A Law of the Iterated Logarithm

for Grenander's Estimator

Jon A. Wellner

University of Washington, Seattle

Probability Seminar
October 24, 2016

Based on joint work with:

Lutz Dümbgen and Malcolm Wolff

Outline

- 1: Introduction: classical LIL's.
- 2: Grenander's estimator: the MLE of a decreasing density.
- 3: Chernoff's distribution and tail behavior.
- 4: A LIL for Grenander's estimator.
- 5: Summary; further questions and open problems.

1. Introduction: Classical LIL's

- Setting: $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ i.i.d. random variables

$$
\text { with } \mu=E\left(X_{1}\right)=0, \operatorname{Var}\left(X_{1}\right)=\sigma^{2} .
$$

- $S_{n} \equiv \sum_{i=1}^{n} X_{i}=n \bar{X}_{n}$.
- Then, with $Z \sim N(0,1)$,

$$
\frac{S_{n}}{\sqrt{n}}=\sqrt{n}\left(\bar{X}_{n}-\mu\right) \rightarrow_{d} \sigma Z
$$

Theorem. (Hartman and Wintner (1941)).

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=+\sigma \quad \text { a.s., } \\
& \liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-\sigma \quad \text { a.s.. }
\end{aligned}
$$

Moreover, Strassen (1964) showed that

$$
\frac{S_{n}}{\sqrt{2 n \log \log n}} \rightsquigarrow[-\sigma, \sigma] \text { a.s. } \ldots \text { and } \ldots
$$

with
$\mathbb{S}_{n}(t) \equiv \begin{cases}\frac{S_{k}}{\sqrt{2 n \mathrm{loglog} \mathrm{l}}} & \text { at } t=k / n, \\ \text { linearly interp. } & \text { on } k / n \leq t \leq(k+1) / n, k=0,1, \ldots, n-1,\end{cases}$
we have

$$
\mathbb{S}_{n} \rightsquigarrow \sigma \mathcal{K} \quad \text { a.s. }
$$

where

$$
\mathcal{K} \equiv\left\{f \in C[0,1]: f(t)=\int_{0}^{t} \dot{f}(s) d s, \text { some } \dot{f}, \int_{0}^{1} \dot{f}^{2}(s) d s \leq 1\right\}
$$

Corollary.

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=\limsup _{n \rightarrow \infty} \mathbb{S}_{n}(1)=\sigma \sup _{f \in \mathcal{K}} f(1)=\sigma \cdot 1
$$

where the supremum in the last line is achieved at $f(t)=t$, $0 \leq t \leq 1$.

Connection with exponential bounds:

Suppose that $X_{i} \sim N(0,1)$ for $1 \leq i \leq n$.

- $n^{-1 / 2} S_{n} \sim N(0,1), \sigma=1$, and

$$
P\left(n^{-1 / 2} S_{n}>x\right)=1-\Phi(x) \leq x^{-1} \phi(x)=\frac{1}{\sqrt{2 \pi}} \frac{1}{x} e^{-x^{2} / 2}
$$

- Thus with $b_{n} \equiv(2 \log \log n)^{1 / 2}$, and $\delta>0$,

$$
\begin{aligned}
P & \left(n^{-1 / 2} S_{n}>(1+\delta)(2 \log \log n)^{1 / 2}\right) \\
& \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{(1+\delta) b_{n}} \exp \left(-(1+\delta)^{2} \log \log n\right) \\
& \equiv \frac{C}{b_{n}}(\log n)^{-(1+\delta)^{2}} \\
& \sim \frac{C}{b_{n_{k}}}(k \log \alpha)^{-(1+\delta)^{2}}, \quad n_{k} \equiv\left\lfloor\alpha^{k}\right\rfloor, \alpha>1
\end{aligned}
$$

- Therefore, by the Borell-Cantelli Iemma,

$$
P\left(n_{k}^{-1 / 2} S_{n_{k}}>(1+\delta)\left(2 \log \log n_{k}\right)^{1 / 2} \text { i.o. }\right)=0 .
$$

2. Grenander's estimator

- $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. with density f on $\mathbb{R}^{+} \equiv[0, \infty)$.
- Then Grenander's estimator \hat{f}_{n} of f is the Maximum Likelihood Estimator of f_{0} over the class of decreasing densities on \mathbb{R}^{+}: if

$$
L_{n}(g) \equiv n^{-1} \sum_{i=1}^{n} \log \left\{g\left(X_{i}\right)\right\}=\mathbb{P}_{n}(\log g)
$$

then \widehat{f}_{n} satisfies
$L_{n}\left(\widehat{f}_{n}\right)=\max \left\{L_{n}(g): g\right.$ a monotone decreasing density on $\left.\mathbb{R}^{+}\right\}$.

