Estimation for two-phase designs: semiparametric models and *Z*-theorems

Jon A. Wellner

University of Washington

Estimation for two-phase designs:semiparametric models and Z — theorems – p. 1/27

- joint work with:
 - Norman E. Breslow, University of Washington
 - Takumi Saegusa, University of Washington
- Talk at ICSA- Applied Statistics Symposium, Indianapolis, Indiana, June 21, 2010
- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.html

 Introduction and Review: semiparametric models and two-phase designs

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- Z-theorems and beyond: GMM, MD, EL
 - Generalized Method of Moments (GMM)
 - Minimum distance estimation (MD)
 - Connections with empirical likelihood (EL)

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- *Z*-theorems and beyond: GMM, MD, EL
 - Generalized Method of Moments (GMM)
 - Minimum distance estimation (MD)
 - Connections with empirical likelihood (EL)
- Summary; problems and open questions

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- *Z*-theorems and beyond: GMM, MD, EL
 - Generalized Method of Moments (GMM)
 - Minimum distance estimation (MD)
 - Connections with empirical likelihood (EL)
- Summary; problems and open questions

- 1. Introduction and Review:
 - Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.

- 1. Introduction and Review:
 - Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
 - Assumptions:

- Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

- Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Scores $\dot{\ell}_{\theta,\eta}$ and $B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}

- Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:
 - 1. Scores $\dot{\ell}_{\theta,\eta}$ and $B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
 - 2. Scores $L_2(P_0)$ -continuous at (θ_0, η_0)

- Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:
 - 1. Scores $\dot{\ell}_{\theta,\eta}$ and $B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
 - 2. Scores $L_2(P_0)$ -continuous at (θ_0, η_0)
 - 3. "Information operator" $B_0^*B_0$ continuously invertible

- Model: semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$ $(\theta,\eta) \in \Theta \times H$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:
 - 1. Scores $\dot{\ell}_{\theta,\eta}$ and $B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
 - 2. Scores $L_2(P_0)$ -continuous at (θ_0, η_0)
 - 3. "Information operator" $B_0^*B_0$ continuously invertible
 - 4. Solution $(\hat{\theta}_n, \hat{\eta}_n)$ to score equations consistent for (θ_0, η_0)

Example: Cox (proportional hazards) regression

- Z p-vector of covariates: $Z \sim H$
- \tilde{T} failure time: $[\tilde{T}|Z] \sim Cox(\theta, \Lambda)$
- C censoring time: $[C|Z] \sim G$
- $X = (\Delta, T, Z)$ where
 - $\circ T := \min(\tilde{T}, C)$ observed time
 - $\circ \Delta := 1{\{\tilde{T} \leq C\}}$ indicates failure at T
- Density for $x = (\delta, t, z)$:

$$e^{-e^{z\theta}\Lambda(t)} \left(e^{z\theta}\lambda(t) \left(1 - G(t-|z)\right) \right)^{\delta} \left(g(t|z)\right)^{1-\delta} h(z)$$

- Likelihood considered only for (θ, Λ) whereas $\eta = (\Lambda, G, H)$
 - (G, H) orthogonal parameters (complete data)

Two Phase Stratified Sampling

Problem: X not fully observed for all subjects Coarsening: $\tilde{X} = \tilde{X}(X)$ observable part of X Auxiliary: U helps predict inclusion in subsample \circ U optional, to improve efficiency Notation: $\circ V = (\tilde{X}, U) \in \mathcal{V}$ observable for all $\circ W = (X, V) \in \mathcal{W}$ observable only in validation sample Phase I: $\{W_1, \ldots, W_n\}$ i.i.d. sample size n but observe only $\{V_1, \ldots, V_n\}$ Ο Phase II: Generate sampling indicators $\{\xi_1, \ldots, \xi_n\}$ \circ observe all of X_i if $\xi_i = 1$

