Estimation for two-phase designs: semiparametric models and Z-theorems

Jon A. Wellner

University of Washington

- joint work with:
- Norman E. Breslow, University of Washington
- Takumi Saegusa, University of Washington
- Talk at ICSA- Applied Statistics Symposium, Indianapolis, Indiana, June 21, 2010
- Email: jaw@stat.washington.edu http: //www.stat.washington.edu/jaw/jaw.research.htm/

Outline

- Introduction and Review: semiparametric models and two-phase designs

Outline

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)

Outline

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- Z-theorems and beyond: GMM, MD, EL
- Generalized Method of Moments (GMM)
- Minimum distance estimation (MD)
- Connections with empirical likelihood (EL)

Outline

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- Z-theorems and beyond: GMM, MD, EL
- Generalized Method of Moments (GMM)
- Minimum distance estimation (MD)
- Connections with empirical likelihood (EL)
- Summary; problems and open questions

Outline

- Introduction and Review: semiparametric models and two-phase designs
- More efficiency gains? Some approaches (and difficulties)
- Z-theorems and beyond: GMM, MD, EL
- Generalized Method of Moments (GMM)
- Minimum distance estimation (MD)
- Connections with empirical likelihood (EL)
- Summary; problems and open questions

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Scores $\dot{\ell}_{\theta, \eta}$ and $B_{\theta, \eta} h, h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Scores $\dot{\ell}_{\theta, \eta}$ and $B_{\theta, \eta} h, h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
2. Scores $L_{2}\left(P_{0}\right)$-continuous at $\left(\theta_{0}, \eta_{0}\right)$

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Scores $\dot{\ell}_{\theta, \eta}$ and $B_{\theta, \eta} h, h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
2. Scores $L_{2}\left(P_{0}\right)$-continuous at $\left(\theta_{0}, \eta_{0}\right)$
3. "Information operator" $B_{0}^{*} B_{0}$ continuously invertible

1. Introduction and Review:

- Model: semiparametric model, $X \sim P_{\theta, \eta} \in \mathcal{P}$
$(\theta, \eta) \in \Theta \times H$
- parametric part: $\quad \theta \in \Theta \subset \mathbb{R}^{d}$
- nonparametric part: $\quad \eta \in H \subset \mathcal{B}$, a Banach space.
- Assumptions:
- To guarantee \sqrt{n} consistent, asymptotically Gaussian ML estimation of both θ and η under i.i.d. random sampling, i.e. with complete data:

1. Scores $\dot{\ell}_{\theta, \eta}$ and $B_{\theta, \eta} h, h \in \mathcal{H} \subset \mathcal{B}$, in Donsker class \mathcal{F}
2. Scores $L_{2}\left(P_{0}\right)$-continuous at $\left(\theta_{0}, \eta_{0}\right)$
3. "Information operator" $B_{0}^{*} B_{0}$ continuously invertible
4. Solution $\left(\hat{\theta}_{n}, \hat{\eta}_{n}\right)$ to score equations consistent for $\left(\theta_{0}, \eta_{0}\right)$

Example: Cox (proportional hazards) regression

- Z - p-vector of covariates: $Z \sim H$
- \tilde{T} - failure time: $[\tilde{T} \mid Z] \sim \operatorname{Cox}(\theta, \Lambda)$
- C - censoring time: $[C \mid Z] \sim G$
- $X=(\Delta, T, Z)$ where
- $T:=\min (\tilde{T}, C)$ - observed time
- $\Delta:=1\{\tilde{T} \leq C\}$ indicates failure at T
- Density for $x=(\delta, t, z)$:

$$
e^{-e^{z \theta} \Lambda(t)}\left(e^{z \theta} \lambda(t)(1-G(t-\mid z))\right)^{\delta}(g(t \mid z))^{1-\delta} h(z)
$$

- Likelihood considered only for (θ, Λ) whereas $\eta=(\Lambda, G, H)$
- (G, H) orthogonal parameters (complete data)

Two Phase Stratified Sampling

Problem: X not fully observed for all subjects
Coarsening: $\tilde{X}=\tilde{X}(X)$ observable part of X
Auxiliary: U helps predict inclusion in subsample