Grenander (1956) showed that the maximum likelihood estimator \widehat{f}_{n} of f is the (left-) derivative of the least concave majorant of the empirical distribution function \mathbb{F}_{n}
$\widehat{f}_{n}=$ left derivative of the least concave majorant of \mathbb{F}_{n}, the empirical distribution of $\quad X_{1}, \ldots, X_{n}$ i.i.d. F

Grenander Estimator and $\operatorname{Exp}(1)$ density, $n=10$

Grenander Estimator and $\operatorname{Exp}(1)$ density, $n=40$

How to study \widehat{f}_{n} ? Groeneboom's switching relation! Switching for \widehat{f}_{n} : Define

$$
\begin{aligned}
\widehat{s}_{n}(a) & \equiv \operatorname{argmax}_{s \geq 0}\left\{\mathbb{F}_{n}(s)-a s\right\}, \quad a>0 \\
& \equiv \sup \left\{s \geq 0: \mathbb{F}_{n}(s)-a s=\sup _{z \geq 0}\left(\mathbb{F}_{n}(z)-a z\right)\right\}
\end{aligned}
$$

Then for each fixed $t \in(0, \infty)$ and $a>0$

$$
\left\{\widehat{f}_{n}(t)<a\right\}=\left\{\widehat{s}_{n}(a)<t\right\}
$$

Theorem. (Prakasa Rao (1969), Groeneboom (1985)): If $f(x)>0, f^{\prime}(x)<0$, and f^{\prime} is continuous at x, then with $c \equiv\left(4 f(x) /\left(f^{\prime}(x)\right)^{2}\right)^{1 / 3}$ and $C \equiv\left(2^{-1} f(x)\left|f^{\prime}(x)\right|\right)^{1 / 3}$,

$$
\begin{aligned}
\mathbb{S}_{n}(x, t) & \equiv n^{1 / 3}\left(\widehat{f}_{n}\left(x+n^{-1 / 3} c t\right)-f(x)\right) \\
& \rightarrow_{d} C \cdot \mathbb{S}(t)
\end{aligned}
$$

where
W is a standard two-sided Brownian motion starting at 0 , and
$\mathbb{S} \equiv$ the left - derivative of the least concave majorant \mathbb{C} of $W(t)-t^{2}$.

In particular, with $t=0$,

$$
n^{1 / 3}\left(\widehat{f}_{n}(x)-f(x)\right) \rightarrow_{d} C \mathbb{S}(0) \stackrel{d}{=} C 2 Z
$$

where the distribution of $Z \equiv \operatorname{argmax}_{h}\left\{W(h)-h^{2}\right\}$ is Chernoff's distribution.

Proof: By the switching relation $\left\{\widehat{f}_{n}(t)<a\right\}=\left\{\widehat{s}_{n}(a)<t\right\}$:

$$
\begin{aligned}
& P\left(n^{1 / 3}\left(\hat{f}_{n}\left(x_{0}+n^{-1 / 3} t\right)-f\left(x_{0}\right)\right)<y\right) \\
& \quad=P\left(\widehat{f}_{n}\left(x_{0}+n^{-1 / 3} t\right)<f\left(x_{0}\right)+y n^{-1 / 3}\right) \\
& \quad=P\left(\widehat{s}_{n}\left(f\left(x_{0}\right)+y n^{-1 / 3}\right)<x_{0}+n^{-1 / 3} t\right) \\
& \quad=P\left(\operatorname{argmax}_{v}\left\{\mathbb{F}_{n}(v)-\left(f\left(x_{0}\right)+n^{-1 / 3} y\right) v\right\}<x_{0}+n^{-1 / 3} t\right)
\end{aligned}
$$

