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1. Introduction: Classical LIL'’s

e Setting: X4, Xo,...,Xp,... i.i.d. random variables
with = E(X1) =0, Var(X1) = o2.
e Then, with Z ~ N(0,1),
Sn

\/—ﬁ:\/ﬁ(yn—ﬂ) —q0Z

Theorem. (Hartman and Wintner (1941)).

lim sup Sn 4o a.s
= to0 .S.,
n—oo 1/2nloglogn

. Sn
lim inf = —0 a.s..
n—oo ,/2nloglogn
Moreover, Strassen (1964) showed that
Sn

v2nloglogn

~ [—o,0] a.s....and...
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with

Sy, _
at t = k/n,
Sn(t) = \_/inoglqgn /m
linearly interp. on k/n<t<(k+1)/n, k=0,1,...,n—1,

we have

where

K = {fe Cl0,1] : f(t) =/Otf(s)ds, some #, /01 F2(s)ds < 1}.

Corollary.

S
lim sup - = limsupSn(l) =osup f(1) =o0c-1
n—oo +/2nloglogn n—00 fex

where the supremum in the last line is achieved at f(t) = ¢,
0<t<1.
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Connection with exponential bounds:
Suppose that X; ~ N(0,1) for 1 <i<n.
e n1/25, ~ N(0,1), 0 =1, and

P (n_l/QSn > x> =1—-d(z) <z lo(z) =

e Thus with b, = (2loglogn)1/2, and § > 0,
P(n_1/2Sn > (14 5)(2Iog|ogn)1/2)

1 1
o (LT 8)b exp(—(1 + §)?loglogn)

g(|ogn)_(1+5)2
bn

<

C
~ b—(kloga)_(1+5>2, n. = ¥, a> 1.

ng

e [ herefore, by the Borell-Cantelli lemma,
P(nlzl/zsnk > (1 + 8)(2loglogn;)1/? i.0.) = 0.
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2. GQrenander’s estimator

e X1,Xo,...,Xp are i.i.d. with density f on RT = [0, x0).

e T hen Grenander’'s estimator fn of f is the
Maximum Likelihood Estimator of fy over the class of
decreasing densities on RT: if

Ln(g) =n1 Y log{g(X;)} = Pn(logg)
1 =1

then f,, satisfies

Ln(fn) = max{Ly(g) : g a monotone decreasing density on R"‘}.
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Grenander (1956) showed that the maximum likelihood estimator
fn of f is the (left-) derivative of the least concave majorant of
the empirical distribution function Fy,

fn = left derivative of the least concave majorant of Fy,
the empirical distribution of Xq,...,X, i.i.d. F
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T 2 3

LLeast Concave Majorant and Empirical n = 10
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T 2 3 4

Grenander Estimator and Exp(1) density, n = 10
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Least Concave Majorant and Empirical n = 40

UW Probability Seminar, October 24, 2016 1.10



0.8
0.6

0.2}

0.07 ‘ : ‘ ! ‘ L ! ! ! \ ! ‘ ! ‘ ! ‘ ‘ - —
0 1 2 3 4

Grenander Estimator and Exp(1) density, n = 40
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How to study fn? Groeneboom’s switching relation!
Switching for f,: Define

sn(a) = argmaxg>o{Fn(s) —as}, a>0

= sup{s>0: Fn(s) —as =sup(Fp(z) —az)}.
z>0

Then for each fixed ¢t € (0,00) and a > 0

1Fn(®) <af = {3n(a) <1}
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Theorem. (Prakasa Rao (1969), Groeneboom (1985)): If
f(z) > 0, fl(x) < 0, and f’ is continuous at z, then with

c= (4f(@)/(f'(@)?)Y3 and C = 271 (@) | ()3,

Sp(x,t) = nl/3 (fn(a: + n_1/3ct) — f(:z:))
—q C-S(t)

where

W is a standard two-sided Brownian motion starting at O,

and

S = the left - derivative of the least concave majorant C
of W (t) — 2.
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In particular, with t = 0O,

nt/3 (fu(@) = £(@)) =4 CS(0) < C22

where the distribution of Z = argmax,{W(h) — h?} is
Chernoff's distribution .

