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1. Introduction and Review:

• Model: semiparametric model, X ∼ Pθ,η ∈ P
(θ, η) ∈ Θ×H

• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space.
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1. Introduction and Review:

• Model: semiparametric model, X ∼ Pθ,η ∈ P
(θ, η) ∈ Θ×H

• parametric part: θ ∈ Θ ⊂ Rd

• nonparametric part: η ∈ H ⊂ B, a Banach space.
• Assumptions:
• To guarantee

√
n consistent, asymptotically Gaussian ML

estimation of both θ and η under i.i.d. random sampling, i.e.
with complete data:
1. Scores #̇θ,η and Bθ,ηh, h ∈ H ⊂ B, in Donsker class F
2. Scores L2(P0)-continuous at (θ0, η0)
3. “Information operator" B∗

0B0 continuously invertible
4. Solution (θ̂n, η̂n) to score equations consistent for (θ0, η0)
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Example: Cox (proportional hazards) regression

• Z – p-vector of covariates: Z ∼ H

• T̃ – failure time: [T̃ |Z] ∼ Cox(θ,Λ)
• C – censoring time: [C|Z] ∼ G

• X = (∆, T, Z) where
◦ T := min(T̃ , C) – observed time
◦ ∆ := 1{T̃ ≤ C} indicates failure at T

• Density for x = (δ, t, z):

e−ezθΛ(t)
(
ezθλ(t) (1−G(t− |z))

)δ
(g(t|z))1−δ h(z)

• Likelihood considered only for (θ,Λ) whereas η = (Λ, G,H)
• (G,H) orthogonal parameters (complete data)
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Two Phase Stratified Sampling

Problem: X not fully observed for all subjects
Coarsening: X̃ = X̃(X) observable part of X

Auxiliary: U helps predict inclusion in subsample
◦ U optional, to improve efficiency

Notation: ◦ V = (X̃, U) ∈ V observable for all
◦ W = (X,V ) ∈ W observable only in validation sample

Phase I: {W1, . . . ,Wn} i.i.d. sample size n
◦ but observe only {V1, . . . , Vn}

Phase II: Generate sampling indicators {ξ1, . . . , ξn}
◦ observe all of Xi if ξi = 1
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Finite population stratified sampling

Partition V into J strata V1
⋃

· · ·
⋃

VJ

Phase I: observe Nj =
∑n

i=1 1¯
(Vi ∈ Vj) subjects stratum j

Phase II: sample nj of Nj (without replacement)
◦ Sampling indicators ξji for subject i in stratum j

• (ξj1, . . . , ξjNj
) exchangeable with Pr(ξji = 1) = nj

Nj

• Vectors (ξj1, . . . , ξjNj
) independent j = 1, . . . , J

Stratum
1 2 · · · J Total

Phase I N1 N2 · · · NJ n

Phase II n1 n2 · · · nJ n·

Sampling fractions n1

N1

n2

N2
· · · nJ

NJ

n·
n
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Bernoulli sampling

• Also known as Manski-Lerman sampling
• Observe Vi and independently generate ξi with

Pr(ξ = 1|W ) = Pr(ξ = 1|V ) ≡ π0(V )

• π0 known sampling function (MAR)
◦ Stratified Bernoulli sampling: π0(V ) = pj for V ∈ Vj

• Preserves i.i.d. structure
• Desirable to estimate known π0 using parametric model
(later)

Pr(ξ = 1|V ;α) := πα(V )

Estimation for two-phase designs:semiparametric models andZ−theorems – p. 8/27



Horovitz-Thompson (or IPW Likelihood) Estimators

• Define Inverse Probability Weighted (IPW) empirical
measure:

Pπ
n =

1

n

n∑

i=1

ξi
πi
δXi

, δx = Dirac measure at x

πi =

{
π0(Vi) if Bernoulli sampling
nj

Nj
1{Vi ∈ Vj} if finite pop’ln stratified sampling
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• Jointly solve the finite - (for θ) and infinite (for η) dimensional
equations

Pπ
nl̇θ = 0 in Rd

Pπ
nl̇ηh = 0 for all h ∈ H

• MLE for complete data solves same equations with Pn

instead of Pπ
n.