Now we change variables $v=x_{0}+n^{-1 / 3} h$ in the argument of \mathbb{F}_{n}, center and scale to find: the right side in the last display equals

$$
\begin{aligned}
& P\left(\operatorname{argmax}_{h}\left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\left(f\left(x_{0}\right)+n^{-1 / 3} y\right)\left(x_{0}+n^{-1 / 3} h\right)\right\}<t\right) \\
& =P\left(\operatorname { a r g m a x } _ { h } \left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\mathbb{F}_{n}\left(x_{0}\right)\right.\right. \\
& \quad-\left(F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)\right) \\
& \left.\left.\quad+F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)-f\left(x_{0}\right) n^{-1 / 3} h-n^{-2 / 3} y h\right\}<t\right) \\
& \text { Let } \mathbb{G}_{n}(t) \equiv n^{-1} \sum_{i=1}^{n} 1\left\{\xi_{i} \leq t\right\}, \mathbb{U}_{n}(t) \equiv \sqrt{n}\left(\mathbb{G}_{n}(t)-t\right) \text { with } \xi_{i}
\end{aligned}
$$

i.i.d. Uniform $[0,1]$. Thus $\mathbb{F}_{n} \stackrel{d}{=} \mathbb{G}_{n}(F)$. The the stochastic term in (1) satisfies, with $W \equiv$ two-sided standard Brownian motion,

$$
\begin{aligned}
& n^{2 / 3}\left\{\mathbb{F}_{n}\left(x_{0}+n^{-1 / 3} h\right)-\mathbb{F}_{n}\left(x_{0}\right)-\left(F\left(x_{0}+n^{-1 / 3} h\right)-F\left(x_{0}\right)\right)\right\} \\
& \quad \stackrel{d}{=} n^{2 / 3-1 / 2}\left\{\mathbb{U}_{n}\left(F\left(x_{0}+n^{-1 / 3} h\right)\right)-\mathbb{U}_{n}\left(F\left(x_{0}\right)\right)\right\} \\
& =n^{1 / 6}\left\{\mathbb{U}\left(F\left(x_{0}+n^{-1 / 3} h\right)\right)-\mathbb{U}\left(F\left(x_{0}\right)\right)\right\}+o_{p}(1) \quad \text { by KMT } \\
& \stackrel{d}{=} n^{1 / 6} W\left(f\left(x_{0}\right) n^{-1 / 3} h\right)+o_{p}(1) \\
& \stackrel{d}{=} \sqrt{f\left(x_{0}\right)} W(h)+o_{p}(1)
\end{aligned}
$$

where W is a standard two-sided Brownian motion process starting from 0 . On the other hand, with $\delta_{n} \equiv n^{-1 / 3}$,

$$
\begin{gathered}
n^{2 / 3}\left(F\left(x_{0}+n^{-1 / 3}\right)-F\left(x_{0}\right)-f\left(x_{0}\right) n^{-1 / 3} h\right) \\
=\delta_{n}^{-2}\left(F\left(x_{0}+\delta_{n} h\right)-F\left(x_{0}\right)-f\left(x_{0}\right) \delta_{n} h\right) \\
\rightarrow-b|h|^{2} \quad \text { with } \quad b=\left|f^{\prime}\left(x_{0}\right)\right| / 2
\end{gathered}
$$

by our hypotheses, while $n^{2 / 3} n^{-1 / 3} n^{-1 / 3} h=n^{0} h=h$.

Thus it follows that the last probability above converges to $P\left(\operatorname{argmax}_{h}\left\{a W(h)-b|h|^{2}-y h\right\}<t\right)$

$$
=\left\{\begin{array}{l}
P\left(\mathbb{S}_{a, b}(t)<y\right) \text { by switching again } \\
P\left((a / b)^{(2 / 3)} \operatorname{argmax}_{h}\left\{W(h)-h^{2}\right\}-(2 b)^{-1} y<t\right), \text { by (2) below }
\end{array}\right.
$$

where

$$
\mathbb{S}_{a, b}(t)=\text { slope at } t \text { of the least concave majorant of }
$$

$$
\begin{aligned}
& a W(h)-b h^{2} \equiv \sqrt{f_{0}\left(x_{0}\right)} W(h)-\left|f_{0}^{\prime}\left(x_{0}\right)\right||h|^{2} / 2 \\
& \stackrel{d}{=}\left|2^{-1} f_{0}\left(x_{0}\right) f_{0}^{\prime}\left(x_{0}\right)\right| \mathbb{S}\left(t / c_{0}\right) .
\end{aligned}
$$

and where we used

$$
\begin{equation*}
\operatorname{argmax}\left\{a W(h)-b h^{2}\right\} \stackrel{d}{=}\left(\frac{a}{b}\right)^{2 / 3} \operatorname{argmax}\left\{W(h)-h^{2}\right\}-\frac{1}{2 b} y . \tag{2}
\end{equation*}
$$

