Two phase designs

> with data missing by design:
inverse probability weighted estimators; adjustments and improvements

Jon A. Wellner

University of Washington, Seattle - visiting Heidelberg

Biometry Seminar, Heidelberg

Based on joint work with:

- Norman Breslow
- Takumi Saegusa
and
- 2011 ISI Review paper: Lumley, Shaw, Dai

Outline

- 1: Survey sampling: the Horvitz-Thompson estimator
- 2: Adjustments of the Horvitz-Thompson estimator:
\triangleright Regression
\triangleright Calibration
\triangleright Estimated weights
- 3: The "paradox"
- 4: Parametric Models \& Super-populations
- 5: Limit theory, part 1
- 6: Semiparametric Models \& Super-populations
- 7: Limit theory, part 2
- 8: Problems and further questions

Outline

- Part I: Sections 1-4. Based on

Thomas Lumley, Pamela Shaw, and James Dai (2011).
Connections between survey and calibration estimators and semiparametric models for incomplete data.
Int. Statist. Rev. 79, 200-220.

- Part II: Sections 5-8: Based on
\triangleright Norman Breslow and Jon A. W. (2007).
Scand. J. Statist. 34, 86-102.
\triangleright Norman Breslow and Jon A. W. (2008).
Scand. J. Statist. 35, 83-103.
\triangleright Takumi Saegusa and Jon A. W. (2011).
Weighted likelihood estimators with calibration and estimated weights. Manuscript in progress.

1. Survey sampling: the Horvitz-Thompson estimator

- First consider a finite population

$$
\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq N\right\}
$$

with $y_{i} \in \mathbb{R}, x_{i} \in \mathbb{R}^{p}$.

- Suppose: the sampling probability π_{i} for each individual is known; $R_{i}=1$ if item i is sampled, $R_{i}=0$ if not, and

$$
P\left(R_{i}=1\right)=\pi_{i}, \quad i=1, \ldots, N
$$

- Bernoulli (independent) sampling: the R_{i} 's are independent, with $P\left(R_{i}=1\right)=n / N$ for $i=1, \ldots, N$ with $1<n<N$. Thus

$$
P\left(R_{1}=r_{1}, \ldots, R_{N}=r_{N}\right)=\left(\frac{n}{N}\right)^{\sum_{1}^{N} r_{i}}\left(1-\frac{n}{N}\right)^{N-\sum_{1}^{N} r_{i}}
$$

for $r_{i} \in\{0,1\}$. Note that $\sum_{1}^{N} R_{i} \sim \operatorname{Binomial}(N, n / N)$ is random.

1. Survey sampling: the Horvitz-Thompson estimator

- Sampling ($n<N$ items) without replacement: the R_{i} 's are dependent (but exchangeable); $P\left(R_{i}=1\right)=n / N$ for each $i=1, \ldots, N$,

$$
\begin{aligned}
& P\left(R_{i}=1, R_{j}=1\right)=\frac{n}{N}\left(\frac{n-1}{N-1}\right), \quad 1 \leq i, j \leq N, \quad i \neq j, \\
& P(\underline{R}=\underline{r})=\frac{1}{\binom{N}{n}} \text { for } \underline{r}=\left(r_{1}, \ldots, r_{n}\right), \text { with } \sum_{1}^{N} r_{i}=n .
\end{aligned}
$$

Note that $\sum_{1}^{N} R_{i}=n$ is fixed (and non-random).

- Goal: Estimate $T \equiv \sum_{i=1}^{N} y_{i}$ (or, equivalently, $\mu_{N} \equiv N^{-1} T=$ $N^{-1} \sum_{1}^{N} y_{i}$).
- An estimator based only on the y_{i} 's: the Horvitz-Thompson estimator of T is

$$
\widehat{T}=\sum_{i: R_{i}=1} \frac{1}{\pi_{i}} y_{i}=\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} y_{i} .
$$

1. Survey sampling: the Horvitz-Thompson

 estimator- Properties of \widehat{T} :
$\triangleright E(\widehat{T})=\sum_{i=1}^{N} \frac{E\left(R_{i}\right)}{\pi_{i}} y_{i}=\sum_{i=1}^{N} y_{i}=T$.
\triangleright Bernoulli sampling (BS):

