Nonparametric estimation of

s-concave and log-concave densities:

alternatives to maximum likelihood

Jon A. Wellner

University of Washington, Seattle

Cemmap Seminar, London
October 27, 2015

Economics Seminar, University College London

Based on joint work with:

- Qiyang (Roy) Han
- Charles Doss
- Fadoua Balabdaoui
- Kaspar Rufibach
- Arseni Seregin

Outline

- ullet A: Log-concave and s-concave densities on $\mathbb R$ and $\mathbb R^d$
- ullet B: s-concave densities on $\mathbb R$ and $\mathbb R^d$
- ullet C: Maximum Likelihood for log-concave and s-concave densities
 - ▶ 1: Basics
 - > 2: On the model
 - > 3: Off the model
- D. An alternative to ML: Rényi divergence estimators
 - ▶ 1. Basics
 - > 2. On the model
 - > 3. Off the model
- E. Summary: problems and open questions

A. Log-concave densities on $\mathbb R$ and $\mathbb R^d$

If a density f on \mathbb{R}^d is of the form

$$f(x) \equiv f_{\varphi}(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x)))$$

where φ is concave (so $-\varphi$ is convex), then f is \log -concave. The class of all densities f on \mathbb{R}^d of this form is called the class of \log -concave densities, $\mathcal{P}_{log-concave} \equiv \mathcal{P}_0$.

Properties of log-concave densities:

- Every log-concave density f is unimodal (quasi concave).
- \mathcal{P}_0 is closed under convolution.
- \mathcal{P}_0 is closed under marginalization.
- \mathcal{P}_0 is closed under weak limits.
- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).

- Many parametric families are log-concave, for example:
 - \triangleright Normal (μ, σ^2)
 - \triangleright Uniform(a,b)
 - ightharpoonup Gamma (r,λ) for $r\geq 1$
 - \triangleright Beta(a,b) for $a,b \ge 1$
- t_r densities with r > 0 are not log-concave.
- Tails of log-concave densities are necessarily sub-exponential.
- $\mathcal{P}_{log-concave} =$ the class of "Polyá frequency functions of order 2", PF_2 , in the terminology of Schoenberg (1951) and Karlin (1968). See Marshall and Olkin (1979), chapter 18, and Dharmadhikari and Joag-Dev (1988), page 150. for nice introductions.

B. s- concave densities on $\mathbb R$ and $\mathbb R^d$

If a density f on \mathbb{R}^d is of the form

$$f(x) \equiv f_{\varphi}(x) = \begin{cases} (\varphi(x))^{1/s}, & \varphi \quad convex, \text{ if } s < 0 \\ \exp(-\varphi(x)), & \varphi \quad convex, \text{ if } s = 0 \\ (\varphi(x))^{1/s}, & \varphi \quad concave, \text{ if } s > 0, \end{cases}$$

then f is s-concave.

The classes of all densities f on \mathbb{R}^d of these forms are called the classes of s-concave densities, \mathcal{P}_s . The following inclusions hold: if $-\infty < s < 0 < r < \infty$, then

$$\mathcal{P}_r \subset \mathcal{P}_0 \subset \mathcal{P}_s \subset \mathcal{P}_{-\infty}$$

Properties of *s***-concave densities:**

- Every s—concave density f is quasi-concave.
- The Student t_{ν} density, $t_{\nu} \in \mathcal{P}_s$ for $s \leq -1/(1+\nu)$. Thus the Cauchy density $(=t_1)$ is in $\mathcal{P}_{-1/2} \subset \mathcal{P}_s$ for $s \leq -1/2$.
- The classes \mathcal{P}_s have interesting closure properties under convolution and marginalization which follow from the Borell-Brascamp-Lieb inequality: let $0 < \lambda < 1$, $-1/d \le s \le \infty$, and let $f,g,h:\mathbb{R}^d \to [0,\infty)$ be integrable functions such that

$$h((1-\lambda)x+\lambda y)\geq M_s(f(x),g(x),\lambda)$$
 for all $x,y\in\mathbb{R}^d$ where

$$M_s(a, b, \lambda) = ((1 - \lambda)a^s + \lambda b^s)^{1/s}, \quad M_0(a, b, \lambda) = a^{1-\lambda}b^{\lambda}.$$