- U optional, to improve efficiency

Notation: $\circ V=(\tilde{X}, U) \in \mathcal{V}$ observable for all

- $W=(X, V) \in \mathcal{W}$ observable only in validation sample

Phase I: $\left\{W_{1}, \ldots, W_{n}\right\}$ i.i.d. sample size n

- but observe only $\left\{V_{1}, \ldots, V_{n}\right\}$

Phase II: Generate sampling indicators $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$

- observe all of X_{i} if $\xi_{i}=1$

Finite population stratified sampling

Partition \mathcal{V} into J strata $\mathcal{V}_{1} \cup \cdots \cup \mathcal{V}_{J}$
Phase I: observe $N_{j}=\sum_{i=1}^{n} \underline{1}\left(V_{i} \in \mathcal{V}_{j}\right)$ subjects stratum j
Phase II: sample n_{j} of N_{j} (without replacement)

- Sampling indicators $\xi_{j i}$ for subject i in stratum j - $\left(\xi_{j 1}, \ldots, \xi_{j N_{j}}\right)$ exchangeable with $\operatorname{Pr}\left(\xi_{j i}=1\right)=\frac{n_{j}}{N_{j}}$
- Vectors $\left(\xi_{j 1}, \ldots, \xi_{j N_{j}}\right)$ independent $j=1, \ldots, J$

	Stratum				
	1	2	\cdots	J	Total
Phase I	N_{1}	N_{2}	\cdots	N_{J}	n
Phase II	n_{1}	n_{2}	\cdots	n_{J}	n.
Sampling fractions	$\frac{n_{1}}{N_{1}}$	$\frac{n_{2}}{N_{2}}$	\cdots	$\frac{n_{J}}{N_{J}}$	$\frac{n .}{n}$

Bernoulli sampling

- Also known as Manski-Lerman sampling
- Observe V_{i} and independently generate ξ_{i} with

$$
\operatorname{Pr}(\xi=1 \mid W)=\operatorname{Pr}(\xi=1 \mid V) \equiv \pi_{0}(V)
$$

- π_{0} known sampling function (MAR)
- Stratified Bernoulli sampling: $\pi_{0}(V)=p_{j}$ for $V \in \mathcal{V}_{j}$
- Preserves i.i.d. structure
- Desirable to estimate known π_{0} using parametric model (later)

$$
\operatorname{Pr}(\xi=1 \mid V ; \alpha):=\pi_{\alpha}(V)
$$

Horovitz-Thompson (or IPW Likelihood) Estimators

- Define Inverse Probability Weighted (IPW) empirical measure:

$$
\begin{gathered}
\mathbb{P}_{n}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \quad \delta_{x}=\text { Dirac measure at } x \\
\pi_{i}= \begin{cases}\pi_{0}\left(V_{i}\right) & \text { if Bernoulli sampling } \\
\frac{n_{j}}{N_{j}} 1\left\{V_{i} \in \mathcal{V}_{j}\right\} & \text { if finite pop'In stratified sampling }\end{cases}
\end{gathered}
$$

Horovitz-Thompson (or IPW Likelihood) Estimators

- Define Inverse Probability Weighted (IPW) empirical measure:

$$
\begin{gathered}
\mathbb{P}_{n}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \quad \delta_{x}=\text { Dirac measure at } x \\
\pi_{i}= \begin{cases}\pi_{0}\left(V_{i}\right) & \text { if Bernoulli sampling } \\
\frac{n_{j}}{N_{j}} 1\left\{V_{i} \in \mathcal{V}_{j}\right\} & \text { if finite pop'In stratified sampling }\end{cases}
\end{gathered}
$$

- Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$
\begin{aligned}
\mathbb{P}_{n}^{\pi} i_{\theta} & =0 & & \text { in } \mathbb{R}^{d} \\
\mathbb{P}_{n}^{\pi} i_{\eta} h & =0 & & \text { for all } h \in \mathcal{H}
\end{aligned}
$$

