb{R}

• Example 1: standard normal

$$f(x) = (2\pi)^{-1/2} \exp(-x^2/2),$$

$$-\log f(x) = \frac{1}{2}x^2 + \log\sqrt{2\pi},$$

$$(-\log f)''(x) = 1.$$

• Example 2: Laplace

$$f(x) = 2^{-1} \exp(-|x|),$$

-log $f(x) = |x| + \log 2,$
 $(-\log f)''(x) = 0$ for all $x \neq 0.$

• Example 3: Logistic

$$f(x) = \frac{e^x}{(1+e^x)^2},$$

-log $f(x) = -x + 2\log(1+e^x),$
 $(-\log f)''(x) = \frac{e^x}{(1+e^x)^2} = f(x).$

• Example 4: Subbotin

$$f(x) = C_r^{-1} \exp(-|x|^r / r), \qquad C_r = 2\Gamma(1/r)r^{1/r-1}, \\ -\log f(x) = r^{-1}|x|^r + \log C_r, \\ (-\log f)''(x) = (r-1)|x|^{r-2}, \quad r \ge 1, \quad x \ne 0.$$

- Many univariate parametric families on $\mathbb R$ are log-concave, for example:
 - \triangleright Normal (μ, σ^2)
 - \triangleright Uniform(a, b)
 - \triangleright Gamma (r, λ) for $r \geq 1$
 - \triangleright Beta(a, b) for $a, b \ge 1$
 - \triangleright Subbotin(r) with $r \ge 1$.
- t_r densities with r > 0 are not log-concave
- Tails of log-concave densities are necessarily sub-exponential:
 i.e. if X ~ f ∈ PF₂, then Eexp(c|X|) < ∞ for some c > 0.

Log-concave densities on \mathbb{R}^d :

- A density f on \mathbb{R}^d is log-concave if $f(x) = \exp(\varphi(x))$ with φ concave.
- Examples

 \triangleright The density f of $X \sim N_d(\mu, \Sigma)$ with Σ positive definite:

$$f(x) = f(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right),$$

$$-\log f(x) = \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu) - (1/2)\log(2\pi|\Sigma),$$

$$D^2(-\log f)(x) \equiv \left(\frac{\partial^2}{\partial x_i \partial x_j}(-\log f)(x), i, j = 1, \dots, d\right) = \Sigma^{-1}.$$

▷ If $K \subset \mathbb{R}^d$ is compact and convex, then $f(x) = 1_K(x)/\lambda(K)$ is a log-concave density.

Log-concave measures:

Suppose that P is a probability measure on $(\mathbb{R}^d, \mathcal{B}_d)$. P is a logconcave measure if for all nonempty $A, B \in \mathcal{B}_d$ and $\lambda \in (0, 1)$ we have

$$P(\lambda A + (1 - \lambda)B) \ge \{P(A)\}^{\lambda} \{P(B)\}^{1 - \lambda}.$$

- A set $A \subset \mathbb{R}^d$ is affine if $tx + (1-t)y \in A$ for all $x, y \in A$, $t \in \mathbb{R}$.
- The affine hull of a set $A \subset \mathbb{R}^d$ is the smallest affine set containing A.

Theorem. (Prékopa (1971, 1973), Rinott (1976)). Suppose P is a probability measure on \mathcal{B}_d such that the affine hull of $\operatorname{supp}(P)$ has dimension d. Then P is log-concave if and only if there is a log-concave (density) function f on \mathbb{R}^d such that

$$P(B) = \int_B f(x) dx$$
 for all $B \in \mathcal{B}_d$.

Properties: log-concave densities on \mathbb{R} :

- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density *f* is unimodal (but need not be symmetric).
- \mathcal{P}_0 is closed under convolution.
- \mathcal{P}_0 is closed under weak limits

Properties: log-concave densities on \mathbb{R}^d :

- Any \log -concave f is unimodal.
- The level sets of f are closed convex sets.
- Log-concave densities correspond to log-concave measures.
 Prékopa, Rinott.
- Marginals of log-concave distributions are log-concave: if f(x,y) is a log-concave density on \mathbb{R}^{m+n} , then

$$g(x) = \int_{\mathbb{R}^n} f(x, y) dy$$

is a log-concave density on \mathbb{R}^m . Prékopa, Brascamp-Lieb.

- Products of log-concave densities are log-concave.
- \mathcal{P}_0 is closed under convolution.
- \mathcal{P}_0 is closed under weak limits.

3. Some consequences and connections (statistics and probability)

 (a) f is log-concave if and only if det((f(x_i-y_j))_{i,j∈{1,2}}) ≥ 0 for all x₁ ≤ x₂, y₁ ≤ y₂; i.e f is a Polya frequency density of order 2; thus

log-concave = PF_2 = strongly uni-modal

• (b) The densities $p_{\theta}(x) \equiv f(x - \theta)$ for $\theta \in \mathbb{R}$ have monotone likelihood ratio (in x) if and only if f is log-concave.