Then

$$\int_{\mathbb{R}^d} h(x)dx \ge M_{s/(sd+1)} \left(\int_{\mathbb{R}^d} f(x)dx, \int_{\mathbb{R}^d} g(x)dx, \lambda \right).$$

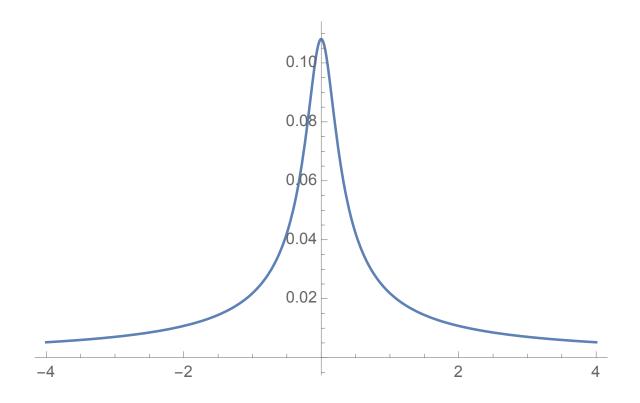
- If $f \in \mathcal{P}_s$ and s > -1/(d+1), then $E_f ||X|| < \infty$.
- If $f \in \mathcal{P}_s$ and s > -1/d, then $||f||_{\infty} < \infty$.
- If $f \in \mathcal{P}_0$, then for some a > 0 and $b \in \mathbb{R}$

$$f(x) \le \exp(-a||x|| + b)$$
 for all $x \in \mathbb{R}$.

• If $f \in \mathcal{P}_s$ and s > -1/d, then with $r \equiv -1/s > d$, then for some a,b>0

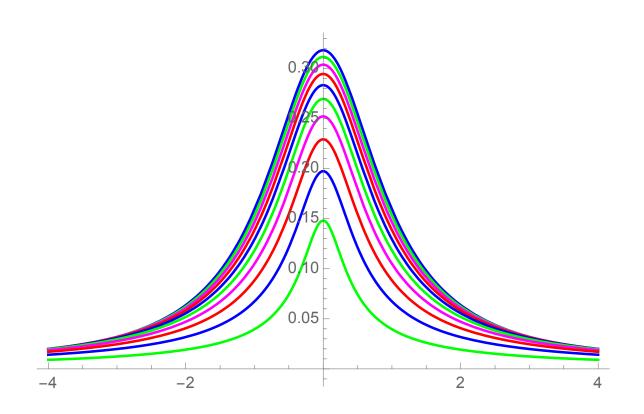
$$f(x) \le (b + a||x||)^{-r}$$
 for all $x \in \mathbb{R}$.

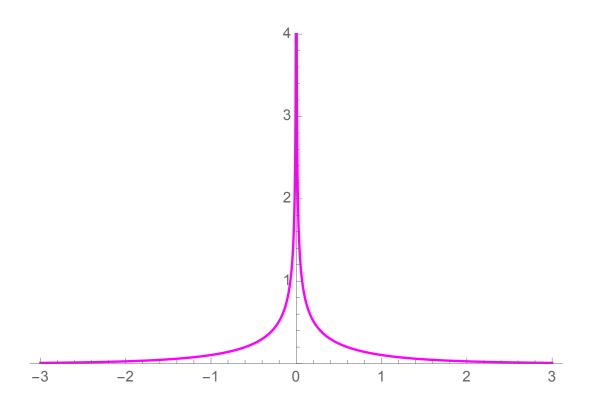
- If s < -1/d then there exists $f \in \mathcal{P}_s$ with $||f||_{\infty} = \infty$.
- If $-1/d < s \le -1/(d+1)$, then there exists $f \in \mathcal{P}_s$ with $E_f \|X\| = \infty$.



$$f(x) = \frac{1}{\sqrt{r}Beta(r/2, 1/2)} \left(\frac{r}{r + x^2}\right)^{(1+r)/2},$$

with
$$r = .05$$
, so $f \in \mathcal{P}_{-1/(1+.05)}$





$$f(x) = \frac{1}{2\Gamma(1/2)}|x|^{-1/2}\exp(-|x|), \quad \text{with } f \in \mathcal{P}_{-2}.$$