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{T}_{B S}\right) & =\sum_{i=1}^{N} \frac{\operatorname{Var}\left(R_{i}\right)}{\pi_{i}^{2}} y_{i}^{2}=\sum_{i=1}^{N} \frac{\pi_{i}\left(1-\pi_{i}\right)}{\pi_{i}^{2}} y_{i}^{2} \\
& =\sum_{i=1}^{N} \frac{1-\pi_{i}}{\pi_{i}} y_{i}^{2}=\frac{1-n / N}{n / N} \sum_{i=1}^{N} y_{i}^{2} \\
& =\frac{N-n}{n} \sum_{i=1}^{N} y_{i}^{2}=n \frac{N}{n} \frac{N-1}{n}\left(1-\frac{n-1}{N-1}\right) \frac{1}{N} \sum_{i=1}^{N} y_{i}^{2} .
\end{aligned}
$$

\triangleright Sampling Without Replacement (SWOR):

$$
\operatorname{Var}\left(\widehat{T}_{S W O R}\right)=n \frac{N^{2}}{n^{2}}\left(1-\frac{n-1}{N-1}\right) \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}_{N}\right)^{2} .
$$

1. Survey sampling: the Horvitz-Thompson estimator

Something left out: Sampling n from N with replacement? In this case $\underline{R}=\left(R_{1}, \ldots, R_{N}\right) \sim \operatorname{Mult}_{N}(n,(1 / N, \ldots, 1 / N))$, so $R_{i} \in\{0,1, \ldots, n\} \supset\{0,1\}$. Nonetheless, with π_{i} replaced by $E\left(R_{i}\right)=n / N:$

$$
\begin{aligned}
& E\left(\widehat{T}_{S W R}\right)=T, \\
& \operatorname{Var}\left(\widehat{T}_{S W R}\right)=n \frac{N^{2}}{n^{2}} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}_{N}\right)^{2} .
\end{aligned}
$$

2. Adjustments of the Horvitz-Thompson estimator

Regression: Can we use the x_{i} 's to help in estimating T ?

- Notation:

$$
\begin{aligned}
X & =\left(\left(1, x_{i}\right), i \text { s.t. } R_{i}=1,1 \leq i \leq N\right), \quad n \times(p+1) \text { matrix; } \\
Y & =\left(y_{i}, i \text { such that } R_{i}=1,1 \leq i \leq N\right), \quad n \times 1 \quad \text { vector } \\
W & =\operatorname{diag}\left(1 / \pi_{i}, i \text { such that } R_{i}=1,1 \leq i \leq N\right), \quad n \times n \text { matrix. }
\end{aligned}
$$

- Inverse probability weighted estimate of (finite) population Least Squares coefficients β_{N} are

$$
\widehat{\beta}=\left(X^{T} W X\right)^{-1} X^{T} W Y .
$$

- The regression estimator of T is:

$$
\widehat{T}_{\text {reg }}=\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \widehat{\beta}\right)+\sum_{i=1}^{N} x_{i} \widehat{\beta}=0+\sum_{i=1}^{N} x_{i} \widehat{\beta}
$$

2. Adjustments of the Horvitz-Thompson

estimator

- Improvement? Let

$$
\rho_{N}^{2}=\text { variance explained by finite population regression, }
$$

$$
1-\rho_{N}^{2}=\frac{\sum_{1}^{N}\left(y_{i}-x_{i} \beta_{N}\right)^{2}}{\sum_{1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
$$

- Decomposition:

$$
\begin{aligned}
\widehat{T}_{\text {reg }} & =\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \beta_{N}\right)+\sum_{i=1}^{N} x_{i} \beta_{N}+\sum_{i=1}^{N} x_{i}\left(1-\frac{R_{i}}{\pi_{i}}\right)\left(\widehat{\beta}-\beta_{N}\right) \\
& =\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \beta_{N}\right)+\sum_{i=1}^{N} x_{i} \beta_{N}+\sum_{i=1}^{N} x_{i}\left(1-\frac{R_{i}}{\pi_{i}}\right) O_{p}\left(n^{-1 / 2}\right) \\
& \equiv I+I I+O_{p}(N / \sqrt{n}) .
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{Var}(I)=\left(1-\rho_{N}^{2}\right) \operatorname{Var}(\widehat{T}) \\
& \operatorname{Var}(I I)=0 .
\end{aligned}
$$