Proof of (b): $p_{\theta}(x) = f(x - \theta)$ has MLR iff

$$\frac{f(x-\theta')}{f(x-\theta)} \le \frac{f(x'-\theta')}{f(x'-\theta)} \text{ for all } x < x', \ \theta < \theta'$$

This holds if and only if

$$\log f(x - \theta') + \log f(x' - \theta) \le \log f(x' - \theta') + \log f(x - \theta).$$
(1)
Let $t = (x' - x)/(x' - x + \theta' - \theta)$ and note that

3. Some consequences and connections

(statistics and probability)

$$x - \theta = t(x - \theta') + (1 - t)(x' - \theta),$$

$$x' - \theta' = (1 - t)(x - \theta') + t(x' - \theta)$$

Hence log-concavity of f implies that

$$\log f(x-\theta) \ge t \log f(x-\theta') + (1-t) \log f(x'-\theta),$$

$$\log f(x'-\theta') \ge (1-t) \log f(x-\theta') + t \log f(x'-\theta).$$

Adding these yields (??); i.e. f log-concave implies $p_{\theta}(x)$ has MLR in x.

Now suppose that $p_{\theta}(x)$ has MLR so that (??) holds. In particular that holds if x, x', θ, θ' satisfy $x - \theta' = a < b = x' - \theta$ and $t = (x'-x)/(x'-x+\theta'-\theta) = 1/2$, so that $x-\theta = (a+b)/2 = x'-\theta'$. Then (??) becomes

$$\log f(a) + \log f(b) \le 2\log f((a+b)/2).$$

This together with measurability of f implies that f is log-concave.

3. Some consequences and connections (statistics and probability)

Proof of (a): Suppose f is PF_2 . Then for x < x', y < y',

$$\det \begin{pmatrix} f(x-y) & f(x-y') \\ f(x'-y) & f(x'-y') \end{pmatrix} = f(x-y)f(x'-y') - f(x-y')f(x'-y) \ge 0$$

if and only if

$$f(x - y')f(x' - y) \le f(x - y)f(x' - y'),$$

or, if and only if

$$\frac{f(x-y')}{f(x-y)} \le \frac{f(x'-y')}{f(x'-y)}.$$

That is, $p_y(x)$ has MLR in x. By (b) this is equivalent to f log-concave.

3. Some consequences and connections (statistics and probability)

Theorem. (Brascamp-Lieb, 1976). Suppose $X \sim f = e^{-\varphi}$ with φ convex and $D^2 \varphi > 0$, and let $g \in C^1(\mathbb{R}^d)$. Then

 $Var_f(g(X)) \leq E\langle (D^2\varphi)^{-1}\nabla g(X), \nabla g(X) \rangle.$

(Poincaré - type inequality for log-concave densities)

Further consequences: Peakedness and majorization

Theorem 1. (Proschan, 1965) Suppose that f on \mathbb{R} is logconcave and symmetric about 0. Let X_1, \ldots, X_n be i.i.d. with density f, and suppose that $p, p' \in \mathbb{R}^n_+$ satisfy

- $p_1 \ge p_2 \ge \cdots \ge p_n, \ p'_1 \ge p'_2 \ge \cdots \ge p'_n,$
- $\sum_{1}^{k} p'_{j} \leq \sum_{1}^{k} p_{j}$, $k \in \{1, \dots, n\}$,
- $\sum_{1}^{n} p_{j} = \sum_{1}^{n} p'_{j} = 1.$

(That is, $\underline{p}' \prec \underline{p}$.) Then $\sum_{1}^{n} p'_{j} X_{j}$ is strictly more peaked than $\sum_{1}^{n} p_{j} X_{j}$:

$$P\left(\left|\sum_{1}^{n} p'_{j} X_{j}\right| \ge t\right) < P\left(\left|\sum_{1}^{n} p_{j} X_{j}\right| \ge t\right) \quad \text{for all} \quad t \ge 0.$$

3. Some consequences and connections

(statistics and probability)

Example: $p_1 = \cdots = p_{n-1} = 1/(n-1)$, $p_n = 0$, while $p'_1 = \cdots = p'_n = 1/n$. Then $\underline{p} \succ \underline{p}'$ (since $\sum_1^n p_j = \sum_1^n p'_j = 1$ and $\sum_1^k p_j = k/(n-1) \ge k/n = \sum_1^k p'_j$), and hence if X_1, \ldots, X_n are i.i.d. f symmetric and log-concave,

$$P(|\overline{X}_n| \ge t) < P(|\overline{X}_{n-1}| \ge t) < \dots < P(|X_1| \ge t)$$
 for all $t \ge 0$.