First appearance of Z :
Chernoff (1964), Estimation of the mode:

- X_{1}, \ldots, X_{n} i.i.d. with density f and distribution function F.
- Fix $a>0 ; \widehat{x}_{a} \equiv$ center of the interval of length $2 a$ containing the most observations.
- $x_{a} \equiv$ center of the interval of length $2 a$ maximizing $F(x+a)-F(x-a)$.
- Chernoff shows:
$\begin{aligned} \triangleright & n^{1 / 3}\left(\widehat{x}_{a}-x_{a}\right) \rightarrow_{d}\left(\frac{8 f\left(x_{a}+a\right)}{c}\right)^{1 / 3} Z \\ & \text { where } c \equiv f^{\prime}\left(x_{a}-a\right)-f^{\prime}\left(x_{a}+a\right) .\end{aligned}$
$\triangleright f_{Z}(z)=\frac{1}{2} g(z) g(-z)$ where

$$
g(t) \equiv \lim _{x \nearrow t^{2}} \frac{\partial}{\partial x} u(t, x)=\lim _{x \nearrow t^{2}} u_{x}(t, x)
$$

$\triangleright u(t, x) \equiv P^{(t, x)}\left(W(z)>z^{2}, \quad\right.$ for some $\left.z \geq t\right)$ is a solution to the backward heat equation

$$
\frac{\partial}{\partial t} u(t, x)=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

under the boundary conditions

$$
u\left(t, t^{2}\right)=\lim _{x \nearrow t^{2}} u(t, x)=1, \quad \lim _{x \rightarrow-\infty} u(t, x)=0
$$

Groeneboom (1989) showed that g has Fourier transform given by

$$
\begin{equation*}
\widehat{g}(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda s} g(s) d s=\frac{2^{1 / 3}}{A i\left(i(2)^{-1 / 3} \lambda\right)} \tag{3}
\end{equation*}
$$

Groeneboom (1989) also showed that

$$
\begin{aligned}
& f_{Z}(z) \sim \frac{1}{2 A i^{\prime}\left(a_{1}\right)} 4^{4 / 3} z \exp \left(-\frac{2}{3} z^{3}+3^{1 / 3} a_{1} z\right), \\
& P(Z>z) \sim \frac{1}{2 A i^{\prime}\left(a_{1}\right)} 4^{4 / 3} \frac{1}{z} \exp \left(-\frac{2}{3} z^{3}\right) \quad \text { as } z \rightarrow \infty
\end{aligned}
$$

where $a_{1} \approx-2.3381 \ldots$ is the largest zero of the Airy function $A i$ on the negative real axis and $A i^{\prime}\left(a_{1}\right) \approx 0.7022$.

4. A LIL for Grenander's estimator

The tail behavior of Z given in the last display leads naturally to the following conjecture concerning a LIL for the Grenander estimator:

$$
\limsup _{n \rightarrow \infty} \frac{n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right)}{((3 / 2) \log \log n)^{1 / 3}}=\text { a.s. }\left|\frac{1}{2} f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right|^{1 / 3} \cdot 2
$$

note that if $\delta>0$ and $n_{k} \equiv\left\lfloor\alpha^{k}\right\rfloor$ with $\alpha>1$, then

$$
\begin{aligned}
& \exp \left(-\frac{2}{3}\left[(1+\delta)\left((3 / 2) \log \log n_{k}\right)^{1 / 3}\right]^{3}\right) \\
& =\exp \left(-(1+\delta)^{3} \log \log n_{k}\right) \\
& \left.=\left(\log n_{k}\right)^{-(1+\delta)^{3}} \sim(k \log \alpha)^{-(1+\delta)^{3}}\right)
\end{aligned}
$$

Equivalently

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{n^{1 / 3}\left(\widehat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right)}{(2 \log \log n)^{1 / 3}} & =\text { a.s. }\left|\frac{1}{2} f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right|^{1 / 3} \cdot 2 \cdot \frac{1}{2^{1 / 3}} \cdot\left(\frac{3}{2}\right)^{1 / 3} \\
& =\text { a.s. }\left|\frac{1}{2} f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right|^{1 / 3} \cdot 2 \cdot\left(\frac{3}{4}\right)^{1 / 3}
\end{aligned}
$$

How to prove this conjecture?