2. Adjustments of the Horvitz-Thompson estimator

- Calibration: Note that $\widehat{\beta}$ is a linear function of the sampled y_{i} 's; i.e.

$$
\widehat{T}_{\text {reg }}=\sum_{i: R_{i}=1} \frac{g_{i}}{\pi_{i}} y_{i}=\sum_{i: R_{i}=1} w_{i} y_{i}
$$

where g_{i} depends on x and π but not \underline{y} : explicitly

$$
g_{i}=1+\left(T_{x}-\widehat{T}_{x}\right)^{T}\left(X^{T} W X\right)^{-1} x_{i} \sim 1
$$

where $T_{x}=\sum_{1}^{N} x_{i}, \widehat{T}_{x}=\sum_{1}^{N}\left(R_{i} / \pi_{i}\right) x_{i}$.
Conclusion: The same $1-\rho_{N}^{2}$ reduction in variance can be achieved by adjustments of the weights:

$$
\text { replace } \frac{1}{\pi_{i}} \text { by } \frac{g_{i}}{\pi_{i}} .
$$

2. Adjustments of the Horvitz-Thompson

 estimatorSince the g_{i} 's do not depend on \underline{y}, they are the same if $y_{i}=x_{i}$, and for estimating T_{x} the regression estimator is exact, so the g_{i} 's satisfy the following calibration equation:

$$
\begin{equation*}
\sum_{i=1}^{N} x_{i}=\sum_{i: R_{i}=1} \frac{g_{i}}{\pi_{i}} x_{i} \tag{1}
\end{equation*}
$$

Alternative definition of the g_{i} 's: given a "loss function" $d(a, b)$, choose $\underline{g}=\left(g_{1}, \ldots, g_{N}\right)$ to minimize

$$
\sum_{i: R_{i}=1} d\left(\frac{g_{i}}{\pi_{i}}, \frac{1}{\pi_{i}}\right)
$$

subject to (1).

- $g_{\text {reg }}$ corresponding to $\widehat{T}_{\text {reg }}$ results from $d(a, b)=(a-b)^{2} / b$.
- $g_{\text {raking }}$ corresponds to $d(a, b)=a(\log a-\log b)+(b-a)$; see Deville and Särndal (1992).

2. Adjustments of the Horvitz-Thompson estimator

- Estimated weights: Robins, Rotnitzky, and Zhao (1994)
\triangleright Fit a logistic regression model to predict R_{i} from x_{i}.
\triangleright Write $p_{i}=\widehat{\pi}_{i}$ for the fitted probability.
\triangleright The estimating equations for this logistic regression model can be written as

$$
\begin{equation*}
\sum_{i=1}^{N} x_{i} p_{i}=\sum_{i=1}^{N} x_{i} R_{i} \quad \text { or } \quad \sum_{i=1}^{N} x_{i} \widehat{\pi}_{i}=\sum_{i=1}^{N} x_{i} R_{i} \tag{2}
\end{equation*}
$$

Since $1 / \pi_{i}$ corresponds to g_{i} / π_{i} in calibration, we let $1 / \hat{\pi}_{i}=h_{i} / \pi_{i}$ in this "estimated weights" setting, and then rewrite (2) as

$$
\begin{equation*}
\sum_{i=1}^{N} x_{i} \frac{\pi_{i}}{h_{i}}=\sum_{i=1}^{N} R_{i} x_{i} \tag{3}
\end{equation*}
$$

This is similar to the calibration equations (1), but it has the weights on the left side rather than the right side.

2. Adjustments of the Horvitz-Thompson estimator

- Comparison: estimated weights versus calibration
\triangleright Advantages: The weights h_{i} always exist and are nonnegative.
\triangleright Disadvantages: All the x_{i} 's are required, as opposed to sampled x_{i} 's and population total for calibration.

3. The "paradox"

Even though π_{i} is known, adjusting the weights from $1 / \pi_{i}$ to g_{i} / π_{i} or to $1 / \widehat{\pi}_{i}$ gives an estimator of T with reduced variance. Using estimated weights rather than known weights reduces variances.