Horovitz-Thompson (or IPW Likelihood) Estimators

- Define Inverse Probability Weighted (IPW) empirical measure:

$$
\begin{gathered}
\mathbb{P}_{n}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \delta_{X_{i}}, \quad \delta_{x}=\text { Dirac measure at } x \\
\pi_{i}= \begin{cases}\pi_{0}\left(V_{i}\right) & \text { if Bernoulli sampling } \\
\frac{n_{j}}{N_{j}} 1\left\{V_{i} \in \mathcal{V}_{j}\right\} & \text { if finite pop'In stratified sampling }\end{cases}
\end{gathered}
$$

- Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

$$
\begin{aligned}
\mathbb{P}_{n}^{\pi} i_{\theta} & =0 & & \text { in } \mathbb{R}^{d} \\
\mathbb{P}_{n}^{\pi} i_{\eta} h & =0 & & \text { for all } h \in \mathcal{H}
\end{aligned}
$$

- MLE for complete data solves same equations with \mathbb{P}_{n} instead of \mathbb{P}_{n}^{π}.

First Main Result:

- $\widehat{\theta}_{n}$ solving the IPW estimating equations is asymptotically linear

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\xi_{i}}{\pi_{i}} \widetilde{l}_{\theta_{0}}\left(X_{i}\right)+o_{p}(1) \\
& =\mathbb{G}_{n}^{\pi}\left(\widetilde{l}_{\nu_{0}}\right)+o_{p}(1)
\end{aligned}
$$

where $\widetilde{l}_{\theta}(x)$ is the semiparametric efficient influence function for θ (complete data)

$$
\mathbb{G}_{n}^{\pi}=\sqrt{n}\left(\mathbb{P}_{n}^{\pi}-P\right) .
$$

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\mathbb{G}_{n}^{\pi}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

- Asymptotic variances under stratified sampling

$$
\Sigma= \begin{cases}\tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} E_{j}\left(\tilde{\ell}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ \tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} \operatorname{Var}_{j}(\tilde{\ell}), & \text { finite popl'n sampling }\end{cases}
$$

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\mathbb{G}_{n}^{\pi}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

- Asymptotic variances under stratified sampling

$$
\Sigma= \begin{cases}\tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} E_{j}\left(\tilde{\ell}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ \tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} \operatorname{Var}_{j}(\tilde{\ell}), & \text { finite popl'n sampling }\end{cases}
$$

- Gain from stratified sampling without replacement is centering of efficient scores

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\mathbb{G}_{n}^{\pi}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

- Asymptotic variances under stratified sampling

$$
\Sigma= \begin{cases}\tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} E_{j}\left(\tilde{\ell}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ \tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} \operatorname{Var}_{j}(\tilde{\ell}), & \text { finite popl'n sampling }\end{cases}
$$

- Gain from stratified sampling without replacement is centering of efficient scores
- Can reduce variance (considerably) via finite popl'n sampling.

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\mathbb{G}_{n}^{\pi}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

- Asymptotic variances under stratified sampling

$$
\Sigma= \begin{cases}\tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} E_{j}\left(\tilde{\ell}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ \tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} \operatorname{Var}_{j}(\tilde{\ell}), & \text { finite popl'n sampling }\end{cases}
$$

- Gain from stratified sampling without replacement is centering of efficient scores
- Can reduce variance (considerably) via finite popl'n sampling.
- Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\mathbb{G}_{n}^{\pi}\left(\tilde{\ell}_{\theta_{0}, \eta_{0}}\right)+o_{p}(1) \rightarrow_{d} N(0, \Sigma)
$$

- Asymptotic variances under stratified sampling

$$
\Sigma= \begin{cases}\tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} E_{j}\left(\tilde{\ell}^{\otimes 2}\right), & \text { Bernoulli sampling } \\ \tilde{I}^{-1}+\sum_{j=1}^{J} \nu_{j} \frac{1-p_{j}}{p_{j}} \operatorname{Var}_{j}(\tilde{\ell}), & \text { finite popl'n sampling }\end{cases}
$$