Definition: A d-dimensional random variable X is said to be *more peaked* than a random variable Y if both X and Y have densities and

$$P(Y \in A) \ge P(X \in A)$$
 for all $A \in \mathcal{A}_d$,

the class of subsets of \mathbb{R}^d which are compact, convex, and symmetric about the origin.

3. Some consequences and connections

(statistics and probability)

Theorem 2. (Olkin and Tong, 1988) Suppose that f on \mathbb{R}^d is log-concave and symmetric about 0. Let X_1, \ldots, X_n be i.i.d. with density f, and suppose that $a, b \in \mathbb{R}^n$ satisfy

$$P\left(\sum_{1}^{n} a_{j}X_{j} \in A\right) \ge P\left(\sum_{1}^{n} b_{j}X_{j} \in A\right) \quad \text{for all} \quad A \in \mathcal{A}_{d}$$

In particular,

$$P\left(\|\sum_{1}^{n} a_{j}X_{j}\| \ge t\right) \le P\left(\|\sum_{1}^{n} b_{j}X_{j}\| \ge t\right) \quad \text{for all} \quad t \ge 0.$$

3. Some consequences and connections (statistics and probability)

Corollary: If g is non-decreasing on \mathbb{R}^+ with g(0) = 0, then

$$Eg\left(\left\|\sum_{1}^{n}a_{j}X_{j}\right\|\right) \leq Eg\left(\left\|\sum_{1}^{n}b_{j}X_{j}\right\|\right).$$

Another peakedness result:

Suppose that $\underline{Y} = (Y_1, \ldots, Y_n)$ where $Y_j \sim N(\mu_j, \sigma^2)$ are independent and $\mu_1 \leq \ldots \leq \mu_n$; i.e. $\underline{\mu} \in K_n$ where $K_n \equiv \{\underline{x} \in \mathbb{R}^n : x_1 \leq \cdots \leq x_n\}$. Let

$$\underline{\widehat{\mu}}_n = \Pi(\underline{Y}|K_n),$$

the least squares projection of \underline{Y} onto K_n . It is well-known that

$$\underline{\widehat{\mu}}_n = \left(\min_{s \ge i} \max_{r \le i} \frac{\sum_{j=r}^s Y_j}{s-r+1}, \ i = 1, \dots, n \right).$$

3. Some consequences and connections (statistics and probability)

Theorem 3. (Kelly) If $\underline{Y} \sim N_n(\underline{\mu}, \sigma^2 I)$ and $\underline{\mu} \in K_n$, then $\hat{\mu}_k - \mu_k$ is more peaked than $Y_k - \mu_k$ for each $k \in \{1, \dots, n\}$; that is

 $P(|\hat{\mu}_k - \mu_k| \le t) \ge P(|Y_k - \mu_k| \le t)$ for all $t > 0, k \in \{1, ..., n\}.$

Question: Does Kelly's theorem continue to hold if the normal distribution is replaced by an arbitrary log-concave joint density symmetric about μ ?

Definition 1. A density f on \mathbb{R} is *strongly log-concave* if

$$f(x) = h(x)c\phi(cx)$$
 for some $c > 0$

where h is log-concave and $\phi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$. Sufficient condition: $\log f \in C^2(\mathbb{R})$ with $(-\log f)''(x) \ge c^2 > 0$ for all x.

Definition 2. A density f on \mathbb{R}^d is strongly log-concave if

$$f(x) = h(x)c\gamma(cx)$$
 for some $c > 0$

where h is log-concave and γ is the $N_d(0, cI_d)$ density. Sufficient condition: $\log f \in C^2(\mathbb{R}^d)$ with $D^2(-\log f)(x) \ge c^2 I_d$ for some c > 0 for all $x \in \mathbb{R}^d$.