Finite population stratified sampling

Partition \mathcal{V} into J strata $\mathcal{V}_1 \bigcup \cdots \bigcup \mathcal{V}_J$

Phase I: observe $N_j = \sum_{i=1}^n \mathbf{1}(V_i \in \mathcal{V}_j)$ subjects stratum j

Phase II: sample n_j of N_j (without replacement)

• Sampling indicators ξ_{ji} for subject *i* in stratum *j*

• $(\xi_{j1}, \ldots, \xi_{jN_j})$ exchangeable with $\Pr(\xi_{ji} = 1) = \frac{n_j}{N_i}$

• Vectors $(\xi_{j1}, \ldots, \xi_{jN_j})$ independent $j = 1, \ldots, J$

	Oracan				
	1	2	•••	J	Total
Phase I	N_1	N_2	• • •	N_J	n
Phase II	n_1	n_2	• • •	n_J	n.
Sampling fractions	$\frac{n_1}{N_1}$	$\frac{n_2}{N_2}$	• • •	$rac{n_J}{N_J}$	$\frac{n_{\cdot}}{n}$

Stratum

Bernoulli sampling

- Also known as Manski-Lerman sampling
- Observe V_i and independently generate ξ_i with

 $\Pr(\xi = 1|W) = \Pr(\xi = 1|V) \equiv \pi_0(V)$

- π_0 known sampling function (MAR)
 - Stratified Bernoulli sampling: $\pi_0(V) = p_j$ for $V \in \mathcal{V}_j$
- Preserves i.i.d. structure
- Desirable to *estimate* known π_0 using parametric model (later)

$$\Pr(\xi = 1 | V; \alpha) := \pi_{\alpha}(V)$$

Horovitz-Thompson (or IPW Likelihood) Estimators

 Define Inverse Probability Weighted (IPW) empirical measure:

$$\mathbb{P}_n^{\pi} = \frac{1}{n} \sum_{i=1}^n \frac{\xi_i}{\pi_i} \delta_{X_i}, \qquad \delta_x = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} 1\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

Horovitz-Thompson (or IPW Likelihood) Estimators

 Define Inverse Probability Weighted (IPW) empirical measure:

$$\mathbb{P}_{n}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \qquad \delta_{x} = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} 1\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

 Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$\mathbb{P}_{n}^{\pi} l_{\theta} = 0 \quad \text{in } \mathbb{R}^{d}$$
$$\mathbb{P}_{n}^{\pi} \dot{l}_{\eta} h = 0 \quad \text{for all } h \in \mathcal{H}$$

Horovitz-Thompson (or IPW Likelihood) Estimators

Define Inverse Probability Weighted (IPW) empirical measure:

$$\mathbb{P}_{n}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \qquad \delta_{x} = \text{ Dirac measure at } x$$

 $\pi_{i} = \begin{cases} \pi_{0}(V_{i}) & \text{if Bernoulli sampling} \\ \frac{n_{j}}{N_{j}} 1\{V_{i} \in \mathcal{V}_{j}\} & \text{if finite pop'ln stratified sampling} \end{cases}$

 Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

 $\mathbb{P}_{n}^{\pi}\dot{l}_{\theta} = 0 \quad \text{in } \mathbb{R}^{d}$ $\mathbb{P}_{n}^{\pi}\dot{l}_{\eta}h = 0 \quad \text{for all } h \in \mathcal{H}$

MLE for complete data solves same equations with P_n instead of P^π_n.