Estimation for two-phase designs:semiparametric models andZ−theorems – p. 9/27



First Main Result:

• θ̂n solving the IPW estimating equations is asymptotically
linear

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

ξi
πi
l̃θ0(Xi) + op(1)

= Gπ
n(l̃ν0) + op(1)

where l̃θ(x) is the semiparametric efficient influence
function for θ (complete data)

Gπ
n =

√
n(Pπ

n − P ).
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√
n(θ̂n − θ0) = Gπ

n(#̃θ0,η0
) + op(1)→dN(0,Σ)

• Asymptotic variances under stratified sampling

Σ =

{
Ĩ−1 +

∑J
j=1 νj

1−pj

pj
Ej(#̃⊗2), Bernoulli sampling

Ĩ−1 +
∑J

j=1 νj
1−pj

pj
V arj(#̃), finite popl’n sampling
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√
n(θ̂n − θ0) = Gπ

n(#̃θ0,η0
) + op(1)→dN(0,Σ)

• Asymptotic variances under stratified sampling

Σ =

{
Ĩ−1 +
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j=1 νj

1−pj

pj
Ej(#̃⊗2), Bernoulli sampling

Ĩ−1 +
∑J

j=1 νj
1−pj

pj
V arj(#̃), finite popl’n sampling

• Gain from stratified sampling without replacement is
centering of efficient scores
◦ Can reduce variance (considerably) via finite popl’n
sampling.

◦ Select strata via covariates so that #̃ has small
conditional variances on the strata

◦ Alternatively: Bernoulli sampling, but model the
selection probabilities πα(V ) and estimate the α’s
Apply a new Z−theorem with estimated nuisance
parameters: Breslow and W (2007,2008)
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Key Result (Breslow & Wellner, SJOS, 2007-8)

√
n(θ̂n − θ0) =

√
n(θ̃n − θ0) +

√
n(θ̂n − θ̃n)

=
√
nPn#̃0 +

√
n (Pπ

n − Pn) #̃0 + op(1)
√
n(Pn − P0) ! G in #∞(F)

√
n (Pπ

n − Pn) !
J∑

j=1

√
νj

√
1− pj
pj

Gj a.s.

VarTOT = VarPHS-I + VarPHS-II

• θ̃n is unobserved MLE based on complete data
• VarPHS-II is design based: normalized error in Horvitz-
Thompson estimation of unknown finite population total

#̃TOT =
∑n

i=1 #̃0(Xi)

• Phase I and II contributions asymptotically independent
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2. More efficiency gains? Approaches and difficulties

• Information bound for two - phase design is difficult to
calculate.
Solution: Compare to excess over complete data variances.

• Approaches to improving efficiency by reducing the phase II
variance: Construct q-vector of auxiliary variables Z from
observed data V = (X̃, U). Use Z to estimate or adjust the
sampling probabilities πi:
◦ Estimate sampling probabilities via parametric model
πi = π(Zi;α) (Robins, Rotnitzky, and Zhao, 1994)

◦ Calibration: Deville and Särndal (1992), Lumley (2010).
◦ Choose Z to be highly correlated with #̃θ(X; θ̂, η̂) to
improve estimate of #̃TOT
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Choice of Auxiliary Variables Z

• Simplify: by considering Bernouilli (i.i.d.) sampling.
• Influence functions: for calibrated and estimated weights take
general form (RRZ, JASA, 1994; vdV §25.5.3)

ξ

π0(V )
#̃0(X)− ξ − π0(V )

π0(V )
φ(V )

Optimal choice for φ is φ(V ) = E(#̃0|V )

– which requires knowledge of (X|V ).
In fact φc(V ) = QZ(V ) for calibration and φE(V ) = RZ(V )π0(V )

for estimation based on auxiliary variables Z = Z(V ). (For
estimation these must contain the stratum indicators.)

• Breslow, Lumley et al, AJE 169:1398-1405, 2009
• Breslow, Lumley et al, SiB 1:32-49, 2009
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3. Z−theorems and beyond: GMM, MD, EL

• Setting for classical Huber (1967) Z−theorem:
• θ ∈ Θ ⊂ Rd

• Ψn : Θ → Rd, random;
• Ψ : Θ → Rd, deterministic; Ψ(θ0) = 0.
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3. Z−theorems and beyond: GMM, MD, EL

• Setting for classical Huber (1967) Z−theorem:
• θ ∈ Θ ⊂ Rd

• Ψn : Θ → Rd, random;
• Ψ : Θ → Rd, deterministic; Ψ(θ0) = 0.

• Theorem A: Suppose that θ̂n →p θ0, and that:
A1. Ψn(θ̂n) = op(n−1/2)
A2. √n(Ψn(θ0)−Ψ(θ0)) →d Z ∼ Nd(0, V )
A3. Ψ is differentiable at θ0 with non-singular derivative

Ψ̇0 = Ψ̇(θ0).
A4.
|
√
n(Ψn −Ψ)(θ̂n)−

√
n(Ψn −Ψ)(θ0)| = op(1 +

√
n|θ̂n − θ0|).