- Gain from stratified sampling without replacement is centering of efficient scores
- Can reduce variance (considerably) via finite popl'n sampling.
- Select strata via covariates so that $\tilde{\ell}$ has small conditional variances on the strata
- Alternatively: Bernoulli sampling, but model the selection probabilities $\pi_{\alpha}(V)$ and estimate the α 's Apply a new Z-theorem with estimated nuisance parameters: Breslow and W $(2007,2008)$

Key Result (Breslow \& Wellner, SJOS, 2007-8)

$$
\begin{aligned}
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) & =\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right)+\sqrt{n}\left(\hat{\theta}_{n}-\tilde{\theta}_{n}\right) \\
& =\sqrt{n} \mathbb{P}_{n} \tilde{\ell}_{0}+\sqrt{n}\left(\mathbb{P}_{n}^{\pi}-\mathbb{P}_{n}\right) \tilde{\ell}_{0}+o_{p}(1) \\
\sqrt{n}\left(\mathbb{P}_{n}-P_{0}\right) & \rightsquigarrow \mathbb{G} \text { in } \ell^{\infty}(\mathcal{F}) \\
\sqrt{n}\left(\mathbb{P}_{n}^{\pi}-\mathbb{P}_{n}\right) & \rightsquigarrow \sum_{j=1}^{J} \sqrt{\nu_{j}} \sqrt{\frac{1-p_{j}}{p_{j}}} \mathbb{G}_{j} \text { a.s. } \\
\operatorname{Var}_{\text {TOT }} & =\operatorname{Var}_{\text {PHS-I }}+\operatorname{Var}_{\text {PHS-II }}
\end{aligned}
$$

- $\tilde{\theta}_{n}$ is unobserved MLE based on complete data
- $\operatorname{Var}_{\mathrm{PHS}}$-II is design based: normalized error in HorvitzThompson estimation of unknown finite population total

$$
\tilde{\ell}_{\mathrm{TOT}}=\sum_{i=1}^{n} \tilde{\ell}_{0}\left(X_{i}\right)
$$

- Phase I and II contributions asymptotically independent

2. More efficiency gains? Approaches and difficulties

- Information bound for two - phase design is difficult to calculate.
Solution: Compare to excess over complete data variances.
- Approaches to improving efficiency by reducing the phase II variance: Construct q-vector of auxiliary variables Z from observed data $V=(\tilde{X}, U)$. Use Z to estimate or adjust the sampling probabilities π_{i} :
- Estimate sampling probabilities via parametric model $\pi_{i}=\pi\left(Z_{i} ; \alpha\right)$ (Robins, Rotnitzky, and Zhao, 1994)
- Calibration: Deville and Särndal (1992), Lumley (2010).
- Choose Z to be highly correlated with $\tilde{\ell}_{\theta}(X ; \hat{\theta}, \hat{\eta})$ to improve estimate of $\tilde{\ell}_{\mathrm{TOT}}$

Choice of Auxiliary Variables Z

- Simplify: by considering Bernouilli (i.i.d.) sampling.
- Influence functions: for calibrated and estimated weights take general form (RRZ, JASA, 1994; vdV §25.5.3)

$$
\frac{\xi}{\pi_{0}(V)} \tilde{\ell}_{0}(X)-\frac{\xi-\pi_{0}(V)}{\pi_{0}(V)} \phi(V)
$$

Optimal choice for ϕ is $\phi(V)=E\left(\tilde{\ell}_{0} \mid V\right)$

- which requires knowledge of $(X \mid V)$.

In fact $\phi_{\mathbf{C}}(V)=Q Z(V)$ for calibration and $\phi_{\mathbf{E}}(V)=R Z(V) \pi_{0}(V)$ for estimation based on auxiliary variables $Z=Z(V)$. (For estimation these must contain the stratum indicators.)

- Breslow, Lumley et al, AJE 169:1398-1405, 2009
- Breslow, Lumley et al, SiB 1:32-49, 2009

3. Z-theorems and beyond: GMM, MD, EL

- Setting for classical Huber (1967) Z-theorem:
- $\theta \in \Theta \subset \mathbb{R}^{d}$
- $\Psi_{n}: \Theta \rightarrow \mathbb{R}^{d}$, random;
- $\Psi: \Theta \rightarrow \mathbb{R}^{d}$, deterministic; $\Psi\left(\theta_{0}\right)=0$.