First Main Result:

• $\hat{\theta}_n$ solving the IPW estimating equations is asymptotically linear

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\xi_i}{\pi_i} \widetilde{l}_{\theta_0}(X_i) + o_p(1)$$
$$= \mathbb{G}_n^{\pi}(\widetilde{l}_{\nu_0}) + o_p(1)$$

where $\tilde{l}_{\theta}(x)$ is the semiparametric efficient influence function for θ (complete data)

$$\mathbb{G}_n^{\pi} = \sqrt{n} (\mathbb{P}_n^{\pi} - P).$$

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathbb{G}_n^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightarrow_{\boldsymbol{d}} N(0,\Sigma)$$

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), \end{cases}$$

Bernoulli sampling finite popl'n sampling

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathbb{G}_n^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightarrow_d N(0,\Sigma)$$

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

 Gain from stratified sampling without replacement is centering of efficient scores

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathbb{G}_n^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightarrow_{\boldsymbol{d}} N(0,\Sigma)$$

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

- Gain from stratified sampling without replacement is centering of efficient scores
 - Can reduce variance (considerably) via finite popl'n sampling.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathbb{G}_n^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightarrow_{\boldsymbol{d}} N(0,\Sigma)$$

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

- Gain from stratified sampling without replacement is centering of efficient scores
 - Can reduce variance (considerably) via finite popl'n sampling.
 - Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathbb{G}_n^{\pi}(\tilde{\ell}_{\theta_0,\eta_0}) + o_p(1) \rightarrow_{\boldsymbol{d}} N(0,\Sigma)$$

$$\Sigma = \begin{cases} \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} E_j(\tilde{\ell}^{\otimes 2}), & \text{Bernoulli sampling} \\ \tilde{I}^{-1} + \sum_{j=1}^{J} \nu_j \frac{1-p_j}{p_j} Var_j(\tilde{\ell}), & \text{finite popl'n sampling} \end{cases}$$

- Gain from stratified sampling without replacement is centering of efficient scores
 - Can reduce variance (considerably) via finite popl'n sampling.
 - Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata
 - Alternatively: Bernoulli sampling, but model the selection probabilities $\pi_{\alpha}(V)$ and estimate the α 's Apply a new Z-theorem with estimated nuisance parameters: Breslow and W (2007,2008)

Key Result (Breslow & Wellner, SJOS, 2007-8)

$$\begin{split} \sqrt{n}(\hat{\theta}_n - \theta_0) &= \sqrt{n}(\tilde{\theta}_n - \theta_0) + \sqrt{n}(\hat{\theta}_n - \tilde{\theta}_n) \\ &= \sqrt{n}\mathbb{P}_n\tilde{\ell}_0 + \sqrt{n}\left(\mathbb{P}_n^{\pi} - \mathbb{P}_n\right)\tilde{\ell}_0 + o_p(1) \\ \sqrt{n}(\mathbb{P}_n - P_0) &\rightsquigarrow \mathbb{G} \text{ in } \ell^{\infty}(\mathcal{F}) \\ \sqrt{n}\left(\mathbb{P}_n^{\pi} - \mathbb{P}_n\right) &\rightsquigarrow \sum_{j=1}^J \sqrt{\nu_j}\sqrt{\frac{1 - p_j}{p_j}}\mathbb{G}_j \text{ a.s.} \\ \mathsf{Var}_{\mathsf{TOT}} &= \mathsf{Var}_{\mathsf{PHS-I}} + \mathsf{Var}_{\mathsf{PHS-II}} \end{split}$$

- $\tilde{\theta}_n$ is **unobserved** MLE based on complete data
- Var_{PHS-II} is **design based**: normalized error in Horvitz-Thompson estimation of unknown finite population total $\tilde{\ell}_{TOT} = \sum_{i=1}^{n} \tilde{\ell}_0(X_i)$
- Phase I and II contributions asymptotically independent

2. More efficiency gains? Approaches and difficulties

- Information bound for two phase design is difficult to calculate.
 Solution: Compare to excess over complete data variances.
- Approaches to improving efficiency by reducing the phase II variance: Construct *q*-vector of **auxiliary** variables *Z* from observed data V = (X̃, U). Use Z to estimate or adjust the sampling probabilities π_i:
 - Estimate sampling probabilities via parametric model $\pi_i = \pi(Z_i; \alpha)$ (Robins, Rotnitzky, and Zhao, 1994)
 - Calibration: Deville and Särndal (1992), Lumley (2010).
 - Choose Z to be highly correlated with $\tilde{\ell}_{\theta}(X; \hat{\theta}, \hat{\eta})$ to improve estimate of $\tilde{\ell}_{TOT}$