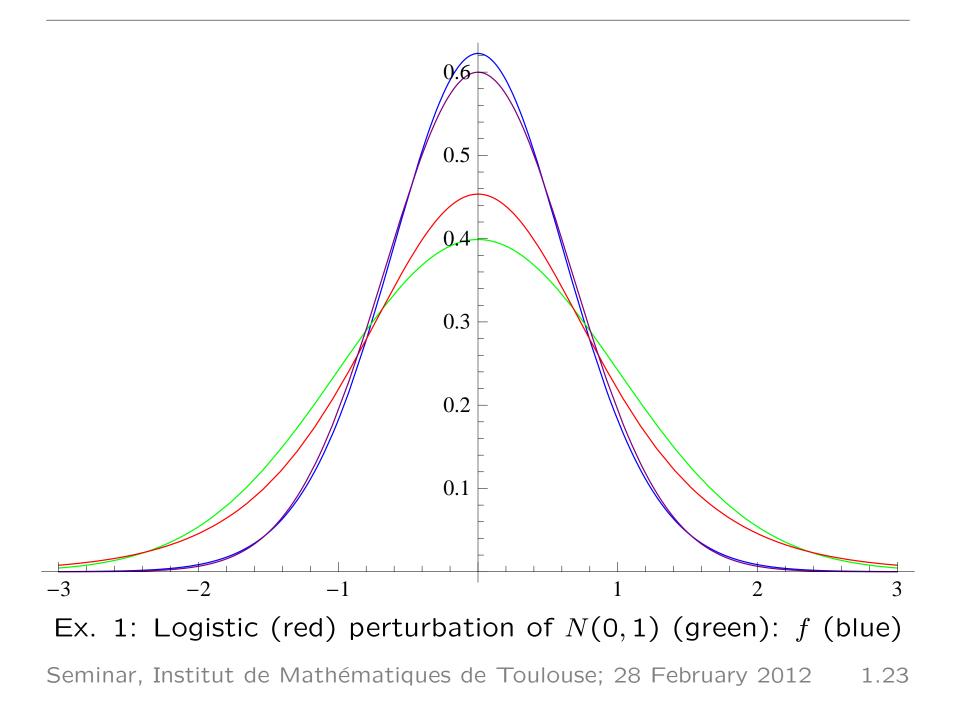
These agree with *strong convexity* as defined by Rockafellar & Wets (1998), p. 565.