One resolution: Compare the regression estimator (special case of calibration) to a decomposition of the Horvitz Thompson estimator:

$$
\begin{equation*}
\widehat{T}=\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \beta_{0}\right)+\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} x_{i} \beta_{0} \tag{4}
\end{equation*}
$$

while

$$
\begin{align*}
\widehat{T}_{r e g}= & \sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \beta_{0}\right)+\sum_{i=1}^{N} x_{i} \beta_{0} \\
& +\sum_{i=1}^{N} x_{i}\left(1-\frac{R_{i}}{\pi_{i}}\right)\left(\widehat{\beta}-\beta_{0}\right) \tag{5}
\end{align*}
$$

3. The "paradox"

- The first terms in the last two displays are the same.
- The second term in (5) involves the known population total $\sum_{1}^{N} x_{i}$ of the x_{i} 's, while the second term in (4) involves the estimated total.
- The third term (smaller order) term in (5) is not present in (4).

Conclusion: for large enough n and $N, \widehat{T}_{\text {reg }}$ will always be at least as efficient as \widehat{T}.

- Other resolutions: via projections of influence functions (Henmi \& Eguchi 2004, RRZ 1994)
- Further examples: Lawless, Kalbfleisch, Wild (1999); Zou \& Fine (2002) .

4. Parametric Models \& Super-populations

- Suppose that $\mathcal{P}=\left\{P_{\theta}: \quad \theta \in \Theta \subset \mathbb{R}^{d}\right\}$ is a parametric model.
- Suppose that for complete data $W_{i}, 1 \leq i \leq N$

$$
N \mathbb{P}_{N} \psi\left(W_{i} ; \theta\right)=\sum_{i=1}^{N} U_{i}(\theta)
$$

are unbiased estimating equation(s): typically θ_{N} solving

$$
\sum_{i=1}^{N} U_{i}\left(\theta_{N}\right)=0
$$

satisfies $\sqrt{N}\left(\theta_{N}-\theta_{0}\right) \rightarrow_{d} N_{d}(0, \Sigma)$ where $\Sigma=A^{T} B A$. Replacing y_{i} by $U_{i}(\theta)$ above yields $\hat{\theta}_{N}$ satisfying

$$
\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} U_{i}(\hat{\theta})=0
$$

where $\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} U_{i}(\theta)$ is the Horvitz-Thompson estimator of $\sum_{i=1}^{N} U_{i}(\theta)$. (Binder (1983))

4. Parametric Models \& Super-populations

- The above $\hat{\theta}_{N}=$ Horvitz-Thompson estimator of θ_{N}.
- Calibration estimators of estimating functions? Yes; see:
\triangleright Rao, Yung, and Hidiroglou (2002).
\triangleright Särndal, Swenson, and Wretman (2003).
- Rewrite of regression estimator:
$\widehat{T}_{\text {reg }}=\sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}}\left(y_{i}-x_{i} \widehat{\beta}\right)+\sum_{i=1}^{N} x_{i} \widehat{\beta}=\sum_{i=1}^{N}\left\{\frac{R_{i}}{\pi_{i}} y_{i}+\left(1-\frac{R_{i}}{\pi_{i}}\right) x_{i} \widehat{\beta}\right\}$
Replacing y_{i} (real-valued) by $U_{i}(\theta)$ (vector) yields

$$
T_{N}(\theta)=\sum_{i=1}^{N}\left\{\frac{R_{i}}{\pi_{i}} U_{i}(\theta)+\left(1-\frac{R_{i}}{\pi_{i}}\right) \phi_{i}\right\}
$$

where ϕ_{i} is a d-vector of arbitrary functions of the data that are available for all N observations.

4. Parametric Models \& Super-populations

- Solutions $\hat{\theta}_{N}$ of $T_{N}\left(\hat{\theta}_{N}\right)=0$ gives the class of Augmented Inverse Probability Weighted Estimators (AIPW estimators) of Robins, Rotnitzky, and Zhao (1994).
- Superpopulation setting: $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq N\right\}$ is the realization of a random sample from a population or (hypothetical) super-population. Thus in the simple context of estimating a total or mean, we suppose that Y_{1}, \ldots, Y_{N} are i.i.d. P on \mathbb{R} with $\mu=E\left(Y_{1}\right)$ and $\sigma_{Y}^{2}=\operatorname{Var}\left(Y_{1}\right)<\infty$.
- We want to study the Horvitz-Thompson estimator $\widehat{\mu}=$ $N^{-1} \widehat{T}$ as an estimator of $\mu=E\left(Y_{1}\right)$.