C. Maximum Likelihood:

0-concave and s-concave densities

MLE of f and φ : Let \mathcal{C} denote the class of all concave function $\varphi: \mathbb{R} \to [-\infty, \infty)$. The estimator $\widehat{\varphi}_n$ based on X_1, \ldots, X_n i.i.d. as f_0 is the maximizer of the "adjusted criterion function"

$$\ell_n(\varphi) = \int \log f_{\varphi}(x) d\mathbb{F}_n(x) - \int f_{\varphi}(x) dx$$

$$= \begin{cases} \int \varphi(x) d\mathbb{F}_n(x) - \int e^{\varphi(x)} dx, & s = 0, \\ \int (1/s) \log(-\varphi(x))_+ d\mathbb{F}_n(x) - \int (-\varphi(x))_+^{1/s} dx, & s < 0, \end{cases}$$

over $\varphi \in \mathcal{C}$.

1. Basics

- The MLE's for \mathcal{P}_0 exist and are unique when $n \geq d+1$.
- The MLE's for \mathcal{P}_s exist for $s \in (-1/d, 0)$ when

$$n \ge d\left(\frac{r}{r-d}\right)$$

where r = -1/s. Thus $n \to \infty$ as $-1/s = r \searrow d$.

- Uniqueness of MLE's for \mathcal{P}_s ?
- MLE $\widehat{\varphi}_n$ is piecewise affine for $-1/d < s \le 0$.
- The MLE for \mathcal{P}_s does not exist if s<-1/d. (Well known for $s=-\infty$ and d=1.)

2. On the model

- The MLE's are Hellinger and L_1 consistent.
- The log-concave MLE's $\widehat{f}_{n,0}$ satisfy

$$\int e^{a|x|} |\widehat{f}_{n,0}(x) - f_0(x)| dx \to_{a.s.} 0.$$

for $a < a_0$ where $f_0(x) \le \exp(-a_0|x| + b_0)$.

- The s-concave MLE's are computationally awkward; log is "too aggressive" a transform for an s-concave density. [Note that ML has difficulties even for location t- families: multiple roots of the likelihood equations.]
- Pointwise distribution theory for $\widehat{f}_{n,0}$ when d=1; no pointwise distribution theory for $\widehat{f}_{n,s}$ when d=1; no pointwise distribution theory for $\widehat{f}_{n,0}$ or $\widehat{f}_{n,s}$ when d>1.
- Global rates? $H(\hat{f}_{n,s}, f_0) = O_p(n^{-2/5})$ for $-1 < s \le 0$, d = 1.

3. Off the model

Now suppose that Q is an arbitrary probability measure on \mathbb{R}^d with density q and X_1, \ldots, X_n are i.i.d. q.

• The MLE \widehat{f}_n for \mathcal{P}_0 satisfies:

$$\int_{\mathbb{R}^d} |\widehat{f}_n(x) - f^*(x)| dx \to_{a.s.} 0$$

where, for the Kullback-Leibler divergence

$$K(q, f) = \int q \log(q/f) d\lambda,$$

$$f^* = \operatorname{argmin}_{f \in \mathcal{P}_0(\mathbb{R}^d)} K(q, f)$$

is the "pseudo-true" density in $\mathcal{P}_0(\mathbb{R}^d)$ corresponding to q. In fact:

$$\int_{\mathbb{R}^d} e^{a||x||} |\widehat{f}_n(x) - f^*(x)| dx \to_{a.s.} 0$$

for any $a < a_0$ where $f^*(x) \le \exp(-a_0||x|| + b_0)$.

• The MLE \widehat{f}_n for \mathcal{P}_s does not behave well off the model. Retracing the basic arguments of Cule and Samworth (2010) leads to negative conclusions. (How negative remains to be pinned down!)

Conclusion: Investigate alternative methods for estimation in the larger classes \mathcal{P}_s with s < 0! This leads to the proposals by Koenker and Mizera (2010).