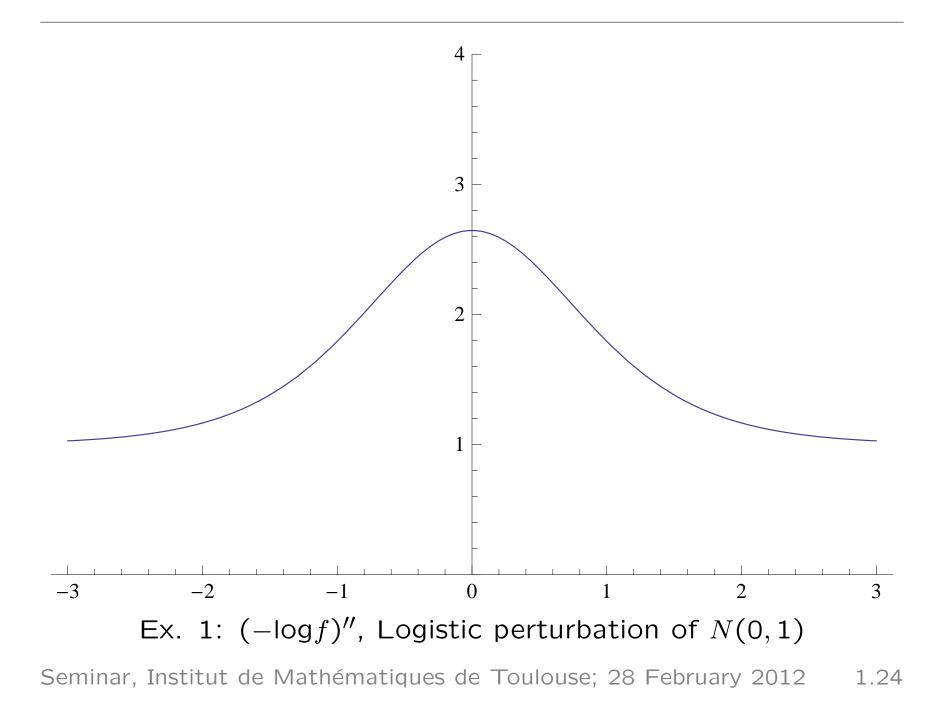
Examples

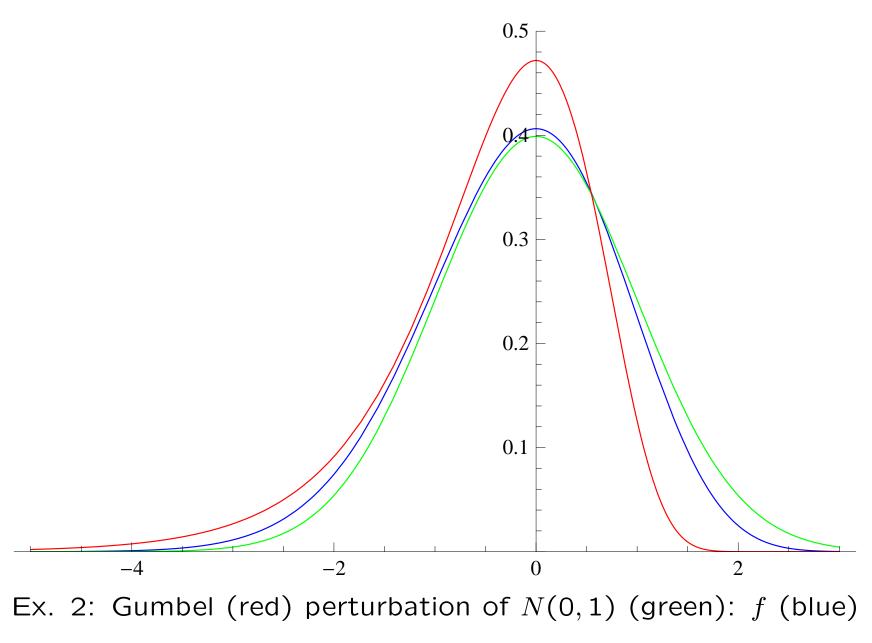
Example 1. $f(x) = h(x)\phi(x)/\int h\phi dx$ where *h* is the logistic density, $h(x) = e^x/(1 + e^x)^2$. **Example 2.** $f(x) = h(x)\phi(x)/\int h\phi dx$ where *h* is the Gumbel density. $h(x) = \exp(x - e^x)$. **Example 3.** $f(x) = h(x)h(-x)/\int h(y)h(-y)dy$ where *h* is the Gumbel density.

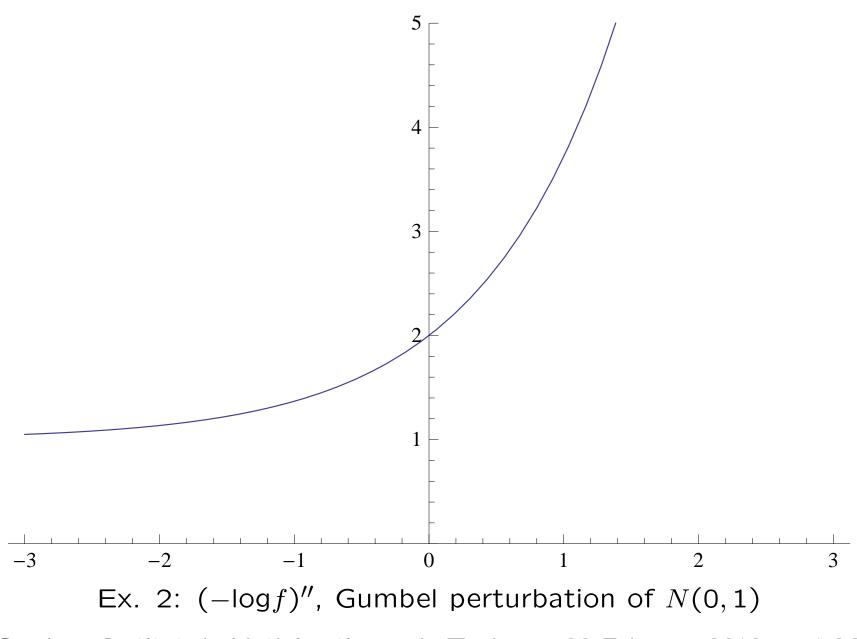
Counterexamples

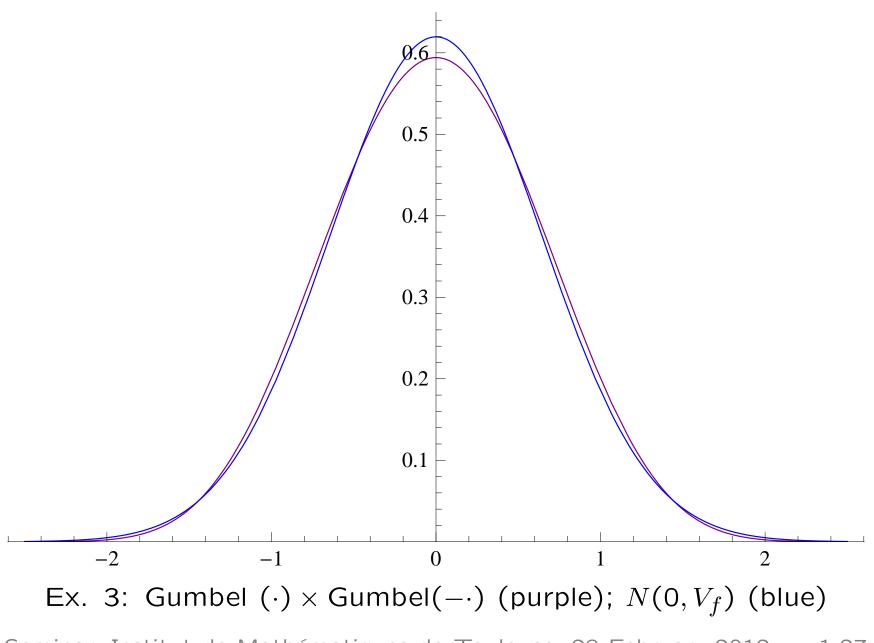
Counterexample 1. f logistic: $f(x) = e^x/(1 + e^x)^2$; $(-\log f)''(x) = f(x)$. Counterexample 2. f Subbotin, $r \in [1, 2) \cup (2, \infty)$; $f(x) = C_r^{-1} \exp(-|x|^r/r)$; $(-\log f)''(x) = (r-2)|x|^{r-2}$.