3. Z-theorems and beyond: GMM, MD, EL

- Setting for classical Huber (1967) Z-theorem:
- $\theta \in \Theta \subset \mathbb{R}^{d}$
- $\Psi_{n}: \Theta \rightarrow \mathbb{R}^{d}$, random;
- $\Psi: \Theta \rightarrow \mathbb{R}^{d}$, deterministic; $\Psi\left(\theta_{0}\right)=0$.
- Theorem A: Suppose that $\hat{\theta}_{n} \rightarrow_{p} \theta_{0}$, and that:

A1. $\Psi_{n}\left(\hat{\theta}_{n}\right)=o_{p}\left(n^{-1 / 2}\right)$
A2. $\sqrt{n}\left(\Psi_{n}\left(\theta_{0}\right)-\Psi\left(\theta_{0}\right)\right) \rightarrow_{d} \mathbb{Z} \sim N_{d}(0, V)$
A3. Ψ is differentiable at θ_{0} with non-singular derivative

$$
\dot{\Psi}_{0}=\dot{\Psi}\left(\theta_{0}\right) .
$$

A4.
$\left|\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\hat{\theta}_{n}\right)-\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\theta_{0}\right)\right|=o_{p}\left(1+\sqrt{n}\left|\hat{\theta}_{n}-\theta_{0}\right|\right)$.
Then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightarrow_{d}-\dot{\Psi}_{0}^{-1} \mathbb{Z} \sim N_{d}\left(0, \dot{\Psi}_{0}^{-1} V\left(\dot{\Psi}_{0}^{-1}\right)^{T}\right)
$$

- Setting for Hansen '82; Pakes-Pollard '89 finite-dimensional GMM-theorem
- $\theta \in \Theta \subset \mathbb{R}^{d}$
- $\Psi_{n}: \Theta \rightarrow \mathbb{R}^{p}, p \geq d$ random; $\|h\|_{2}^{2} \equiv \sum_{j=1}^{p} h_{j}^{2}$
- $\Psi: \Theta \rightarrow \mathbb{R}^{p}$, deterministic; $\Psi\left(\nu_{0}, \eta_{0}\right)=0$.
- Conditions:

C0. $\hat{\theta}_{n} \rightarrow_{p} \theta_{0}$ in \mathbb{R}^{d}.
C1. $\left\|\Psi_{n}\left(\hat{\theta}_{n}\right)\right\|_{2}=\inf _{\theta}\left\|\Psi_{n}(\theta)\right\|_{2}+o_{p}\left(n^{-1 / 2}\right)$.
C2. $\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\theta_{0}\right) \rightarrow_{d} \mathbb{Z} \sim N_{d}(0, V)$ in \mathbb{R}^{p}
C3. $\theta \mapsto \Psi(\theta)$ is differentiable wrt θ at θ_{0} with

$$
\dot{\Psi}\left(\theta_{0}\right) \equiv \Gamma \text { non-singular. }
$$

C4. For every sequence $\delta_{n} \searrow 0$

$$
\sup _{\left|\theta-\theta_{0}\right| \leq \delta_{n}} \frac{\left\|\sqrt{n}\left(\Psi_{n}-\Psi\right)(\theta)-\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\theta_{0}\right)\right\|}{1+\sqrt{n}\left\|\Psi_{n}(\theta)\right\|+\sqrt{n}\|\Psi(\theta)\|}=o_{p}(1) .
$$

C5. θ_{0} is an interior point of Θ.