Choice of Auxiliary Variables Z

- Simplify: by considering Bernouilli (i.i.d.) sampling.
- Influence functions: for calibrated and estimated weights take general form (RRZ, JASA, 1994; vdV §25.5.3)

$$\frac{\xi}{\pi_0(V)}\tilde{\ell}_0(X) - \frac{\xi - \pi_0(V)}{\pi_0(V)}\phi(V)$$

Optimal choice for ϕ is $\phi(V) = E(\tilde{\ell}_0|V)$

– which requires knowledge of (X|V).

In fact $\phi_{C}(V) = QZ(V)$ for calibration and $\phi_{E}(V) = RZ(V)\pi_{0}(V)$ for estimation based on auxiliary variables Z = Z(V). (For estimation these must contain the stratum indicators.)

- Breslow, Lumley *et al*, *AJE* **169**:1398-1405, 2009
- Breslow, Lumley *et al*, *SiB* **1**:32-49, 2009

3. Z-theorems and beyond: GMM, MD, EL

- Setting for classical Huber (1967) Z-theorem:
 - $\bullet \; \theta \in \Theta \subset \mathbb{R}^d$
 - $\Psi_n: \Theta \to \mathbb{R}^d$, random;
 - $\Psi: \Theta \to \mathbb{R}^d$, deterministic; $\Psi(\theta_0) = 0$.

3. Z-theorems and beyond: GMM, MD, EL

- Setting for classical Huber (1967) *Z*-theorem:
 - $\theta \in \Theta \subset \mathbb{R}^d$
 - $\Psi_n: \Theta \to \mathbb{R}^d$, random;
 - $\Psi: \Theta \to \mathbb{R}^d$, deterministic; $\Psi(\theta_0) = 0$.
- Theorem A: Suppose that $\hat{\theta}_n \rightarrow_p \theta_0$, and that: A1. $\Psi_n(\hat{\theta}_n) = o_p(n^{-1/2})$ A2. $\sqrt{n}(\Psi_n(\theta_0) - \Psi(\theta_0)) \rightarrow_d \mathbb{Z} \sim N_d(0, V)$ A3. Ψ is differentiable at θ_0 with non-singular derivative $\dot{\Psi}_0 = \dot{\Psi}(\theta_0)$. A4. $|\sqrt{n}(\Psi_n - \Psi)(\hat{\theta}_n) - \sqrt{n}(\Psi_n - \Psi)(\theta_0)| = o_p(1 + \sqrt{n}|\hat{\theta}_n - \theta_0|)$. Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \to_d - \dot{\Psi}_0^{-1} \mathbb{Z} \sim N_d(0, \dot{\Psi}_0^{-1} V (\dot{\Psi}_0^{-1})^T).$$

- Setting for Hansen '82; Pakes-Pollard '89 finite-dimensional GMM-theorem
 - $\theta \in \Theta \subset \mathbb{R}^d$
 - $\Psi_n: \Theta \to \mathbb{R}^p$, $p \ge d$ random; $\|h\|_2^2 \equiv \sum_{j=1}^p h_j^2$
 - $\Psi: \Theta \to \mathbb{R}^p$, deterministic; $\Psi(\nu_0, \eta_0) = 0$.
- Conditions:
 C0. θ̂_n →_p θ₀ in ℝ^d.
 C1. ||Ψ_n(θ̂_n)||₂ = inf_θ ||Ψ_n(θ)||₂ + o_p(n^{-1/2}).
 C2. √n(Ψ_n Ψ)(θ₀) →_d Z ~ N_d(0, V) in ℝ^p
 C3. θ ↦ Ψ(θ) is differentiable wrt θ at θ₀ with Ψ(θ₀) ≡ Γ non-singular.
 C4. For every sequence δ_n > 0

$$\sup_{\theta-\theta_0|\leq\delta_n}\frac{\|\sqrt{n}(\Psi_n-\Psi)(\theta)-\sqrt{n}(\Psi_n-\Psi)(\theta_0)\|}{1+\sqrt{n}\|\Psi_n(\theta)\|+\sqrt{n}\|\Psi(\theta)\|} = o_p(1).$$

C5. θ_0 is an interior point of Θ .