D. An alternative to ML:

Rényi divergence estimators

0. Notation and Definitions

- $\beta = 1 + 1/s < 0$, $\alpha^{-1} + \beta^{-1} = 1$.
- $C(\underline{X}) =$ all continuous functions on $conv(\underline{X})$.
- $\mathcal{C}^*(\underline{X}) = \text{ all signed Radon measures on } \mathcal{C}(\underline{X}) = \text{dual space of } \mathcal{C}(\underline{X}).$
- $\mathcal{G}(\underline{X}) = \text{ all closed convex (lower s.c.) functions on conv}(\underline{X}).$
- $\mathcal{G}(\underline{X})^{\circ} = \{G \in \mathcal{C}^*(\underline{X}) : \int g dG \leq 0 \text{ for all } g \in \mathcal{G}(\underline{X})\}, \text{ the polar (or dual) cone of } \mathcal{G}(\underline{X}).$

Primal problems: \mathcal{P}_0 and \mathcal{P}_s :

• \mathcal{P}_0 : $\min_{g \in \mathcal{G}(\underline{X})} L_0(g, \mathbb{P}_n)$ where

$$L_0(g, \mathbb{P}_n) = \mathbb{P}_n g + \int_{\mathbb{R}^d} \exp(-g(x)) dx.$$

ullet \mathcal{P}_s : $\min_{g \in \mathcal{G}(\underline{X})} L_s(g, \mathbb{P}_n)$ where

$$L_s(g, \mathbb{P}_n) = \mathbb{P}_n g + \frac{1}{|\beta|} \int_{\mathbb{R}^d} g(x)^{\beta} dx.$$

Dual problems: \mathcal{P}_0 and \mathcal{P}_s :

• \mathcal{D}_0 : $\max_f \{-\int f(y) \log f(y) dy\}$ subject to $f(y) = \frac{d(\mathbb{P}_n - G)}{f(y)} \quad \text{for some} \quad G \in \mathcal{C}(X)^\circ$

$$f(y) = \frac{d(\mathbb{P}_n - G)}{dy}$$
 for some $G \in \mathcal{G}(\underline{X})^{\circ}$.

• \mathcal{D}_s : $\max_f \int \frac{f(y)^{\alpha}}{\alpha} dy$ subject to

$$f(y) = \frac{d(\mathbb{P}_n - G)}{dy}$$
 for some $G \in \mathcal{G}(\underline{X})^{\circ}$.

Why do these make sense?

• Population version of \mathcal{P}_0 : $\min_{g \in \mathcal{G}} L_0(g, f_0)$ where

$$L_0(g, f_0) = \int \{g(x)f_0(x) + e^{-g(x)}\} dx.$$

Minimizing the integrand pointwise in g = g(x) for fixed $f_0(x)$ yields $f_0(x) - e^{-g(x)} = 0$ if $e^{-g(x)} = f_0(x)$.

• Population version of \mathcal{P}_s : $\min_{g \in \mathcal{G}} L_s(g, f_0)$ where

$$L_s(g, f_0) = \int \{g(x)f_0(x) + \frac{1}{|\beta|}g^{\beta}(x)\}dx.$$

Minimizing the integrand pointwise in g = g(x) for fixed $f_0(x)$ yields $f_0(x) + (\beta/|\beta|)g^{\beta-1}(x) = f_0(x) - g^{\beta-1}(x) = 0$, and hence $g^{1/s} = g^{1/s}(x) = f_0(x)$.

1. Basics for the Rényi divergence estimators:

- (Koenker and Mizera, 2010) If $conv(\underline{X})$ has non-empty interior, then strong duality between \mathcal{P}_s and \mathcal{D}_s holds. The dual optimal optimal solution exists, is unique, and $\widehat{f}_n = \widehat{g}_n^{1/s}$.
- (Koenker and Mizera, 2010) The solution $f=g^{1/s}$ in the population version of the problem when $Q=P_0$ has density $p_0 \in \mathcal{P}_s$ is Fisher-consistent; i.e. $f=p_0$.