- Step 1: Switching!
- Step 2: localize; use a functional LIL for the local empirical process: Deheuvels and Mason (1994); Mason (2004).
- Step 3: Find the set of limit points via 1 and 2; study these via properties of the natural Strassen limit sets analogous to the distributional equivalents for Brownian motion.
- Step 4: Solve the resulting variational problem over the set of limit points expressed in terms of the Strassen limit points.

Step 1: Switching. Let $r_{n} \equiv\left(n^{-1} 2 \log \log n\right)^{1 / 3}$.
We want to find a number y_{0} such that

$$
P\left(r_{n}^{-1}\left(\widehat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right)>y \quad \text { i.o. }\right)= \begin{cases}0, & \text { if } y>y_{0} \\ 1, & \text { if } y<y_{0}\end{cases}
$$

Now $\left\{\hat{f}_{n}\left(x_{0}\right)>a\right\}=\left\{\hat{s}_{n}(a)>x_{0}\right\}$, so

$$
\begin{equation*}
\left\{\widehat{f}_{n}\left(x_{0}\right)>f\left(x_{0}\right)+r_{n} y \text { i.o. }\right\}=\left\{\widehat{s}_{n}\left(f\left(x_{0}\right)+r_{n} y\right)>x_{0} \text { i.o. }\right\} \tag{4}
\end{equation*}
$$

By letting $s=x_{0}+r_{n} h$ in the definition of \hat{s}_{n} we see that

$$
\begin{aligned}
& \widehat{s}_{n}\left(f\left(x_{0}\right)+r_{n} y\right)-x_{0} \\
& \quad=r_{n} \operatorname{argmax}_{h}\left\{\mathbb{F}_{n}\left(x_{0}+r_{n} h\right)-f\left(x_{0}+r_{n} y\right)\left(x_{0}+r_{n} h\right)\right\}
\end{aligned}
$$

and hence the right side of (4) can be rewritten as $\left\{\widehat{h}_{n}>0\right.$ i.o. $\}$ where

$$
\begin{align*}
\hat{h}_{n} & =\operatorname{argmax}_{h}\left\{\mathbb{F}_{n}\left(x_{0}+r_{n} h\right)-\left(f\left(x_{0}\right)+r_{n} y\right)\left(x_{0}+r_{n} h\right)\right\} \\
& =\operatorname{argmax}_{h}\left\{r_{n}^{-2}\left[\mathbb{F}_{n}\left(x_{0}+r_{n} h\right)-\mathbb{F}_{n}\left(x_{0}\right)-\left(F\left(x_{0}+r_{n} h\right)-F\left(x_{0}\right)\right)\right]\right. \\
& \left.\quad+r_{n}^{-2}\left[F\left(x_{0}+r_{n} h\right)-F\left(x_{0}\right)-f\left(x_{0}\right) r_{n} h\right]-y h\right\} \tag{5}
\end{align*}
$$

The deterministic (drift) term on the right side converges to $f^{\prime}\left(x_{0}\right) h^{2} / 2$ as $n \rightarrow \infty$.

Step 2: LIL for the local empirical process. By a theorem of Mason (1988), the sequence of functions
$\left\{r_{n}^{-2}\left[\mathbb{F}_{n}\left(x_{0}+r_{n} h\right)-\mathbb{F}_{n}\left(x_{0}\right)-\left(F\left(x_{0}+r_{n} h\right)-F\left(x_{0}\right)\right): h \in R\right\}\right.$
is almost surely relatively compact with limit set

$$
\left\{g\left(f\left(x_{0}\right) \cdot\right): g \in \mathcal{G}\right\}
$$

where the two-sided Strassen limit set \mathcal{G} is given by

$$
\mathcal{G}=\left\{g: \mathbb{R} \rightarrow \mathbb{R} \mid g(t)=\int_{0}^{t} \dot{g}(s) d s, t \in \mathbb{R}, \int_{-\infty}^{\infty} \dot{g}^{2}(s) d s \leq 1\right\}
$$

Proof: Reduce to the local empirical process of ξ_{1}, \ldots, ξ_{n} i.i.d. Uniform $(0,1)$. As in Mason (1988), take $k_{n} \equiv n r_{n}=$ $n^{2 / 3}(2 \log \log n)^{1 / 3} \nearrow \infty$ and $n^{-1} k_{n}=r_{n} \searrow 0$.