Then
√
n(θ̂n − θ0) →d −Ψ̇−1

0 Z ∼ Nd(0, Ψ̇
−1
0 V (Ψ̇−1

0 )T ).
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• Setting for Hansen ’82; Pakes-Pollard ’89 finite-dimensional
GMM-theorem
• θ ∈ Θ ⊂ Rd

• Ψn : Θ → Rp, p ≥ d random; ‖h‖22 ≡
∑p

j=1 h
2
j

• Ψ : Θ → Rp, deterministic; Ψ(ν0, η0) = 0.
• Conditions:
C0. θ̂n →p θ0 in Rd.
C1. ‖Ψn(θ̂n)‖2 = infθ ‖Ψn(θ)‖2 + op(n−1/2).
C2.

√
n(Ψn −Ψ)(θ0) →d Z ∼ Nd(0, V ) in Rp

C3. θ -→ Ψ(θ) is differentiable wrt θ at θ0 with
Ψ̇(θ0) ≡ Γ non-singular.

C4. For every sequence δn ↘ 0

sup
|θ−θ0|≤δn

‖
√
n(Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)‖

1 +
√
n‖Ψn(θ)‖+

√
n‖Ψ(θ)‖

= op(1).

C5. θ0 is an interior point of Θ.
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• Theorem B: (Hansen,1982; Pakes and Pollard, 1989)
Suppose that C0 - C5 hold. Then

√
n(θ̂n − θ0) →d −(ΓTΓ)−1ΓTZ

∼ Nd(0, (Γ
TΓ)−1(ΓTV Γ)(ΓTΓ)−1).

• Suppose that An(θ) is a sequence of (possibly random)
p× p matrices and that ‖ · ‖22 is replaced by
‖An(θ)Ψn(θ)‖22 = Ψn(θ)TAT

nAnΨn(θ) in the above.
• C6. Suppose that An(θ) converges to a nonsingular,
nonrandom matrix A:

sup
|θ−θ0|≤δn

‖An(θ)−A(θ)‖ = op(1)

for every sequence δn → 0.
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• Theorem C: (GMM: Pakes and Pollard, 1989; Hansen, 1982).
If C0-C6 hold, then Theorem B holds with Ψ replaced by
AΨ(θ), V replaced by AV AT , and Γ replaced by AΓ = AΨ̇0.
Thus withW ≡ ATA

√
n(θ̂n − θ0) →d −(ΓTWΓ)−1ΓTWZ

∼ Nd(0, (Γ
TWΓ)−1(ΓTWVWΓ)(ΓTWΓ)−1).

• The covariance is minimized by the choice W = V −1 when
V is non-singular and then it reduces to

(ΓTV −1Γ)−1. (1)

• Note that this further reduces to the asymptotic variance of
Huber’s Z-theorem when p = d and Γ is non-singular.

• (1) is exactly the form of the covariance of Empirical
Likelihood and Generalized Empirical Likelihood Estimators:
Qin and Lawless (1994), Newey and Smith (2004), under
stronger regularity conditions.
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• Chamberlain (1987) shows that (ΓTV −1Γ)−1 is the
efficiency bound for estimation of θ in the constraint-defined
model P = {P : Ψ(θ) = 0, θ ∈ Rp}. Newey (2004) treats
efficiency in the case when V is singular.

• Andrews (2002) studies the GMM estimators when C.5 fails.
• P. W. Millar (1984) studies infinite-dimensional versions of
GMM estimators as Minimum Distance Estimators, and
gives a theorem that contains the Pakes-Pollard (1989)
theorems. Millar allows Θ ⊂ B, a Banach space, and
assumes that the functions Ψn and Ψ take values in another
Banach space L, but focuses on cases in which L is a
Hilbert space, and in fact the theorem of Hansen (1982) and
Pakes and Pollard (1989) continue to hold in this setting.

• (Connections to Empirical Likelihood): Lopez, van
Keilegom, and Veraverbeke (2009) use the methods of
Pakes and Pollard (1989) and Sherman (1993) to extend
the results of Qin and Lawless (1994) to non-smooth
functions. (Smoothness weakened; boundedness of basic
functions strengthened. Can we weaken both?)
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• Setting for BKRW (1993), van der Vaart (1995)
infinite-dimensional Z−theorem:
see van der Vaart and Wellner (1996)
• θ ∈ Θ ⊂ B, a Banach space
• Ψn : Θ → L, random;
• Ψ : Θ → L, deterministic; Ψ(θ0) = 0.

• Theorem B: Suppose that: θ̂n →p θ0 in B, and that:
B1. Ψn(θ̂n) = op(n−1/2) in L
B2.