2. Off the model: Han & W (2015)

Let

$$\mathcal{Q}_1 \equiv \{Q \text{ on } (\mathbb{R}^d, \mathcal{B}^d) : \int ||x|| dQ(x) < \infty\},$$
 $\mathcal{Q}_0 \equiv \{Q \text{ on } (\mathbb{R}^d, \mathcal{B}^d) : \text{ int}(\text{csupp}(Q)) \neq \emptyset\}.$

- Theorem (Han & W, 2015): If -1/(d+1) < s < 0 and $Q \in \mathcal{Q}_0 \cap \mathcal{Q}_1$, then the primal problem $\mathcal{P}_s(Q)$ has a unique solution $\tilde{g} \in \mathcal{G}$ which satisfies $\tilde{f} = \tilde{g}^{1/s}$ where \tilde{g} is bounded away from 0 and \tilde{f} is a bounded density.
- Theorem (Han & W, 2015): Let d=1. If $\widehat{f}_{n,s}$ denotes the solution to the primal problem \mathcal{P}_s and $\widehat{f}_{n,0}$ denotes the solution to the primal problem \mathcal{P}_0 , then for any $\kappa > 0$, $p \geq 1$,

$$\int (1+|x|)^{\kappa} |\widehat{f}_{n,s}(x) - \widehat{f}_{n,0}(x)|^p dx \to 0 \text{ as } s \nearrow 0.$$

Theorem (Han & W, 2015): Suppose that:

(i)
$$d \ge 1$$
,

(ii)
$$-1/(d+1) < s < 0$$
, and

(iii)
$$Q \in \mathcal{Q}_0 \cap \mathcal{Q}_1$$
.

If $f_{Q,s}$ denotes the (pseudo-true) solution to the primal problem $\mathcal{P}_s(Q)$, then for any $\kappa < r - d = (-1/s) - d$,

$$\int (1+|x|)^{\kappa}|\widehat{f}_{n,s}(x)-f_{Q,s}(x)|dx\to_{a.s.} 0 \text{ as } n\to\infty.$$

- **3. On the model:** Q has density $f \in \mathcal{P}_{s'}$; $f = g^{1/s'}$ for some g convex.
 - Consistency: Suppose that: (i) $d \ge 1$ and -1/d < s < 0 and s'>s if $s\le -1/(d+1)$, s'=s if s>-1/(d+1). Then for any $\kappa < r-d=(-1/s)-d$,

$$\int (1+|x|)^{\kappa}|\widehat{f}_{n,s}(x)-f(x)|dx\to_{a.s.} 0 \text{ as } n\to\infty.$$

Thus $H(\widehat{f}_{n,s},f) \rightarrow_{a.s.} 0$ as well.

• Pointwise limit theory: (paralleling the results of Balabdaoui, Rufibach, and W (2009) for s=0)

Assumptions:

- ho (A1) $g_0 \in \mathcal{G}$ and $f_0 \in \mathcal{P}_s(\mathbb{R})$ with -1/2 < s < 0.
- \triangleright (A2) $f_0(x_0) > 0$.

ightharpoonup (A3) g_0 is locally C^2 in a neighborhood of x_0 with ${g_0}''(x_0)>0$.

Theorem 1. (Pointwise limit theorem; Han & W (2015)) Under assumptions (A1)-(A3), we have

$$\begin{pmatrix}
n^{\frac{2}{5}}(\widehat{g}_{n}(x_{0}) - g_{0}(x_{0})) \\
n^{\frac{1}{5}}(\widehat{g}'_{n}(x_{0}) - g'_{0}(x_{0}))
\end{pmatrix} \rightarrow_{d} \begin{pmatrix}
-\left(\frac{g_{0}^{4}(x_{0})g_{0}^{(2)}(x_{0})}{r^{4}f_{0}(x_{0})^{2}(4)!}\right)^{1/5} H_{2}^{(2)}(0) \\
-\left(\frac{g_{0}^{2}(x_{0})\left[g_{0}^{(2)}(x_{0})\right]^{3}}{r^{2}f_{0}(x_{0})^{3}\left[(4)!\right]^{3}}\right)^{1/5} H_{2}^{(3)}(0)
\end{pmatrix},$$

and ...