 Theorem B: (Hansen, 1982; Pakes and Pollard, 1989) Suppose that C0 - C5 hold. Then

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \rightarrow_d - (\Gamma^T \Gamma)^{-1} \Gamma^T \mathbb{Z} \sim N_d(0, (\Gamma^T \Gamma)^{-1} (\Gamma^T V \Gamma) (\Gamma^T \Gamma)^{-1})$$

- Suppose that $A_n(\theta)$ is a sequence of (possibly random) $p \times p$ matrices and that $\|\cdot\|_2^2$ is replaced by $\|A_n(\theta)\Psi_n(\theta)\|_2^2 = \Psi_n(\theta)^T A_n^T A_n \Psi_n(\theta)$ in the above.
- C6. Suppose that $A_n(\theta)$ converges to a nonsingular, nonrandom matrix A:

$$\sup_{|\theta - \theta_0| \le \delta_n} \|A_n(\theta) - A(\theta)\| = o_p(1)$$

for every sequence $\delta_n \to 0$.

• Theorem C: (GMM: Pakes and Pollard, 1989; Hansen, 1982). If C0-C6 hold, then Theorem B holds with Ψ replaced by $A\Psi(\theta)$, V replaced by AVA^T , and Γ replaced by $A\Gamma = A\dot{\Psi}_0$. Thus with $W \equiv A^T A$

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \rightarrow_d - (\Gamma^T W \Gamma)^{-1} \Gamma^T W \mathbb{Z}$$

$$\sim N_d(0, (\Gamma^T W \Gamma)^{-1} (\Gamma^T W V W \Gamma) (\Gamma^T W \Gamma)^{-1}).$$

• The covariance is minimized by the choice $W = V^{-1}$ when V is non-singular and then it reduces to

$$(\Gamma^T V^{-1} \Gamma)^{-1}.$$
 (1)

- Note that this further reduces to the asymptotic variance of Huber's Z-theorem when p = d and Γ is non-singular.
- (1) is exactly the form of the covariance of Empirical Likelihood and Generalized Empirical Likelihood Estimators: Qin and Lawless (1994), Newey and Smith (2004), under stronger regularity conditions.

- Chamberlain (1987) shows that (Γ^TV⁻¹Γ)⁻¹ is the efficiency bound for estimation of θ in the constraint-defined model P = {P : Ψ(θ) = 0, θ ∈ ℝ^p}. Newey (2004) treats efficiency in the case when V is singular.
- Andrews (2002) studies the GMM estimators when C.5 fails.
- P. W. Millar (1984) studies infinite-dimensional versions of GMM estimators as Minimum Distance Estimators, and gives a theorem that contains the Pakes-Pollard (1989) theorems. Millar allows Θ ⊂ B, a Banach space, and assumes that the functions Ψ_n and Ψ take values in another Banach space L, but focuses on cases in which L is a Hilbert space, and in fact the theorem of Hansen (1982) and Pakes and Pollard (1989) continue to hold in this setting.
- (Connections to Empirical Likelihood): Lopez, van Keilegom, and Veraverbeke (2009) use the methods of Pakes and Pollard (1989) and Sherman (1993) to extend the results of Qin and Lawless (1994) to non-smooth functions. (Smoothness weakened; boundedness of basic functions strengthened. Can we weaken both?)