√
n(Ψn(θ0)−Ψ(θ0)) ⇒ Z in L

B3. Ψ is Fréchet differentiable at θ0 with (continuously)
invertible derivative Ψ̇0 = Ψ̇(θ0).

B4. For every δn → 0

sup
‖θ−θ0‖≤δn

‖
√
n((Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)‖L

1 +
√
n‖θ − θ0‖B

= op(1).

Then √
n(θ̂n − θ0) ! −Ψ̇−1

0 Z in B.
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• Setting for Millar’s infinite-dimensional GMM (or-MDE)
theorem.
• θ ∈ Θ ⊂ B, a Banach space
• Ψn : Θ → L, random; L Hilbert
• Ψ : Θ → L, deterministic; Ψ(θ0) = 0.

• Theorem B: Assume that
B0. θ̂n →p θ0 in B

B1. ‖Ψn(θ̂n)‖L = op(n−1/2) + infθ∈Θ ‖Ψn(θ)‖L
B2.

√
n(Ψn(θ0)−Ψ(θ0)) ⇒ Z in L

B3. Ψ is differentiable at θ0 with invertible derivative Ψ̇0 = Γ
satisfying ΓTΓ : B → B invertible.
B4. For every δn → 0

sup
‖θ−θ0‖≤δn

‖
√
n((Ψn −Ψ)(θ)−

√
n(Ψn −Ψ)(θ0)‖L

1 +
√
n‖Ψn(θ)‖L +

√
n‖Ψ(θ)‖L

= op(1).

Then √
n(θ̂n − θ0) ! −(ΓTΓ)−1ΓTZ in B.
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4. Summary; problems and open questions

• Z-theorems
◦ classical Huber Z−theorem
◦ van der Vaart (1995): infinite dimensional Z−theorem;
see also vdV-W (1996).

◦ Breslow - Wellner (2008) infinite dimensional
Z−theorem with (possibly) infinite-dimensional nuisance
parameter

• GMM or MD theorems
◦ Hansen (1982)
◦ Pakes-Pollard (1989): further restrictions Z−theorem or
GMM; related to EL

◦ Millar (1984) infinite-dimensional GMM or Mininum
Distance theorem.

◦ Newey (1994), Chen-Linton-van Keilegom (2004)
finite-dimensional Z−theorem with infinite-dimensional
nuisance parameter.
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• Application to semiparametric missing data models
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• Application to semiparametric missing data models
◦ Basic idea: separate calculations for sampling design
and for model.
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process Gπ
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• Application to semiparametric missing data models
◦ Basic idea: separate calculations for sampling design
and for model.

◦ Sampling assumptions give properties of IPW empirical
process Gπ

N

◦ Likelihood calculations for complete data problem give
efficient influence function #̃ν for ν.
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• Application to semiparametric missing data models
◦ Basic idea: separate calculations for sampling design
and for model.

◦ Sampling assumptions give properties of IPW empirical
process Gπ

N

◦ Likelihood calculations for complete data problem give
efficient influence function #̃ν for ν.

◦ Basic Issue: estimating the π’s can lead to increased
efficiency.
• Regression on Z = Z(V )?
• Calibration?
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• Further problems and possible approaches:
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survey sampling and Empirical Likelihood?
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• Further problems and possible approaches:
◦ Improved methods of calibration: connection between
survey sampling and Empirical Likelihood?

◦ Infinite-dimensional version of Pakes-Pollard GMM
theorem (Millar)?

◦ Infinite-dimensional constraint version of EL?
◦ Can we handle both estimating the π’s and and finite
popl’n sampling? Saegusa (2010).
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• Further problems and possible approaches:
◦ Improved methods of calibration: connection between
survey sampling and Empirical Likelihood?

◦ Infinite-dimensional version of Pakes-Pollard GMM
theorem (Millar)?

◦ Infinite-dimensional constraint version of EL?
◦ Can we handle both estimating the π’s and and finite
popl’n sampling? Saegusa (2010).

◦ Efficiency gains via finite (without replacement)
sampling. Further gains possible via other sampling
designs?
• Hájek (1964), Rosen (1972a,b), Isaki and Fuller
(1982)

• Lin (2000)
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• Further problems and possible approaches, continued
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• Further problems and possible approaches, continued
◦ Can we handle problems with nuisance parameter
estimators not converging at rate

√
n together with

finite-sampling or more complex designs?
• Z−theorems of Huang (1995), Wellner and Zhang
(2006); GMM-theorem with nuisance parameters:
Newey (1994).

• Empirical likelihood with nuisance parameters: Hjort,
McKeague, van Keilegom (2009).

• More to learn from the econometricians? Newey and
Smith (2004), Schennach (2007)
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