... furthermore

$$\begin{pmatrix}
n^{\frac{2}{5}}(\widehat{f}_{n}(x_{0}) - f_{0}(x_{0})) \\
n^{\frac{1}{5}}(\widehat{f}'_{n}(x_{0}) - f'_{0}(x_{0}))
\end{pmatrix} \rightarrow_{d} \begin{pmatrix}
\frac{rf_{0}(x_{0})^{3}g_{0}^{(2)}(x_{0})}{g_{0}(x_{0})(4)!} \\
\frac{r^{3}f_{0}(x_{0})^{4}(g_{0}^{(2)}(x_{0}))^{3}}{g_{0}(x_{0})^{3}[(4)!]^{3}} \\
\frac{r^{3}f_{0}(x_{0})^{4}(g_{0}^{(2)}(x_{0}))^{3}}{g_{0}(x_{0})^{3}[(4)!]^{3}} \\
\end{pmatrix}^{1/5}H_{2}^{(3)}(0)$$

where H_2 is the unique lower envelope of the process Y_2 satisfying

- 1. $H_2(t) \leq Y_2(t)$ for all $t \in \mathbb{R}$;
- 2. $H_k^{(2)}$ is concave;
- 3. $H_2(t) = Y_2(t)$ if the slope of $H_2^{(2)}$ decreases strictly at t.
- 4. $Y_2(t) = \int_0^t W(s)ds t^4$, $t \in \mathbb{R}$ where W is two-sided Brownian motion started at 0.

• Estimation of the mode for d=1.

Theorem 2. (Estimation of the mode) Assume (A1)-(A4) hold. Then

$$n^{1/5}(\hat{m}_n - m_0) \to_d \left(\frac{g_0(m_0)^2(4)!^2}{r^2 f_0(m_0)g_0^{(2)}(m_0)^2}\right)^{1/5} M(H_2^{(2)}), \quad (1)$$

where $\widehat{m}_n = M(\widehat{f}_n), m_0 = M(f_0).$

• What is the price of assuming s < 0 when the truth $f \in \mathcal{P}_0$?

Assume -1/2 < s < 0 and k = 2. Let $f_0 = \exp(\varphi_0)$ be a log-concave density where $\varphi_0 : \mathbb{R} \to \mathbb{R}$ is the underlying concave function. Then f_0 is also s-concave.

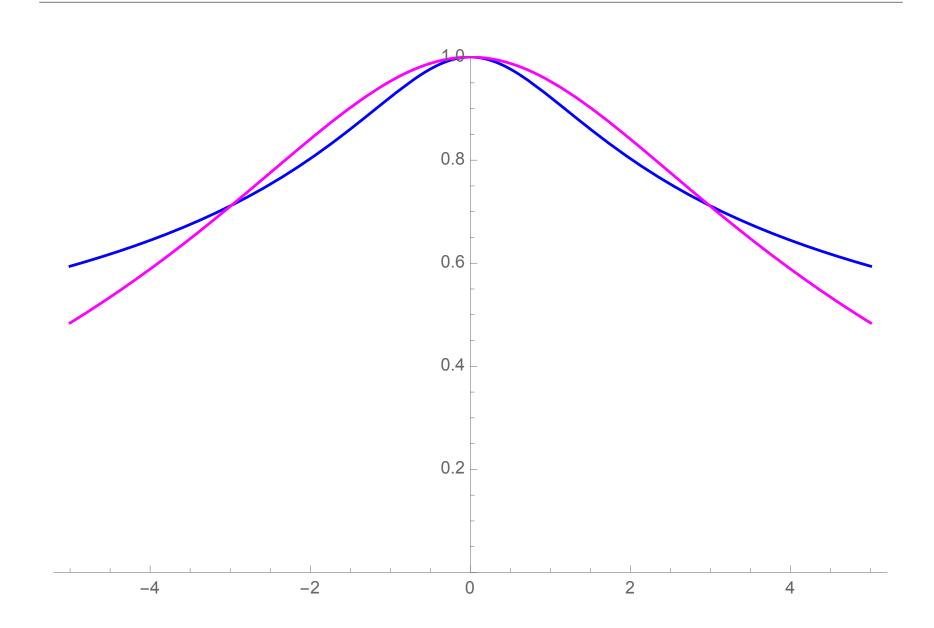
Let $g_s:=f_0^{-1/r}=\exp(-\varphi_0/r)$ be the underlying convex function when f_0 is viewed as an s-concave density. Calculation yields

$$g_s^{(2)}(x_0) = \frac{1}{r^2} g_s(x_0) \left(\varphi_0'(x_0)^2 - r \varphi_0''(x_0) \right).$$