5. Limit theory, part 1

- Key decomposition: Note that:

$$
\begin{aligned}
& \qquad \begin{aligned}
\sqrt{N}(\widehat{\mu}-\mu) & =\sqrt{N}\left(\mu_{N}-\mu\right)+\sqrt{N}\left(\widehat{\mu}_{N}-\mu_{N}\right) \\
& =\sqrt{N}\left(\bar{Y}_{N}-\mu\right)+\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(\frac{R_{i}}{\pi_{i}}-1\right) Y_{i} \\
& =\sqrt{N}\left(\bar{Y}_{N}-\mu\right)+\frac{N}{n} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(R_{i}-\pi_{i}\right) Y_{i} \\
& =I_{N}+I I_{N}
\end{aligned} \\
& \text { where } \mu_{N}=N^{-1} \sum_{i=1}^{N} Y_{i}=N^{-1} T
\end{aligned}
$$

5. Limit theory, part 1

- $I_{N}=\sqrt{N}\left(\bar{Y}_{N}-\mu\right) \rightarrow_{d} \sigma Z_{1}$ where $Z_{1} \sim N(0,1)$.
- In the three cases $B S, S W O R$, and $S W R$, the second term $I I_{N}$ can be rewritten as

$$
I I_{N}=\sqrt{\frac{N}{n}} \sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{N} R_{i} Y_{i}-\bar{Y}_{N}\right)
$$

- Assuming $n / N \rightarrow \lambda \in(0,1)$,

$$
I I_{N} \rightarrow_{d} \begin{cases}\sqrt{\frac{1-\lambda}{\lambda}} \sqrt{E\left(Y^{2}\right)} Z_{2}, & \text { for } B S, \\ \sqrt{\frac{1-\lambda}{\lambda}} \sigma Z_{2}, & \text { for } S W O R, \\ \sqrt{\frac{1}{\lambda}} \sigma Z_{2}, & \text { for } S W R\end{cases}
$$

where $Z_{2} \sim N(0,1)$ is independent of Z_{1}.

5. Limit theory, part 1

- Putting the results for I_{N} and $I I_{N}$ together yields:

$$
\sqrt{n}\left(\widehat{\mu}_{N}-\mu\right) \rightarrow_{d} \begin{cases}N\left(0, \lambda \sigma^{2}+(1-\lambda) E\left(Y^{2}\right),\right. & \text { for } B S \\ N\left(0, \sigma^{2}\right), & \text { for } S W O R \\ N\left(0,(\lambda+1) \sigma^{2}\right), & \text { for } S W R\end{cases}
$$

- If $E(Y) \neq 0$, then SWOR wins!

6. Semiparametric Models \& Super-populations

- Setting:
\triangleright Semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space
- Assumptions: To guarantee \sqrt{N}-consistency, suppose there exist asymptotically Gaussian ML estimators ($\widehat{\theta}_{n}, \widehat{\eta}_{n}$) of θ and η under i.i.d. random sampling (i.e. complete data).
\triangleright 1. Scores i_{θ} and $i_{\eta} h=B_{\theta, \eta} h, h \in \mathcal{H} \subset \mathcal{B}$
in a Donsker class \mathcal{F}.
\triangleright 2. Scores $L_{2}\left(P_{0}\right)$-continuous at θ_{0}, η_{0}.
\triangleright 3. Information operator $i_{\eta}^{T} i_{\eta}=B_{0}^{*} B_{0}$
continuously invertible on its range.
\triangleright 4. $\left(\hat{\theta}_{N}, \widehat{\eta}_{N}\right)$ are consistent for $\left(\theta_{0}, \eta_{0}\right)$.