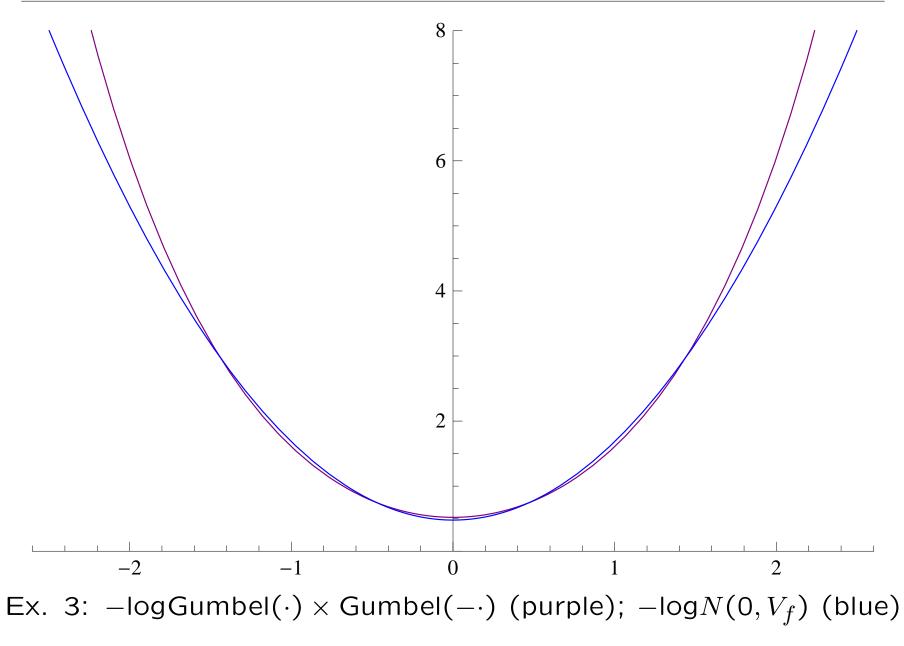


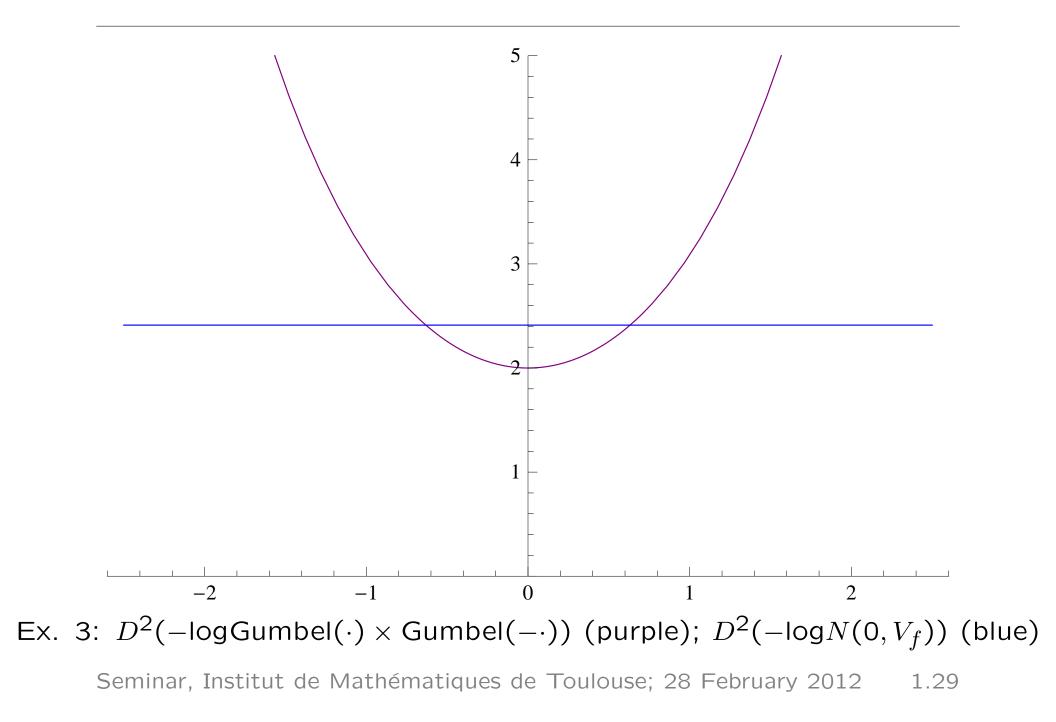


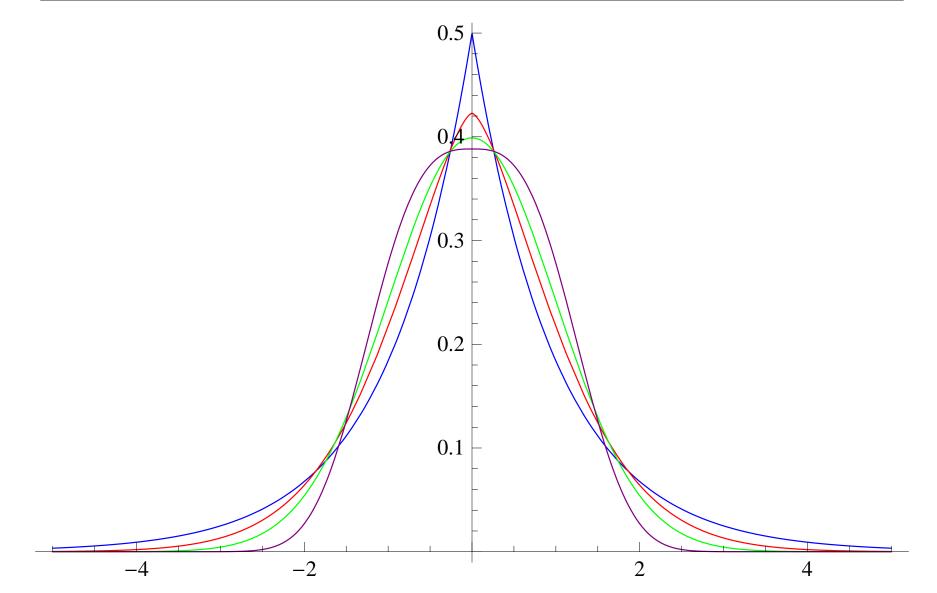




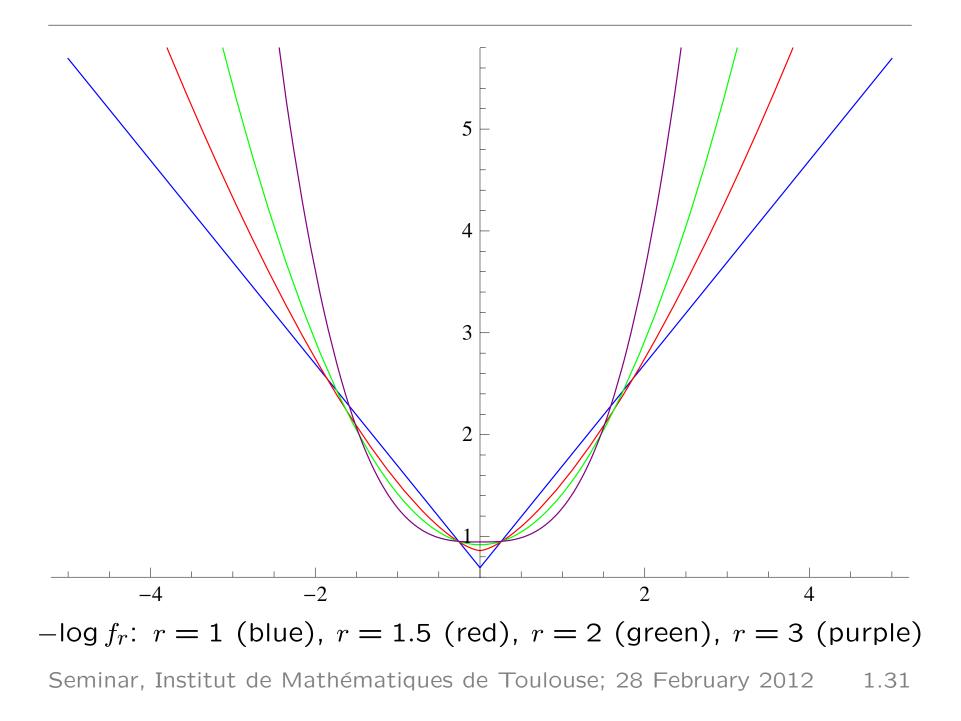


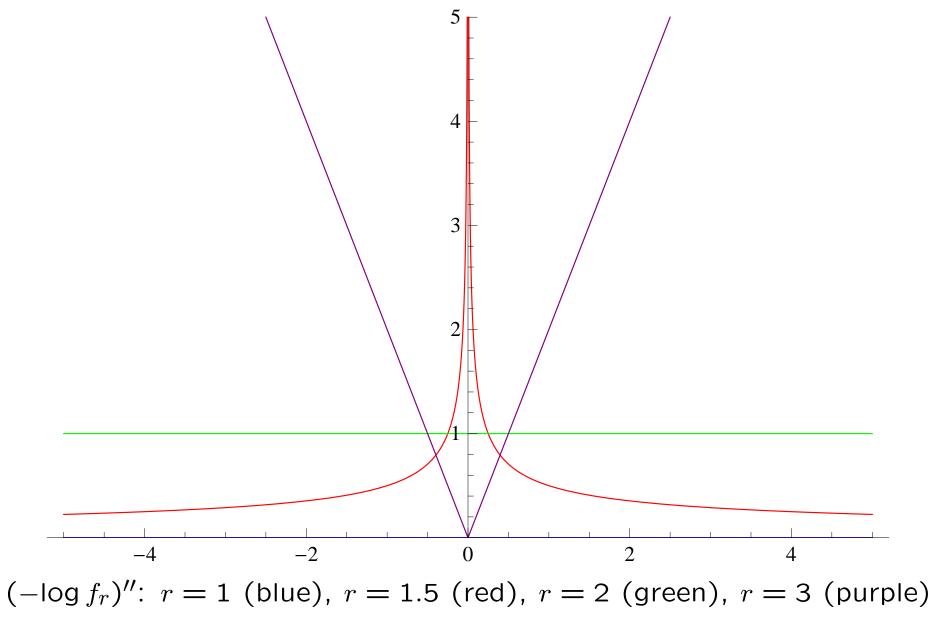






Subbotin $f_r r = 1$ (blue), r = 1.5 (red), r = 2 (green), r = 3 (purple)





First consequence

Theorem. (Hargé, 2004). Suppose $X \sim N_n(\mu, \Sigma)$ with density γ and Y has density $h \cdot \gamma$ with h log-concave, and let $g : \mathbb{R}^n \to \mathbb{R}$ be convex. Then

 $Eg(Y - E(Y)) \le Eg(X - EX)).$

Equivalently, with $\mu = EX$, $\nu = EY = E(Xh(X))/Eh(X)$, and $\tilde{g} \equiv g(\cdot + \mu)$

$$E\{\tilde{g}(X-\nu+\mu)h(X)\} \leq E\tilde{g}(X) \cdot Eh(X).$$

More consequences

Corollary. (Brascamp-Lieb, 1976). Suppose $X \sim f = \exp(-\varphi)$ with $D^2 \varphi \geq \lambda I_d$, $\lambda > 0$, and let $g \in C^1(\mathbb{R}^d)$. Then