Hence the constant before $H_2^{(2)}(0)$ appearing in the limit distribution for \widehat{f}_n becomes

$$\left(\frac{f_0(x_0)^3\varphi_0'(x_0)^2}{4!r} + \frac{f_0(x_0)^3|\varphi_0''(x_0)|}{4!}\right)^{1/5}.$$

The second term is the constant involved in the limiting distribution when $f_0(x_0)$ is estimated via the log-concave MLE: (2.2), page 1305 in Balabdaoui, Rufibach, & W (2009). The ratio of the two constants (or asymptotic relative efficiency) is shown for f_0 standard normal (blue) and logistic (magenta) in the figure:



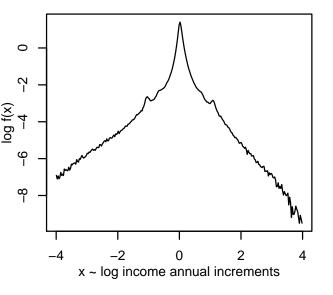
- The first term is non-negative and is the price we pay by estimating a true log-concave density via the Rényi divergence estimator over a larger class of s-concave densities.
- Note that the first term vanishes as $r \to \infty$ (or $s \nearrow 0$).
- Note that the ratio is 1 at the mode of f_0 .
- For estimation of the mode, the ratio of constants is always 1: nothing is lost by enlarging the class from s = 0 to s < 0!

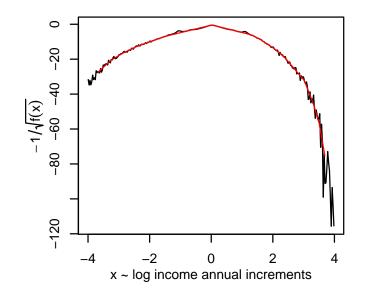
E. Summary: problems and open questions

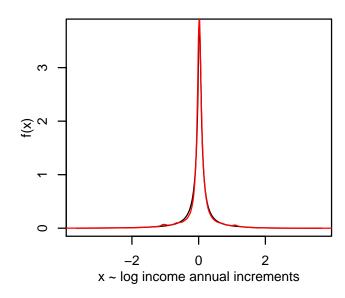
- Global rates of convergence?
- Limiting distribution(s) for d > 1? $(n^r \text{ with } r = 2/(4+d)$?)
- MLE (rate-) inefficient for $d \ge 4$ (or perhaps $d \ge 3$)? How to penalize to get efficient rates?
- Can we go below s = -1/(d+1) with other methods?
- Multivariate classes with nice preservation/closure properties and smoother than log-concave?
- Algorithms for computing $\widehat{f}_n \in \mathcal{P}_s$? (Non-smooth and convex; or non-smooth and non-convex?)
- Related results for convex regression on \mathbb{R}^d : Seijo and Sen, Ann. Statist. (2011).

Guvenen et al (2014)

have estimated models of income dynamics using very large (10 percent) samples of U.S. Social Security records linked to W2 data The density is not log-concave, but an s-concave density with s=-1/2 fits well:







Courtesy Roger Koenker

F. Selected references

- Dümbgen and Rufibach (2009).
- Cule, Samworth, and Stewart (2010)
- Cule and Samworth (2010).
- Dümbgen, Samworth, and Schuhmacher (2011).
- Balabdaoui, Rufibach, and W (2009)
- Seregin & W (2010), Ann. Statist.
- Koenker and Mizera (2010), Ann. Statist.
- Han & W (2016): Ann. Statist. (2016), to appear & arXiv:1505.00379v3.
- Doss & W (2016): Ann. Statist. (2016), to appear & arXiv:1306.1438v2.
- Guntuboyina and Sen (xxxx)

Many thanks!