- Theorem B: (Hansen,1982; Pakes and Pollard, 1989) Suppose that C0-C5 hold. Then

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) & \rightarrow_{d}-\left(\Gamma^{T} \Gamma\right)^{-1} \Gamma^{T} \mathbb{Z} \\
& \sim N_{d}\left(0,\left(\Gamma^{T} \Gamma\right)^{-1}\left(\Gamma^{T} V \Gamma\right)\left(\Gamma^{T} \Gamma\right)^{-1}\right)
\end{aligned}
$$

- Suppose that $A_{n}(\theta)$ is a sequence of (possibly random) $p \times p$ matrices and that $\|\cdot\|_{2}^{2}$ is replaced by $\left\|A_{n}(\theta) \Psi_{n}(\theta)\right\|_{2}^{2}=\Psi_{n}(\theta)^{T} A_{n}^{T} A_{n} \Psi_{n}(\theta)$ in the above.
- C6. Suppose that $A_{n}(\theta)$ converges to a nonsingular, nonrandom matrix A :

$$
\sup _{\left|\theta-\theta_{0}\right| \leq \delta_{n}}\left\|A_{n}(\theta)-A(\theta)\right\|=o_{p}(1)
$$

for every sequence $\delta_{n} \rightarrow 0$.

- Theorem C: (GMM: Pakes and Pollard, 1989; Hansen, 1982). If C0-C6 hold, then Theorem B holds with Ψ replaced by $A \Psi(\theta), V$ replaced by $A V A^{T}$, and Γ replaced by $A \Gamma=A \dot{\Psi}_{0}$. Thus with $W \equiv A^{T} A$

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) & \rightarrow_{d}-\left(\Gamma^{T} W \Gamma\right)^{-1} \Gamma^{T} W \mathbb{Z} \\
& \sim N_{d}\left(0,\left(\Gamma^{T} W \Gamma\right)^{-1}\left(\Gamma^{T} W V W \Gamma\right)\left(\Gamma^{T} W \Gamma\right)^{-1}\right) .
\end{aligned}
$$

- The covariance is minimized by the choice $W=V^{-1}$ when V is non-singular and then it reduces to

$$
\begin{equation*}
\left(\Gamma^{T} V^{-1} \Gamma\right)^{-1} \tag{1}
\end{equation*}
$$

- Note that this further reduces to the asymptotic variance of Huber's Z-theorem when $p=d$ and Γ is non-singular.
- (1) is exactly the form of the covariance of Empirical Likelihood and Generalized Empirical Likelihood Estimators: Qin and Lawless (1994), Newey and Smith (2004), under stronger regularity conditions.
- Chamberlain (1987) shows that $\left(\Gamma^{T} V^{-1} \Gamma\right)^{-1}$ is the efficiency bound for estimation of θ in the constraint-defined model $\mathcal{P}=\left\{P: \Psi(\theta)=0, \theta \in \mathbb{R}^{p}\right\}$. Newey (2004) treats efficiency in the case when V is singular.
- Andrews (2002) studies the GMM estimators when C. 5 fails.
- P. W. Millar (1984) studies infinite-dimensional versions of GMM estimators as Minimum Distance Estimators, and gives a theorem that contains the Pakes-Pollard (1989) theorems. Millar allows $\Theta \subset \mathbb{B}$, a Banach space, and assumes that the functions Ψ_{n} and Ψ take values in another Banach space \mathbb{L}, but focuses on cases in which \mathbb{L} is a Hilbert space, and in fact the theorem of Hansen (1982) and Pakes and Pollard (1989) continue to hold in this setting.
- (Connections to Empirical Likelihood): Lopez, van Keilegom, and Veraverbeke (2009) use the methods of Pakes and Pollard (1989) and Sherman (1993) to extend the results of Qin and Lawless (1994) to non-smooth functions. (Smoothness weakened; boundedness of basic functions strengthened. Can we weaken both?)
- Chamberlain (1987) shows that $\left(\Gamma^{T} V^{-1} \Gamma\right)^{-1}$ is the efficiency bound for estimation of θ in the constraint-defined model $\mathcal{P}=\left\{P: \Psi(\theta)=0, \theta \in \mathbb{R}^{p}\right\}$. Newey (2004) treats efficiency in the case when V is singular.
- Andrews (2002) studies the GMM estimators when C. 5 fails.
- P. W. Millar (1984) studies infinite-dimensional versions of GMM estimators as Minimum Distance Estimators, and gives a theorem that contains the Pakes-Pollard (1989) theorems. Millar allows $\Theta \subset \mathbb{B}$, a Banach space, and assumes that the functions Ψ_{n} and Ψ take values in another Banach space \mathbb{L}, but focuses on cases in which \mathbb{L} is a Hilbert space, and in fact the theorem of Hansen (1982) and Pakes and Pollard (1989) continue to hold in this setting.
- (Connections to Empirical Likelihood): Lopez, van Keilegom, and Veraverbeke (2009) use the methods of Pakes and Pollard (1989) and Sherman (1993) to extend the results of Qin and Lawless (1994) to non-smooth functions. (Smoothness weakened; boundedness of basic functions strengthened. Can we weaken both?)
- Setting for BKRW (1993), van der Vaart (1995) infinite-dimensional Z-theorem: see van der Vaart and Wellner (1996)
- $\theta \in \Theta \subset B$, a Banach space
- $\Psi_{n}: \Theta \rightarrow \mathbb{L}$, random;
- $\Psi: \Theta \rightarrow \mathbb{L}$, deterministic; $\Psi\left(\theta_{0}\right)=0$.
- Theorem B: Suppose that: $\hat{\theta}_{n} \rightarrow_{p} \theta_{0}$ in B, and that:

B1. $\Psi_{n}\left(\hat{\theta}_{n}\right)=o_{p}\left(n^{-1 / 2}\right)$ in \mathbb{L}
B2. $\sqrt{n}\left(\Psi_{n}\left(\theta_{0}\right)-\Psi\left(\theta_{0}\right)\right) \Rightarrow \mathbb{Z}$ in \mathbb{L}
B3. Ψ is Fréchet differentiable at θ_{0} with (continuously) invertible derivative $\dot{\Psi}_{0}=\dot{\Psi}\left(\theta_{0}\right)$.
B4. For every $\delta_{n} \rightarrow 0$

$$
\sup _{\left\|\theta-\theta_{0}\right\| \leq \delta_{n}} \frac{\| \sqrt{n}\left(\left(\Psi_{n}-\Psi\right)(\theta)-\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\theta_{0}\right) \|_{\mathbb{L}}\right.}{1+\sqrt{n}\left\|\theta-\theta_{0}\right\|_{B}}=o_{p}(1) .
$$

Then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightsquigarrow-\dot{\Psi}_{0}^{-1} \mathbb{Z} \text { in } B .
$$

- Setting for Millar's infinite-dimensional GMM (or-MDE) theorem.
- $\theta \in \Theta \subset B$, a Banach space
- $\Psi_{n}: \Theta \rightarrow \mathbb{L}$, random; \mathbb{L} Hilbert
- $\Psi: \Theta \rightarrow \mathbb{L}$, deterministic; $\Psi\left(\theta_{0}\right)=0$.
- Theorem B: Assume that

B0. $\hat{\theta}_{n} \rightarrow_{p} \theta_{0}$ in B
B1. $\left\|\Psi_{n}\left(\hat{\theta}_{n}\right)\right\|_{\mathbb{L}}=o_{p}\left(n^{-1 / 2}\right)+\inf _{\theta \in \Theta}\left\|\Psi_{n}(\theta)\right\|_{\mathbb{L}}$
B2. $\sqrt{n}\left(\Psi_{n}\left(\theta_{0}\right)-\Psi\left(\theta_{0}\right)\right) \Rightarrow \mathbb{Z}$ in \mathbb{L}
B3. Ψ is differentiable at θ_{0} with invertible derivative $\dot{\Psi}_{0}=\Gamma$ satisfying $\Gamma^{T} \Gamma: B \rightarrow B$ invertible.
B4. For every $\delta_{n} \rightarrow 0$

$$
\sup _{\left\|\theta-\theta_{0}\right\| \leq \delta_{n}} \frac{\| \sqrt{n}\left(\left(\Psi_{n}-\Psi\right)(\theta)-\sqrt{n}\left(\Psi_{n}-\Psi\right)\left(\theta_{0}\right) \|_{\mathbb{L}}\right.}{1+\sqrt{n}\left\|\Psi_{n}(\theta)\right\|_{\mathbb{L}}+\sqrt{n}\|\Psi(\theta)\|_{\mathbb{L}}}=o_{p}(1) .
$$