6. Semiparametric Models \& Super-populations

- Missing data - by design! X not observed for all items / individuals
- $\widetilde{X}=\widetilde{X}(X)$ observable part of X in phase 1
- Auxiliary U helps predict inclusion in subsample
$\triangleright W=(X, U) \in \mathcal{W}$ observable only in validation (phase 2) sample
$\triangleright V=(\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\left\{W_{1}, \ldots, W_{N}\right\}$ i.i.d. $P=P_{W}$
\triangleright but observe only $\left\{V_{1}, \ldots, V_{N}\right\}$
- Phase 2: Sampling indicators $\left\{R_{1}, \ldots, R_{N}\right\}$
\triangleright observe W_{i} (all of X_{i}) if $R_{i}=1$

6. Semiparametric Models \& Super-populations

Many choices for the (phase 2) sampling indicators R_{i}; here:

- Bernoulli sampling

$$
\operatorname{Pr}\left(R_{i}=1 \mid W_{i}\right)=\operatorname{Pr}\left(R_{i}=1 \mid V_{i}\right)=\pi_{0}\left(V_{i}\right)
$$

conditionally independent given the V_{i} 's.

- Finite population stratified sampling
\triangleright Partition \mathcal{V} into J strata $\mathcal{V}=\mathcal{V}_{1} \cup \ldots \cup \mathcal{V}_{J}$.
\triangleright Phase 1: Observe $N_{j}=\sum_{j=1}^{N} 1\left\{V_{i} \in \mathcal{V}_{j}\right\}$ subjects in stratum j
\triangleright Phase 2: Sample n_{j} of N_{j} without replacement:
\triangleright Result: sampling indicators $R_{j, i}$ for subject i in stratum j
$\triangleright\left(R_{j, 1}, \ldots, R_{j, N_{j}}\right)$ exchangeable with

$$
\operatorname{Pr}\left(R_{j i}=1 \mid V_{1}, \ldots, V_{N}\right)=n_{j} / N_{j} .
$$

\triangleright The vectors $\left(R_{j, 1}, \ldots, \xi_{j, N_{j}}\right), j=1, \ldots, J$ are independent.

6. Semiparametric Models \& Super-populations

- Define inverse probability weighted (IPW) empirical measure:

$$
\begin{array}{r}
\mathbb{P}_{N}^{\pi}=\frac{1}{N} \sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} \delta_{X_{i}}, \quad \delta_{x}=\text { Dirac measure at } x \\
\pi_{i}= \begin{cases}\pi_{0}\left(V_{i}\right) & \text { if Bernoulli sampling } \\
\frac{n_{j}}{N_{j}} 1\left\{V_{i} \in \mathcal{V}_{j}\right\} & \text { if finite pop'In stratified sampling }\end{cases}
\end{array}
$$

- Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$
\begin{array}{ll}
\mathbb{P}_{N}^{\pi} i_{\theta}=0 & \text { in } \mathbb{R}^{d} \\
\mathbb{P}_{N}^{\pi} i_{\eta}=0 & \text { for all } h \in \mathcal{H}
\end{array}
$$

- MLE for complete data solves same equations with \mathbb{P}_{N} instead of \mathbb{P}_{N}^{π}.

7. Limit theory, part 2

- Result 1: $\hat{\theta}_{N}$ solving the IPW estimating equations is asymptotically linear in that:

$$
\sqrt{N}\left(\hat{\theta}_{N}-\theta_{0}\right)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{R_{i}}{\pi_{i}} \widetilde{l}_{\theta_{0}}\left(X_{i}\right)+o_{p}(1)=\mathbb{G}_{N}^{\pi}\left(\widetilde{l}_{\theta_{0}}\right)+o_{p}(1)
$$

$\widetilde{l}_{\theta}(x)$ is the semparametric efficient influence function for θ (complete data)

$$
\mathbb{G}_{N}^{\pi}=\sqrt{N}\left(\mathbb{P}_{N}^{\pi}-P_{0}\right) .
$$

- Notation:
\triangleright Finite sampling empirical measure for stratum $j \in\{1, \ldots, J\}$:

$$
\mathbb{P}_{j, N_{j}}^{R}=\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} R_{j i} \delta_{X_{j i}}
$$

\triangleright Finite sampling empirical process

$$
\mathbb{G}_{j, N_{j}}^{R}=\sqrt{N_{j}}\left(\mathbb{P}_{j, N_{j}}^{R}-\frac{n_{j}}{N_{j}} \mathbb{P}_{j, N_{j}}\right),
$$