- Chamberlain (1987) shows that (Γ^TV⁻¹Γ)⁻¹ is the efficiency bound for estimation of θ in the constraint-defined model P = {P : Ψ(θ) = 0, θ ∈ ℝ^p}. Newey (2004) treats efficiency in the case when V is singular.
- Andrews (2002) studies the GMM estimators when C.5 fails.
- P. W. Millar (1984) studies infinite-dimensional versions of GMM estimators as Minimum Distance Estimators, and gives a theorem that contains the Pakes-Pollard (1989) theorems. Millar allows Θ ⊂ B, a Banach space, and assumes that the functions Ψ_n and Ψ take values in another Banach space L, but focuses on cases in which L is a Hilbert space, and in fact the theorem of Hansen (1982) and Pakes and Pollard (1989) continue to hold in this setting.
- (Connections to Empirical Likelihood): Lopez, van Keilegom, and Veraverbeke (2009) use the methods of Pakes and Pollard (1989) and Sherman (1993) to extend the results of Qin and Lawless (1994) to non-smooth functions. (Smoothness weakened; boundedness of basic functions strengthened. Can we weaken both?)

- Setting for BKRW (1993), van der Vaart (1995) infinite-dimensional Z-theorem: see van der Vaart and Wellner (1996)
 - $\theta \in \Theta \subset B$, a Banach space
 - $\Psi_n: \Theta \to \mathbb{L}$, random;
 - $\Psi: \Theta \to \mathbb{L}$, deterministic; $\Psi(\theta_0) = 0$.
- Theorem B: Suppose that: $\hat{\theta}_n \rightarrow_p \theta_0$ in B, and that: B1. $\Psi_n(\hat{\theta}_n) = o_p(n^{-1/2})$ in \mathbb{L} B2. $\sqrt{n}(\Psi_n(\theta_0) - \Psi(\theta_0)) \Rightarrow \mathbb{Z}$ in \mathbb{L} B3. Ψ is Fréchet differentiable at θ_0 with (continuously) invertible derivative $\dot{\Psi}_0 = \dot{\Psi}(\theta_0)$. B4. For every $\delta_n \rightarrow 0$

$$\sup_{\|\theta-\theta_0\|\leq\delta_n}\frac{\|\sqrt{n}((\Psi_n-\Psi)(\theta)-\sqrt{n}(\Psi_n-\Psi)(\theta_0)\|_{\mathbb{L}}}{1+\sqrt{n}\|\theta-\theta_0\|_B}=o_p(1).$$

Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_0^{-1}\mathbb{Z}$$
 in B .

- Setting for Millar's infinite-dimensional GMM (or-MDE) theorem.
 - $\theta \in \Theta \subset B$, a Banach space
 - $\Psi_n: \Theta \to \mathbb{L}$, random; \mathbb{L} Hilbert
 - $\Psi: \Theta \to \mathbb{L}$, deterministic; $\Psi(\theta_0) = 0$.
- Theorem B: Assume that B0. $\hat{\theta}_n \rightarrow_p \theta_0$ in BB1. $\|\Psi_n(\hat{\theta}_n)\|_{\mathbb{L}} = o_p(n^{-1/2}) + \inf_{\theta \in \Theta} \|\Psi_n(\theta)\|_{\mathbb{L}}$ B2. $\sqrt{n}(\Psi_n(\theta_0) - \Psi(\theta_0)) \Rightarrow \mathbb{Z}$ in \mathbb{L} B3. Ψ is differentiable at θ_0 with invertible derivative $\dot{\Psi}_0 = \Gamma$ satisfying $\Gamma^T \Gamma : B \to B$ invertible. B4. For every $\delta_n \to 0$

$$\sup_{\|\theta-\theta_0\|\leq\delta_n}\frac{\|\sqrt{n}((\Psi_n-\Psi)(\theta)-\sqrt{n}(\Psi_n-\Psi)(\theta_0)\|_{\mathbb{L}}}{1+\sqrt{n}\|\Psi_n(\theta)\|_{\mathbb{L}}+\sqrt{n}\|\Psi(\theta)\|_{\mathbb{L}}}=o_p(1).$$

Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -(\Gamma^T \Gamma)^{-1} \Gamma^T \mathbb{Z}$$
 in B .