Then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightsquigarrow-\left(\Gamma^{T} \Gamma\right)^{-1} \Gamma^{T} \mathbb{Z} \quad \text { in } B .
$$

4. Summary; problems and open questions

- Z-theorems
- classical Huber Z-theorem
- van der Vaart (1995): infinite dimensional Z-theorem; see also vdV-W (1996).
- Breslow - Wellner (2008) infinite dimensional Z-theorem with (possibly) infinite-dimensional nuisance parameter
- GMM or MD theorems
- Hansen (1982)
- Pakes-Pollard (1989): further restrictions Z-theorem or GMM; related to EL
- Millar (1984) infinite-dimensional GMM or Mininum Distance theorem.
- Newey (1994), Chen-Linton-van Keilegom (2004) finite-dimensional Z-theorem with infinite-dimensional nuisance parameter.
- Application to semiparametric missing data models
- Application to semiparametric missing data models
- Basic idea: separate calculations for sampling design and for model.
- Application to semiparametric missing data models
- Basic idea: separate calculations for sampling design and for model.
- Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}
- Application to semiparametric missing data models
- Basic idea: separate calculations for sampling design and for model.
- Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}
- Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\nu}$ for ν.
- Application to semiparametric missing data models
- Basic idea: separate calculations for sampling design and for model.
- Sampling assumptions give properties of IPW empirical process \mathbb{G}_{N}^{π}
- Likelihood calculations for complete data problem give efficient influence function $\tilde{\ell}_{\nu}$ for ν.
- Basic Issue: estimating the π 's can lead to increased efficiency.
- Regression on $Z=Z(V)$?
- Calibration?
- Further problems and possible approaches:
- Further problems and possible approaches:
- Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
- Further problems and possible approaches:
- Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
- Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
- Further problems and possible approaches:
- Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
- Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
- Infinite-dimensional constraint version of EL?
- Further problems and possible approaches:
- Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
- Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
- Infinite-dimensional constraint version of EL?
- Can we handle both estimating the π 's and and finite popl'n sampling? Saegusa (2010).
- Further problems and possible approaches:
- Improved methods of calibration: connection between survey sampling and Empirical Likelihood?
- Infinite-dimensional version of Pakes-Pollard GMM theorem (Millar)?
- Infinite-dimensional constraint version of EL?
- Can we handle both estimating the π 's and and finite popl'n sampling? Saegusa (2010).
- Efficiency gains via finite (without replacement)
sampling. Further gains possible via other sampling designs?
- Hájek (1964), Rosen (1972a,b), Isaki and Fuller (1982)
- Lin (2000)
- Further problems and possible approaches, continued
- Further problems and possible approaches, continued
- Can we handle problems with nuisance parameter estimators not converging at rate \sqrt{n} together with finite-sampling or more complex designs?
- Z-theorems of Huang (1995), Wellner and Zhang (2006); GMM-theorem with nuisance parameters: Newey (1994).
- Empirical likelihood with nuisance parameters: Hjort, McKeague, van Keilegom (2009).
- More to learn from the econometricians? Newey and Smith (2004), Schennach (2007)

References:

- Breslow, N. E. and Wellner, J. A. (2007). Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. Scand. J. Statist. 34, 86-102.
- Breslow, N. E. and Wellner, J. A. (2008). A Z-theorem with estimated parameters and correction note for "Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression". Scand. J. Statist. 35, 186-192.
- van der Vaart, A. W. and Wellner, J. A. (2007). Empirical processes indexed by estimated functions. In Asymptotics: particles, processes and inverse problems, IMS Lecture Notes Monograph Series 55, 234-252.
- Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E., and Kulich, M. (2009). Using the whole cohort in the anlysis of case-cohort data. Amer. J. Epidem. 169, 1398 1405.
- Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E., and Kulich, M. (2009). Improved Horvitz-Thompson estimation of model parameters from two-phase stratified samples: applications in epidemiology. Statist. Biosc. 1, 32-49.