Proof: By the switching relation {fn(t) < a} = {5n(a) < t}:

P(nY3(fu(wo +n~1/3t) — f(x0)) < v)
= P(fulzo +n"Y31) < f(x0) + yn~1/3),
PGn(f(z0) +yn Y/3) < zg +n"1/3t)
P(argmax, {Fn(v) — (f(z0) +n~3y)v} < g +n"1/3¢)
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Now we change variables v = zg+n~"1/3h in the argument of F,,
center and scale to find: the right side in the last display equals

P(argmax{Fn(zo + n"1/3h) — (f(z0) + n 1 3y) (2o + n~/3R)} < )
= P (arg max{Fn(xg + n_1/3h) — Fn(xzg)

— (F(xg +n"Y3h) — F(20)) (1)
+ Fzo+n~1/3h) — F(xg) — f(zo)n 1/3h —n~2/3yh} < t).

Let Gp(t) = n~ 1! > 1{g < t}, Un(t) = vn(Gn(t) —t) with &

i.i.d. Uniform[O,1]. Thus Fy, 4 Gn(F'). The the stochastic term
in (1) satisfies, with W = two-sided standard Brownian motion,
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n2/3 {Fn(a:o + n_1/3h) — Fn(zo) — (F (20 + n_1/3h) — F(CEO))}

g n2/3_1/2 {Un(F(xO +n_1/3h)) —Un(F(37O))}

— nl/6 {U(F(qyo —|—n_1/3h)) —U(F(wo))} + op(1) by KM'T
4 n1/6W(f(xo)n_1/3h) + op(1)

d

V [ (@)W (h) 4 0p(1)

where W is a standard two-sided Brownian motion process
starting from 0. On the other hand, with &, = n—1/3,

n?/3 (F(zg 4+ n~13) — F(xo) — f(zo)n~1/3h)

= 6, %(F(x0 =+ 6nh) — F(20) — f(20)dnh)
—  —b|h|? with b= |f"(zg)|/2

by our hypotheses, while n2/3n=1/3p,=1/3p = nOp = .
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Thus it follows that the last probability above converges to

P (argmaxh {aW(h} — blh|? — yh} < t)
[ P(Sgp(t) <y) by switching again
{ P ((a/b)<2/3>argmaxh{W(h) — K2} —(2b) 1y < t) by (2) below

where

Sa,p(t) = slope at t of the least concave majorant of
aW (h) = bh? = \/ fo(z0)W (h) — | f (o) |IR|?/2
27 fo(20) £ (20)IS(t/co).

and where we used

d

argmax{aW (h) — bh2} 4 (%) 2/3 argmax{W(h) — h2} — 2_1by (2)
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First appearance of Z:
Chernoff (1964), Estimation of the mode:

e Xq,...,Xp i.i.d. with density f and distribution function F'.

e FiXx a > 0; o = center of the interval of length 2a containing
the most observations.

e x4, = center of the interval of length 2a maximizing
F(r+a)— F(x —a).
e Chernoff shows:
1 3
n1/3(zq — z0) —y <8f(wa+a)) /
where c= f’(a:a —a) — fi(zq + a)
fz(z) = %g(z)g(—z) where

o
g(t) = Ilm —u(t,z) = Ilm ug(t, ),
x /'t2 0x x S't2
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u(t,z) = PGE(W(2) > 22, for some z > t) is a solution
to the backward heat equation

3, 1 92
. t) — T <A~ 5 t)
8tu( 2 28x2u( 2
under the boundary conditions
w(t,t?) = lim u(t,z) =1, lim wu(t,z) = 0.
a:/‘t2 T—r—00O
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Groeneboom (1989) showed that g has Fourier transform given
by
oo . 21/3
a(\ :/ et g(s)ds = :
G = e als) Ai(i(2)~1/3))