7. Limit theory, part 2

- More notation: $\nu_{j} \equiv P_{0}\left(\mathcal{V}_{j}\right)$, for $j \in\{1, \ldots, J\}$.
- Assume: $n_{j} / N_{j} \rightarrow_{p} \lambda_{j} \in(0,1)$, for $j \in\{1, \ldots, J\}$.
- Key decomposition:

$$
\mathbb{G}_{N}^{\pi}=\mathbb{G}_{N}+\sum_{j=1}^{J} \frac{N_{j}}{N}\left(\frac{N_{j}}{n_{j}}\right) \mathbb{G}_{j, N_{j}}^{R}
$$

that is

$$
\begin{aligned}
\sqrt{N}\left(\mathbb{P}_{N}^{\pi}-P_{0}\right)= & \sqrt{N}\left(\mathbb{P}_{N}-P_{0}\right) \\
& +\sum_{j=1}^{J} \frac{N_{j}}{N}\left(\frac{N_{j}}{n_{j}}\right) \sqrt{N_{j}}\left(\mathbb{P}_{j, N_{j}}^{R}-\frac{n_{j}}{N_{j}} \mathbb{P}_{j, N_{j}}\right) .
\end{aligned}
$$

7. Limit theory, part 2

$$
\begin{aligned}
\sqrt{N}\left(\mathbb{P}_{N}^{\pi}-P_{0}\right)= & \sqrt{N}\left(\mathbb{P}_{N}-P_{0}\right) \\
& +\sum_{j=1}^{J} \sqrt{\frac{N_{j}}{N}}\left(\frac{N_{j}}{n_{j}}\right) \sqrt{N_{j}}\left(\mathbb{P}_{j, N_{j}}^{R}-\frac{n_{j}}{N_{j}} \mathbb{P}_{j, N_{j}}\right) \\
\rightsquigarrow & \mathbb{G}+\sum_{j=1}^{J} \sqrt{\nu_{j}} \sqrt{\frac{1-\lambda_{j}}{\lambda_{j}}} \mathbb{G}_{j}
\end{aligned}
$$

where:

- $\left(\mathbb{G}, \mathbb{G}_{1}, \ldots, \mathbb{G}_{J}\right)$ are all independent, \mathbb{G} is a P_{0}-Brownian bridge process (indexed by \mathcal{F}), \mathbb{G}_{j} is a $P_{j}=P_{0}\left(\cdot \mid \mathcal{V}_{j}\right)$-Brownian bridge process indexed by \mathcal{F}, and

$$
\left(\mathbb{G}_{N}, \mathbb{G}_{1, N_{1}}^{R}, \ldots, \mathbb{G}_{J, N_{J}}^{R}\right) \rightsquigarrow\left(\mathbb{G}, \sqrt{\lambda_{1}\left(1-\lambda_{1}\right)} \mathbb{G}_{1}, \ldots, \sqrt{\lambda_{J}\left(1-\lambda_{J}\right)} \mathbb{G}_{J}\right) .
$$

7. Limit theory, part 2

- Upshot, raw weighted likelihood (Horvitz-Thompson):

$$
\sqrt{N}\left(\hat{\theta}_{N}-\theta_{0}\right)=\mathbb{G}_{N}^{R}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

where $\tilde{l}_{0} \equiv \tilde{\ell}_{\theta_{0}, \eta_{0}}$ is the efficient influence function for θ with complete data, and

$$
\Sigma= \begin{cases}I_{0}-1+\sum_{j=1}^{J} \nu_{j} \frac{1-\lambda_{j}}{\lambda_{j}} E_{j}\left(\widetilde{\ell}_{0}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ I_{0}-1+\sum_{j=1}^{J} \nu_{j} \frac{1-\lambda_{j}}{\lambda_{j}} \operatorname{Var}_{j}\left(\widetilde{\ell}_{0}\right), & \text { SWOR } \\ I_{0}-1+\sum_{j=1}^{J} \nu_{j} \frac{1}{\lambda_{j}} \operatorname{Var}_{j}\left(\tilde{\ell}_{0}\right), & \text { SWR. }\end{cases}
$$

- Gain from stratified sampling is centering of efficient scores
\triangleright Can reduce variance via finite popl'n sampling.
\triangleright Select strata via covariates so that $\tilde{\ell}_{0}$ has small conditional variances on the strata
\triangleright Going further: Improve via calibration or estimated weights!