4. Summary; problems and open questions

- Z-theorems
 - $^{\circ}$ classical Huber Z-theorem
 - van der Vaart (1995): infinite dimensional Z-theorem; see also vdV-W (1996).
 - Breslow Wellner (2008) infinite dimensional Z-theorem with (possibly) infinite-dimensional nuisance parameter
- GMM or MD theorems
 - Hansen (1982)
 - Pakes-Pollard (1989): further restrictions Z-theorem or GMM; related to EL
 - Millar (1984) infinite-dimensional GMM or Mininum Distance theorem.
 - Newey (1994), Chen-Linton-van Keilegom (2004) finite-dimensional Z-theorem with infinite-dimensional nuisance parameter.

• Application to semiparametric missing data models

- Application to semiparametric missing data models
 - Basic idea: separate calculations for sampling design and for model.

- Application to semiparametric missing data models
 - Basic idea: separate calculations for sampling design and for model.
 - $^{\circ}$ Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}

- Application to semiparametric missing data models
 - Basic idea: separate calculations for sampling design and for model.
 - $^{\circ}$ Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}
 - Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\nu}$ for ν .

- Application to semiparametric missing data models
 - Basic idea: separate calculations for sampling design and for model.
 - $^{\circ}$ Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}
 - Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\nu}$ for ν .
 - Basic Issue: estimating the π 's can lead to increased efficiency.
 - Regression on Z = Z(V)?
 - Calibration?

• Further problems and possible approaches:

- Further problems and possible approaches:
 - Improved methods of calibration: connection between survey sampling and Empirical Likelihood?

- Further problems and possible approaches:
 - Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
 - Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?

- Further problems and possible approaches:
 - Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
 - Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
 - Infinite-dimensional constraint version of EL?

- Further problems and possible approaches:
 - Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
 - Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
 - Infinite-dimensional constraint version of EL?
 - Can we handle both estimating the π 's and and finite popl'n sampling? Saegusa (2010).

- Further problems and possible approaches:
 - Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
 - Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
 - Infinite-dimensional constraint version of EL?
 - Can we handle both estimating the π 's and and finite popl'n sampling? Saegusa (2010).
 - Efficiency gains via finite (without replacement) sampling. Further gains possible via other sampling designs?
 - Hájek (1964), Rosen (1972a,b), Isaki and Fuller (1982)
 - Lin (2000)

• Further problems and possible approaches, continued

- Further problems and possible approaches, continued
 - Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{n} together with finite-sampling or more complex designs?
 - Z-theorems of Huang (1995), Wellner and Zhang (2006); GMM-theorem with nuisance parameters: Newey (1994).
 - Empirical likelihood with nuisance parameters: Hjort, McKeague, van Keilegom (2009).
 - More to learn from the econometricians? Newey and Smith (2004), Schennach (2007)

References:

- Breslow, N. E. and Wellner, J. A. (2007). Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. *Scand. J. Statist.* 34, 86 - 102.
- Breslow, N. E. and Wellner, J. A. (2008). A Z-theorem with estimated parameters and correction note for "Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression". *Scand. J. Statist.* 35, 186 - 192.
- van der Vaart, A. W. and Wellner, J. A. (2007). Empirical processes indexed by estimated functions. In Asymptotics: particles, processes and inverse problems, *IMS Lecture Notes -Monograph Series* 55, 234-252.

- Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E., and Kulich, M. (2009). Using the whole cohort in the anlysis of case-cohort data. *Amer. J. Epidem.* 169, 1398 1405.
- Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E., and Kulich, M. (2009). Improved Horvitz-Thompson estimation of model parameters from two-phase stratified samples: applications in epidemiology. *Statist. Biosc.* 1, 32-49.