Groeneboom (1989) also showed that

(3)

fr(2) ~ 1 44/3 » exp (—%z?’ + 31/3a1z> :

2Ai (aq)
1 1 2
P(Z > z) ~ : 44/3~exp (——z3> as z — oo
2Ai1 (aq) z 3

where a1 =~ —2.3381... is the largest zero of the Airy function A:
on the negative real axis and Ai'(a1) ~ 0.7022.
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4. A LIL for Grenander’s estimator

The tail behavior of Z given in the last display leads naturally
to the following conjecture concerning a LIL for the Grenander
estimator:

n1/3(fu(zo) — f(zg)) _

-—a.s.

| L, e U3
2P~ (3/2)loglogn) /3 5f<x0)f(w0)| 2

note that if 6 > 0 and n; = |&*| with a > 1, then
exp (—Z1(1 + 8)((3/2)loglogny) /313
= exp (—(1 + 5)3Ioglognk)
— (logn,)~(1H? o (k|oga)—(1+5>3> |

Equivalently
. nl/3(fn(zo) — f(z0)) 1 / 1/3 1 3\1/3
hgw_)sogp (2loglogn)1/3 S ‘Ef(m)f (x0)| 2 21/3 (5)

1 1/3 3\1/3
=as. | f@o)f @) 2+ (3) .
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How to prove this conjecture?

e Step 1: Switching!

e Step 2: localize; use a functional LIL for the local empirical
process: Deheuvels and Mason (1994); Mason (2004).

e Step 3: Find the set of limit points via 1 and 2; study these
via properties of the natural Strassen limit sets analogous to
the distributional equivalents for Brownian motion.

e Step 4: Solve the resulting variational problem over the set
of limit points expressed in terms of the Strassen limit points.
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Step 1: Switching. Let r, = (n"12loglogn)l/3.
We want to find a number yg such that

1,7 . ] 0, if ¥y > vyo,
P(ry H(fa(zo) = f(20)) >y i.0.) = { L ity
Now {fn(zg) > a} = {8n(a) > zo}, SO
{Fn(z0) > f(x0) +rny i.0.} = {8n(f(20) + Tny) > w0 i.0.}. (4)
By letting s = xg 4+ rnh in the definition of s, we see that

sn(f(xo) + mny) — z0
= rpargmaxy{Fn,(xqg + rnh) — f(xg + rny)(xg + rmh)}
and hence the right side of (4) can be rewritten as {hn, >0 i.0.}
where

hn

argmaxp{Fn(zo + rmh) — (f(z0) + mmy)(zo + rnh)}
argmax;, {ry, 2[Fn(wg + rah) — Fa(zo) — (F(xg + rah) — F(w0))]

+ 1, °[F (0 + rnh) — Fxo) — f(z0)rnh] — yh}. (5)
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The deterministic (drift) term on the right side converges to
' (xg)h?/2 as n — co.

Step 2: LIL for the local empirical process. By a theorem
of Mason (1988), the sequence of functions

{TEQ[Fn(fCo + rnh) — Fn(xo) — (F(z0 + mnh) — F(z0)) : h € R}
IS almost surely relatively compact with limit set

{9(f(z0)-) 1 g€ G}

where the two-sided Strassen limit set G is given by

Q={g:IR{—>IR{‘ g(t)Z/Otg(s)ds, teR, /_O:OgQ(s)dsgl}.

Proof: Reduce to the local empirical process of &1,....&n
i.i.d. Uniform(0,1). As in Mason (1988), take k, = nr, =
n2/3(2loglogn)1/3 Moo and n= 1k, = rp \, O.
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Thus the processes involved in the argmax in (5) are almost

surely relatively compact with limit set

{9(f(zo)h) + 271 f/(xg)h? —yh: g€ G}

Step 3: Strassen set equivalences.