$$Var_f(g(X)) \le E\langle (D^2\varphi)^{-1}\nabla g(X), \nabla g(X) \rangle \le \frac{1}{\lambda}E|\nabla g(X)|^2.$$

(Poincaré inequality for strongly log-concave densities; improvements by Hargé (2008))

Theorem. (Caffarelli, 2002). Suppose $X \sim N_d(0, I)$ with density γ_d and Y has density $e^{-v} \cdot \gamma_d$ with v convex. Let $T = \nabla \varphi$ be the unique gradient of a convex map φ such that $\nabla \varphi(X) \stackrel{d}{=} Y$. Then

$$0 \le D^2 \varphi \le I_d.$$

(cf. Villani (2003), pages 290-291)

7. Questions & problems

- Does strong log-concavity occur naturally? Are there natural examples?
- Are there large classes of strongly log-concave densities in connection with other known classes such as PF_{∞} (Pólya frequency functions of order infinity) or L. Bondesson's class HM_{∞} of completely hyperbolically monotone densities?
- Does Kelly's peakedness result for projection onto the ordered cone K_n continue to hold with Gaussian replaced by log-concave (or symmetric log concave)?

Selected references:

- Villani, C. (2002). *Topics in Optimal Transportation*. Amer. Math Soc., Providence.
- Dharmadhikari, S. and Joag-dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press.
- Marshall, A. W. and Olkin, I. (1979). *Inequalities: Theory of Majorization and Its Applications*. Academic Press.
- Marshall, A. W., Olkin, I., and Arnold, B. C. (2011). *Inequalities: Theory of Majorization and Its Applications*. Second edition, Springer.
- Rockfellar, R. T. and Wets, R. (1998). Variational Analysis. Springer.
- Hargé, G. (2004). A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces. *Probab. Theory Related Fields* **130**, *415-440*.
- Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis **22**, 366-389.
- Hargé, G. (2008). Reinforcement of an inequality due to Brascamp and Lieb. J. Funct. Anal., **254, 267-300.**