7. Limit theory, part 2

- Upshot: weighted likelihood with calibration or estimated weights: (and SWOR)

$$
\begin{aligned}
& \sqrt{N}\left(\hat{\theta}_{N}-\theta_{0}\right) \rightarrow_{d} \quad Z \sim N(0, \Sigma) \\
& \sqrt{N}\left(\hat{\theta}_{N, c}-\theta_{0}\right) \rightarrow_{d} \quad Z_{c} \sim N\left(0, \Sigma_{c}\right) \\
& \sqrt{N}\left(\hat{\theta}_{N, e}-\theta_{0}\right) \rightarrow_{d} \\
& Z_{e} \sim N\left(0, \Sigma_{e}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\Sigma & =I_{0}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-\lambda_{j}}{\lambda_{j}} \operatorname{Var}_{j}\left(\tilde{\ell}_{0}\right) \\
\Sigma_{c} & =I_{0}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-\lambda_{j}}{\lambda_{j}} \operatorname{Var}_{j}\left(\left(I-Q_{c}\right) \tilde{\ell}_{0}\right) \\
\Sigma_{e} & =I_{0}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-\lambda_{j}}{\lambda_{j}} \operatorname{Var}_{j}\left(\left(I-Q_{e}\right) \tilde{\ell}_{0}\right)
\end{aligned}
$$

7. Limit theory, part 2

and, with $Z=g(V), g$ known,

$$
\begin{aligned}
Q_{c} f & \equiv P_{0}\left[\left(\pi_{0}^{-1}(V)-1\right) f Z^{T}\right]\left\{P_{0}\left(\pi_{0}^{-1}(V)-1\right) Z^{\otimes 2}\right\}^{-1} Z, \\
Q_{e} f & \equiv P_{0}\left[\pi_{0}^{-1}(V) f Z^{T}\right] S_{0}^{-1}\left(1-\pi_{0}(V)\right) \dot{G}_{e}\left(Z^{T} \alpha_{0}\right) Z .
\end{aligned}
$$

8. Problems and further questions

- Give a unified treatment of weighed likelihood estimation with calibration and estimated weights for semiparametric models as above.
- Extend to semiparametric models where there is no \sqrt{n}-consistent estimator of η.
- Both of the above are treated in Saegusa and W (2011).
- Extend to more complex sampling designs; e.g. cluster sampling?
\triangleright Key issue: no general theory for "sampling empirical processes".
- Estimators of variance; e.g. via bootstrap? (Saegusa, 2012).
- Behavior of all these estimators under model miss-specification?
- Incorporate model selection methods for choosing covariates in calibration and estimated weights improvements.

9. Selected references

- Lumley, T., Shaw, P., and Dai, J. (2011).

Connections between survey and calibration estimators and semiparametric models for incomplete data.
Int. Statist. Rev. 79, 200-220.

- Breslow, N. and Wellner, J. A. (2007).

Weighted likelihood for semiparametric models and twophase stratified samples with application to Cox regression. Scand. J. Statist. 34, 86-102.

- Breslow, N. and Wellner, J. (2008). A Z-theorem with estimated nuisance parameters. Scand. J. Statist. 35, 83-103.
- Saegusa, T. and Wellner, J. A. (2011). Weighted likelihood estimators with calibration and estimated weights. Manuscript in progress.

9. Selected references

- Robins, J., Rotnitzky, A., and Zhao, L.-P. (1994). Estimation of regression coefficients when some regressors are not always observed. J. Amer. Statist. Assoc. 89, 846-866.
- Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in survey sampling. J. Amer. Statist. Assoc. 87, 376-382.
- Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey Methodology 33, 99-119.
- Henmi, M. and Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating equations. Biometrika 91, 929-941.
- Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R. Wiley, Hoboken.

9. Selected references

- Breslow, N.E., Lumley, T., Ballantyne, C. M., Chambless, L.E., \& Kulich, M. (2009a). Improving Horvitz-Thompson estimation ... Stat. Biosc. 1, 32-49.
- Breslow, N.E., Lumley, T., Ballantyne, C. M., Chambless, L.E., \& Kulich, M. (2009a). Using the whole cohort in the analysis of case-cohort data. Amer. J. Epidemiology 169, 1398-1405.
- Breslow, N.E. (2009). Lecture notes, Two Phase Stratified Designs and Analyses for Epidemiology. (Statistics Alps) http://faculty.washington.edu/norm/software.html .
- van der Vaart, A. W. \& Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.
- van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

Vielen Dank!