Lemma 1. Let ¢> 0 and d € R. then

{t = g(ct+d)—g(d): gegG}=+/cG.
[This is analogous to W(ct 4+ d) — W (d) 4 VeWw (t).]
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Lemma 2. Let a, 8 be positive constants and v € R. Then

{argmax{ag(h) — Bh%2 —~h}: g€ g}
= {(a/B)*argmax,{g(h) —h*} —7/(28) : g€ G}.

[This is analogous to
argmax (aW (h) — Bh2 — yh)) = (a/B)2/3{W (k) — h?)} — v/(28).]
By Lemmas 1 and 2, with a = +/f(zg), b = |f'(z0)|/2,

{g(f(zo)h) + 271 f'(zo)h* —yh: g€ G}
= {ag(h) —bh® —yh: g€ G}
= {(a/b)*/Pargmax{g(h) — h*} —y/(2b) : g€ G}

UW Probability Seminar, October 24, 2016 1.28



Hence with T, = argmax,{g(h) — h2},

{ﬁn > 0 i.o.} = J(%)Q/S sup Ty > 2%}

geg
( a\ 2/3
= <2b(—) sup 1 >y}
| \b geG °
= 0

y > yo = 2b(a/b)?/3sup Ty = |27 f (o) f/(z0)| Y/ 32 sup Ty,

geyg 9cg
It remains only to show that

sup Ty = (3/4)1/3 ~ 0.90856. . ..
geg

This follows from Lemma 3:
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Lemma 3. Let tg be an arbitrary positive number and let g €
L1([0,tp]) be an arbitrary function satisfying

o . > (. 2
/O g(s)ds —t§ > /O g(s)ds —t< for 0 <t <tg.
Then, with gg(u) = 2u, 0 <t < u,

to | 2 to | 2 to 2 4t8
du> [ du= [ “(2u)2du==2.
|7 9)?du> [ go(w)Pdu = [ °(2u)?du= =
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Intuition: A few pictures and trial functions g quickly lead to

2s, 0 < s <tp,
go(s) =1 0, tg<s < oo,
0, t<O.

For this gg we have
go(t) = 2110, 1(1) + 1311y 00) (1) + 0 1(_ 0 0y (D).
Note that [% ¢3(s)ds = [5°(2s)2ds = 4t3/3. and that

07 t < o,
t2 —t2, t>tg.

go(t) —t2 = {

Thus argmax(go(t) — t2) = tg while sup;>g(go(t) — t2) = 0 is
achieved for all 0 <t < tg. To force gog € G we simply require
that 50 g2(s)ds = 1 and this yields 4t3/3 = 1 or tg = (3/4)1/3.

Proof.
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6. Open questions and further problems:

e For the mode estimator M(f,) of a log-concave density with
mode m = M(f) and f”(m) < 0, we know that

nYS(M(fr) — M(f)) —q CoM(H?))

where H(2) is the convex function given by the second
derivative of the “invelope process”

/
H of Y(t) Et4—|—/o W (s)ds.
Do we have a LIL for M(f,):

nt/S(M(fn) — M(f)) s O < 007

lim sup
n—00 (2loglogn)1/5

e With definitions as in the last problem, do we have
P(M(H@) > 1) < Kyexp(—Kot®) for all t>0

for some Kq1,K> < o0? AN answer to the previous problem
would start to give information about K>5!
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e Are the touch points of H and Y isolated? (See Groene-
boom, Jongbloed, & W (2001), Groeneboom and Jongbloed
(2015), page 320.)

e Balabdaoui and W (2014) show that Chernoff's distribution
is log-concave. Is it strongly log-concave?

e Is there a Berry-Esseen type result for Grenander’s estimator?
That is, for what sequences r,, — oo do we have

sup [P (n}/3(fu(e) - f(2))/C <) - PZ <) < -
teR n

for some K finite.
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