Thus the processes involved in the argmax in (5) are almost surely relatively compact with limit set

$$
\begin{equation*}
\left\{g\left(f\left(x_{0}\right) h\right)+2^{-1} f^{\prime}\left(x_{0}\right) h^{2}-y h: \quad g \in \mathcal{G}\right\} \tag{6}
\end{equation*}
$$

Step 3: Strassen set equivalences.
Lemma 1. Let $c>0$ and $d \in R$. then

$$
\{t \mapsto g(c t+d)-g(d): \quad g \in \mathcal{G}\}=\sqrt{c} \mathcal{G}
$$

[This is analogous to $W(c t+d)-W(d) \stackrel{d}{=} \sqrt{c} W(t)$.]

Lemma 2. Let α, β be positive constants and $\gamma \in R$. Then

$$
\begin{aligned}
& \left\{\operatorname{argmax}\left\{\alpha g(h)-\beta h^{2}-\gamma h\right\}: \quad g \in \mathcal{G}\right\} \\
& \quad=\left\{(\alpha / \beta)^{2 / 3} \operatorname{argmax}_{h}\left\{g(h)-h^{2}\right\}-\gamma /(2 \beta): g \in \mathcal{G}\right\} .
\end{aligned}
$$

[This is analogous to
$\left.\left.\operatorname{argmax}\left(\alpha W(h)-\beta h^{2}-\gamma h\right)\right) \stackrel{d}{=}(\alpha / \beta)^{2 / 3}\left\{W(h)-h^{2}\right)\right\}-\gamma /(2 \beta)$.]
By Lemmas 1 and 2, with $a=\sqrt{f\left(x_{0}\right)}, b=\left|f^{\prime}\left(x_{0}\right)\right| / 2$,

$$
\begin{aligned}
& \left\{g\left(f\left(x_{0}\right) h\right)+2^{-1} f^{\prime}\left(x_{0}\right) h^{2}-y h: \quad g \in \mathcal{G}\right\} \\
& =\left\{a g(h)-b h^{2}-y h: \quad g \in \mathcal{G}\right\} \\
& =\left\{(a / b)^{2 / 3} \operatorname{argmax}\left\{g(h)-h^{2}\right\}-y /(2 b): \quad g \in \mathcal{G}\right\}
\end{aligned}
$$

Hence with $T_{g} \equiv \operatorname{argmax}_{h}\left\{g(h)-h^{2}\right\}$,

$$
\begin{aligned}
&\left\{\widehat{h}_{n}>0 \text { i.o. }\right\} \stackrel{\text { a.s. }}{=} \\
&=\left\{\left(\frac{a}{b}\right)^{2 / 3} \sup _{g \in \mathcal{G}} T_{g}>\frac{y}{2 b}\right\} \\
&=\left\{2 b\left(\frac{a}{b}\right)^{2 / 3} \sup _{g \in \mathcal{G}} T_{g}>y\right\} \\
&=\emptyset
\end{aligned}
$$

if

$$
y>y_{0} \equiv 2 b(a / b)^{2 / 3} \sup _{g \in \mathcal{G}} T_{g}=\left|2^{-1} f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)\right|^{1 / 3} 2 \sup _{g \in \mathcal{G}} T_{g}
$$

It remains only to show that

$$
\sup _{g \in \mathcal{G}} T_{g}=(3 / 4)^{1 / 3} \approx 0.90856 \ldots
$$

This follows from Lemma 3:

Lemma 3. Let t_{0} be an arbitrary positive number and let $\dot{g} \in$ $L_{1}\left(\left[0, t_{0}\right]\right)$ be an arbitrary function satisfying

$$
\int_{0}^{t_{0}} \dot{g}(s) d s-t_{0}^{2} \geq \int_{0}^{t} \dot{g}(s) d s-t^{2} \quad \text { for } \quad 0 \leq t \leq t_{0}
$$

Then, with $\dot{g}_{0}(u) \equiv 2 u, 0 \leq t \leq u$,

$$
\int_{0}^{t_{0}} \dot{g}(u)^{2} d u \geq \int_{0}^{t_{0}} \dot{g}_{0}(u)^{2} d u=\int_{0}^{t_{0}}(2 u)^{2} d u=\frac{4 t_{0}^{3}}{3}
$$

Intuition: A few pictures and trial functions \dot{g} quickly lead to

$$
\dot{g}_{0}(s) \equiv\left\{\begin{array}{l}
2 s, \quad 0 \leq s \leq t_{0} \\
0, \quad t_{0}<s<\infty \\
0, \quad t<0
\end{array}\right.
$$

For this \dot{g}_{0} we have

$$
g_{0}(t)=t^{2} 1_{\left[0, t_{0}\right]}(t)+t_{0}^{2} 1_{\left(t_{0}, \infty\right)}(t)+0 \cdot 1_{(-\infty, 0)}(t)
$$

Note that $\int_{-\infty}^{\infty} \dot{g}_{0}^{2}(s) d s=\int_{0}^{t_{0}}(2 s)^{2} d s=4 t_{0}^{3} / 3$. and that

$$
g_{0}(t)-t^{2}= \begin{cases}0, & t \leq t_{0} \\ t_{0}^{2}-t^{2}, & t>t_{0}\end{cases}
$$

Thus $\operatorname{argmax}\left(g_{0}(t)-t^{2}\right)=t_{0}$ while $\sup _{t \geq 0}\left(g_{0}(t)-t^{2}\right)=0$ is achieved for all $0 \leq t \leq t_{0}$. To force $g_{0} \in \mathcal{G}$ we simply require that $\int_{0}^{t_{0}} \dot{g}_{0}^{2}(s) d s=1$ and this yields $4 t_{0}^{3} / 3=1$ or $t_{0}=(3 / 4)^{1 / 3}$.

Proof.

6. Open questions and further problems:

- For the mode estimator $M\left(\widehat{f}_{n}\right)$ of a log-concave density with mode $m \equiv M(f)$ and $f^{\prime \prime}(m)<0$, we know that

$$
n^{1 / 5}\left(M\left(\widehat{f_{n}}\right)-M(f)\right) \rightarrow_{d} C_{2} M\left(H^{(2)}\right)
$$

where $H^{(2)}$ is the convex function given by the second derivative of the "invelope process"

$$
H \quad \text { of } Y(t) \equiv t^{4}+\int_{0}^{t} W(s) d s
$$

Do we have a LIL for $M\left(\widehat{f}_{n}\right)$:

$$
\limsup _{n \rightarrow \infty} \frac{n^{1 / 5}\left(M\left(\widehat{f}_{n}\right)-M(f)\right)}{(2 \log \log n)^{1 / 5}}=\text { a.s. } \widetilde{C}_{2}<\infty ?
$$

- With definitions as in the last problem, do we have

$$
P\left(M\left(H^{(2)}\right) \geq t\right) \leq K_{1} \exp \left(-K_{2} t^{5}\right) \text { for all } t \geq 0
$$

for some $K_{1}, K_{2}<\infty$? An answer to the previous problem would start to give information about K_{2} !

- Are the touch points of H and Y isolated? (See Groeneboom, Jongbloed, \& W (2001), Groeneboom and Jongbloed (2015), page 320.)
- Balabdaoui and W (2014) show that Chernoff's distribution is log-concave. Is it strongly log-concave?
- Is there a Berry-Esseen type result for Grenander's estimator? That is, for what sequences $r_{n} \rightarrow \infty$ do we have

$$
\sup _{t \in \mathbb{R}}\left|P\left(n^{1 / 3}\left(\widehat{f}_{n}(x)-f(x)\right) / C \leq t\right)-P(2 Z \leq t)\right| \leq \frac{K}{r_{n}}
$$

for some K finite.

References:

- Balabdaoui, F. and Wellner, J. A. (2014). Chernoff's density is logconcave. Bernoulli 20, 231-244.
- Balabdaoui, F., Rufibach, K., and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37, 1299-1331.
- Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16, 31-41.
- Dümbgen, L., Wellner, J.A., and Wolff, M. (2016). A law of the iterated logarithm for Grenander's estimator. Stoch. Proc. Applic. xx, yy-zz. To appear. arXiv:1502.00320v1.
- Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Prob. Theor. Rel. Fields 81, 79-109.
- Groeneboom, P., Jongbloed, G., and Wellner, J.A. (2001). A canonical process for estimation of convex functions: the "invelope" of integrated Brownian motion $+t^{4}$. Ann. Statist. 29, 1620-1652.
- Mason, D. (2004). A uniform functional law of the logarithm for the local empirical process. Ann. Prob. 32, 1891-1418.
- Mason, D. (2004). A uniform functional law of the logarithm for the local empirical process. Ann. Prob. 32, 1891-1418.

